Final Targeting Strategy for the SDSS-IV APOGEE-2N Survey
Total Page:16
File Type:pdf, Size:1020Kb
Draft version August 27, 2021 Typeset using LATEX default style in AASTeX63 Final Targeting Strategy for the SDSS-IV APOGEE-2N Survey Rachael L. Beaton,1, 2, ∗ Ryan J. Oelkers,3 Christian R. Hayes,4 Kevin R. Covey,5 S. D. Chojnowski,6, 7 Nathan De Lee,8, 3 Jennifer S. Sobeck,4 Steven R. Majewski,9 Roger Cohen,10 Jose´ Fernandez-Trincado,´ 11 Penelope´ Longa-Pena,~ 12 Julia E. O'Connell,13 Felipe A. Santana,14 Guy S. Stringfellow,15 Gail Zasowski,16 Conny Aerts,17 Borja Anguiano,9 Chad Bender,18 Caleb I. Canas,~ 19, 20, 21 Katia Cunha,18, 22 John Donor,23 Scott W. Fleming,10 Peter M. Frinchaboy,23 Diane Feuillet,24, 25 Paul Harding,26 Sten Hasselquist,16, 27 Jon Holtzman,6 Jennifer A. Johnson,28 Juna A. Kollmeier,2 Marina Kounkel,5, 3 Suvrath Mahadevan,19, 20, 21 Adrian. M. Price-Whelan,29 Alvaro Rojas-Arriagada,30, 31 Carlos Roman-Z´ u´niga~ ,32 Edward F. Schlafly,33 Mathias Schultheis,34 Matthew Shetrone,35 Joshua D. Simon,2 Keivan G. Stassun,3 Amelia M. Stutz,13 Jamie Tayar,36, y Johanna Teske,37 Andrew Tkachenko,17 Nick Troup,38 Franco D. Albareti,39, 40 Dmitry Bizyaev,41, 42, 43 Jo Bovy,44, 45 Adam J. Burgasser,46 Johan Comparat,47 Juan Jose´ Downes,48 Doug Geisler,13, 49, 50 Laura Inno,51 Arturo Manchado,52, 53, 54 Melissa K. Ness,55, 29 Marc H. Pinsonneault,28 Francisco Prada,54 Alexandre Roman-Lopes,50 Gregory V. A. Simonian,28 Verne V. Smith,56 Renbin Yan,57 and Olga Zamora52, 53 1Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 2The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 3Department of Physics & Astronomy, Vanderbilt University, Nashville, TN, 37235, USA 4Department of Astronomy, University of Washington, Seattle, WA, 98195, USA 5Department of Physics & Astronomy, Western Washington University, Bellingham, WA, 98225, USA 6Department of Astronomy, New Mexico State University, Las Cruces, NM, 88001, USA 7Department of Physics, Montana State University, P.O. Box 173840, Bozeman, MT 59717-3840, USA 8Department of Physics, Geology, and Engineering Technology, Northern Kentucky University, Highland Heights, KY 41099, USA 9Department of Astronomy, University of Virginia, Charlottesville, VA, 22903, USA 10Space Telescope Science Institute, Baltimore, MD, 21218, USA 11Instituto de Astronom´ıay Ciencias Planetarias, Universidad de Atacama, Copayapu 485, Copiap´o,Chile 12Unidad de Astronom´ıa, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta 1270300, Chile 13Departamento de Astronom´ıa,Universidad de Concepci´on,Casilla 160-C, Concepci´on,Chile 14Universidad de Chile, Av. Libertador Bernardo O'Higgins 1058, Santiago De Chile 15Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO, 80309, USA 16Department of Physics & Astronomy, University of Utah, Salt Lake City, UT, 84112, USA 17Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium 18Steward Observatory, The University of Arizona, Tucson, AZ, 85719, USA 19Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 20Center for Exoplanets & Habitable Worlds, University Park, PA 16802, USA 21Penn State Astrobiology Research Center, University Park, PA 16802, USA 22Observat´orioNacional, 20921-400 So Crist´ovao,Rio de Janeiro, RJ, Brazil 23Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX, 76129, USA 24Department of Astronomy and Theoretical Physics, Lund Observatory, Lund University, Box 43, SE-221 00 Lund, Sweden 25Max-Planck-Institut f¨urAstronomie, K¨onigstuhl17, D-69117 Heidelberg, Germany 26Department of Astronomy, Case Western Reserve University, Cleveland, OH, 44106, USA arXiv:2108.11907v1 [astro-ph.GA] 26 Aug 2021 27NSF Astronomy and Astrophysics Postdoctoral Fellow 28Department of Astronomy, The Ohio State University, Columbus, OH, 43210, USA 29Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA 30Instituto de Astrof´ısica, Facultad de F´ısica, Pontificia Universidad Cat´olica de Chile, Av. Vicu~naMackenna 4860, Santiago, Chile 31Millennium Institute of Astrophysics, Av. Vicu~na Mackenna 4860, 782-0436, Macul, Santiago, Chile 32Instituto de Astronom´ıa,UNAM, Ensenada, C.P. 22860, Baja California, M´exico 33Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA 34Observatoire de la Cote d'Azur, Lagrange Boulevard de l'Observatoire 06304 Nice, France Corresponding author: Rachael L. Beaton [email protected] 2 Beaton, Oelkers, Hayes, Covey, et al. 35University of California Observatories, Santa Cruz, CA 95064, USA 36Institute for Astronomy, University of Hawai'i, 2680 Woodlawn Drive, Honolulu, HI, 96822, USA 37Earth and Planets Laboratory, Carnegie Institution for Science, 5241 Broad Branch Road, NW, Washington, DC 20015, USAz 38Department of Physics, Salisbury University, Salisbury, MD, 21801, USA 39Instituto de F´ısica Te´orica UAM/CSIC, Universidad Aut´onomade Madrid, Cantoblanco, E-28049 Madrid, Spain 40Campus of International Excellence UAM+CSIC, Cantoblanco, E-28049 Madrid, Spain 41Apache Point Observatory and New Mexico State University, Sunspot, NM 88349, USA 42Sternberg Astronomical Institute, Moscow State University, Moscow, Russia 43Special Astrophysical Observatory of the Russian AS, 369167, Nizhnij Arkhyz, Russia 44David A. Dunlap Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4, Canada 45Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4, Canada 46Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093, USA 47Max-Planck-Institut f¨urextraterrestrische Physik (MPE), Giessenbachstrasse 1, D-85748 Garching bei M¨unchen,Germany 48Centro Universitario Regional del Este, Universidad de la Rep´ublica, AP 264, Rocha 27000, Uruguay 49Instituto de Investigaci´onMultidisciplinario en Ciencia y Tecnolog´ıa,Universidad de La Serena. Avenida Ra´ulBitr´anS/N, La Serena, Chile 50Departamento de Astronom´ıa,Universidad de La Serena - Av. Juan Cisternas, 1200 North, La Serena, Chile 51INAF Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze, Italy 52Instituto de Astrof´ısica de Canarias (IAC), La Laguna, E-38205 Tenerife, Spain 53Universidad de La Laguna (ULL), Departamento de Astrof´ısica, La Laguna, E-38206 Tenerife, Spain 54Instituto de Astrof´ısica de Andaluc´ıa,CSIC, Glorieta de la Astronom´ıas/n, E-18008, Granada, Spain 55Department of Astronomy, Columbia University, Pupin Physics Laboratories, New York, NY 10027, USA 56National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719, USA 57Department of Physics and Astronomy, University of Kentucky, 505 Rose St., Lexington, KY 40506-0057, USA ABSTRACT APOGEE-2 is a dual-hemisphere, near-infrared (NIR), spectroscopic survey with the goal of produc- ing a chemo-dynamical mapping of the Milky Way Galaxy. The targeting for APOGEE-2 is complex and has evolved with time. In this paper, we present the updates and additions to the initial targeting strategy for APOGEE-2N presented in Zasowski et al.(2017). These modifications come in two imple- mentation modes: (i) \Ancillary Science Programs" competitively awarded to SDSS-IV PIs through proposal calls in 2015 and 2017 for the pursuit of new scientific avenues outside the main survey, and (ii) an effective 1.5-year expansion of the survey, known as the Bright Time Extension, made possible through accrued efficiency gains over the first years of the APOGEE-2N project. For the 23 distinct ancillary programs, we provide descriptions of the scientific aims, target selection, and how to identify these targets within the APOGEE-2 sample. The Bright Time Extension permitted changes to the main survey strategy, the inclusion of new programs in response to scientific discoveries or to exploit major new datasets not available at the outset of the survey design, and expansions of existing pro- grams to enhance their scientific success and reach. After describing the motivations, implementation, and assessment of these programs, we also leave a summary of lessons learned from nearly a decade of APOGEE-1 and APOGEE-2 survey operations. A companion paper, F. Santana et al. (submitted), provides a complementary presentation of targeting modifications relevant to APOGEE-2 operations in the Southern Hemisphere. Keywords: astronomical databases { surveys 1. INTRODUCTION The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2; S. Majewski et al. in prep) is one of the programs in the Sloan Digital Sky Survey IV (SDSS-IV; Blanton et al. 2017) and the successor survey to ∗ Much of this work was completed while this author was a NASA Hubble Fellow at Princeton University. Carnegie-Princeton Fellow y Hubble Fellow z Much of this work was completed while this author was a NASA Hubble Fellow at the Observatories of the Carnegie Institution for Science. APOGEE-2N Targeting 3 APOGEE (referred to as APOGEE-1, hereafter, for clarity; Majewski et al. 2017) in SDSS-III (Eisenstein et al. 2011). APOGEE-2 operates in both the Northern and Southern hemispheres, with the original APOGEE spectrograph on the Sloan Foundation Telescope at Apache Point Observatory (APO; Gunn et al. 2006) and an almost clone spectrograph on the Ir´en´eeDuPont telescope at Las Campanas Observatory (LCO; Bowen & Vaughan 1973); both instruments are