An Atlas of 2.4 to 4.1 Μm ISO/SWS Spectra of Early-Type Stars
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Near-Infrared Multi-Band Ultraprecise Spectroimager for SOFIA
NIMBUS: The Near-Infrared Multi-Band Ultraprecise Spectroimager for SOFIA Michael W. McElwaina, Avi Mandella, Bruce Woodgatea, David S. Spiegelb, Nikku Madhusudhanc, Edward Amatuccia, Cullen Blaked, Jason Budinoffa, Adam Burgassere, Adam Burrowsd, Mark Clampina, Charlie Conroyf, L. Drake Demingg, Edward Dunhamh, Roger Foltza, Qian Gonga, Heather Knutsoni, Theodore Muencha, Ruth Murray-Clayf, Hume Peabodya, Bernard Rauschera, Stephen A. Rineharta, Geronimo Villanuevaj aNASA Goddard Space Flight Center, Greenbelt, MD, USA; bInstitute for Advanced Study, Princeton, NJ, USA; cYale University, New Haven, CT, USA; dPrinceton University, Princeton, NJ, USA; eUniversity of California, San Diego, La Jolla, CA, USA; fHarvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA; gUniversity of Maryland, College Park, MD, USA; hLowell Observatory, Flagstaff, AZ, USA; iCalifornia Institute of Technology, Pasadena, CA; jCatholic University of America, Washington, DC, USA. ABSTRACT We present a new and innovative near-infrared multi-band ultraprecise spectroimager (NIMBUS) for SOFIA. This design is capable of characterizing a large sample of extrasolar planet atmospheres by measuring elemental and molecular abundances during primary transit and occultation. This wide-field spectroimager would also provide new insights into Trans-Neptunian Objects (TNO), Solar System occultations, brown dwarf atmospheres, carbon chemistry in globular clusters, chemical gradients in nearby galaxies, and galaxy photometric redshifts. NIMBUS would be the premier ultraprecise -
X-Ray Emission from Wolf-Rayet Stars
X-ray Emission from Wolf-Rayet Stars Steve Skinner1, Svet Zhekov2, Manuel Güdel3 Werner Schmutz4, Kimberly Sokal1 1CASA, Univ. of Colorado (USA) [email protected] 2Space Research Inst. (Bulgaria) and JILA/Univ. of Colorado (USA) 3ETH Zurich (Switzerland) 3PMOD (Switzerland) Abstract We present an overview of recent X-ray observations of Wolf-Rayet (WR) stars with XMM-Newton and Chandra. Observations of several WC-type (carbon-rich) WR stars without known companions have yielded only non-detections, implying they are either very feeble X-ray emitters or perhaps even X-ray quiet. In contrast, several apparently single WN2-6 stars have been detected, but data are sparse for later WN7-9 stars. Putatively single WN stars such as WR 134 have X-ray luminosities and spectra that are strikingly similar to some known WN + OB binaries such as WR 147, suggesting a similar emission mechanism. 1 X-rays from WR Stars: Overview 3 Single Nitrogen-rich WN Stars 4 Wolf-Rayet Binaries WR stars are the evolutionary descendants of massive O • Sensitive X-ray observations have now been obtained • High-resolution X-ray grating spectra have been ob- stars and are losing mass at very high rates. They are in ad- of several putatively single WN2-6 stars with XMM tained for a few binaries such as γ2 Vel (WC8 + vanced nuclear burning stages, approaching the end of their and Chandra. All but one were detected (Fig. 1). O7.5; Fig. 3) and WR 140 (WC7 + O4-5). CCD lives as supernovae. Strong X-rays have been detected from CCD spectra exist (Fig. -
A 2.4-12 Microns Spectrophotometric Study with ISO of Cygnus X-3 in Quiescence
1 Abstract. We present mid-infrared spectrophotometric results obtained with the ISO on the peculiar X-ray bi- nary Cygnus X-3 in quiescence, at orbital phases 0.83 to 1.04. The 2.4 - 12 µm continuum radiation observed with ISOPHOT-S can be explained by thermal free-free emis- sion in an expanding wind with, above 6.5 µm, a possi- ble additional black-body component with temperature T ∼ 250K and radius R ∼ 5000R⊙ at 10 kpc, likely due to thermal emission by circumstellar dust. The observed brightness and continuum spectrum closely match that of the Wolf-Rayet star WR 147, a WN8+B0.5 binary system, when rescaled at the same 10 kpc distance as Cygnus X- 3. A rough mass loss estimate assuming a WN wind gives −4 −1 ∼ 1.2 × 10 M⊙.yr . A line at ∼ 4.3 µm with a more than 4.3 σ detection level, and with a dereddened flux of 126 mJy, is interpreted as the expected He I 3p-3s line at 4.295 µm, a prominent line in the WR 147 spectrum. These results are consistent with a Wolf-Rayet-like com- panion to the compact object in Cyg X-3 of WN8 type, a later type than suggested by earlier works. Key words: binaries: close - stars: individual: Cyg X-3 - stars: Wolf-Rayet - stars: mass loss - infrared: stars arXiv:astro-ph/0207466v1 22 Jul 2002 A&A manuscript no. ASTRONOMY (will be inserted by hand later) AND Your thesaurus codes are: missing; you have not inserted them ASTROPHYSICS A 2.4 - 12 µm spectrophotometric study with ISO of CygnusX-3 in quiescence ⋆ Lydie Koch-Miramond1, P´eter Abrah´am´ 2,3, Ya¨el Fuchs1,4, Jean-Marc Bonnet-Bidaud1, and Arnaud Claret1 1 DAPNIA/Service d’Astrophysique, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France 2 Konkoly Observatory, P.O. -
And H-Band Spectra of Globular Clusters in The
A&A 543, A75 (2012) Astronomy DOI: 10.1051/0004-6361/201218847 & c ESO 2012 ! Astrophysics Integrated J-andH-band spectra of globular clusters in the LMC: implications for stellar population models and galaxy age dating!,!!,!!! M. Lyubenova1,H.Kuntschner2,M.Rejkuba2,D.R.Silva3,M.Kissler-Patig2,andL.E.Tacconi-Garman2 1 Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany e-mail: [email protected] 2 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching bei München, Germany 3 National Optical Astronomy Observatory, 950 North Cherry Ave., Tucson, AZ, 85719 USA Received 19 January 2012 / Accepted 1 May 2012 ABSTRACT Context. The rest-frame near-IR spectra of intermediate age (1–2 Gyr) stellar populations aredominatedbycarbonbasedabsorption features offering a wealth of information. Yet, spectral libraries that include the near-IR wavelength range do not sample a sufficiently broad range of ages and metallicities to allowforaccuratecalibrationofstellar population models and thus the interpretation of the observations. Aims. In this paper we investigate the integrated J-andH-band spectra of six intermediate age and old globular clusters in the Large Magellanic Cloud (LMC). Methods. The observations for six clusters were obtained with the SINFONI integral field spectrograph at the ESO VLT Yepun tele- scope, covering the J (1.09–1.41 µm) and H-band (1.43–1.86 µm) spectral range. The spectral resolution is 6.7 Å in J and 6.6 Å in H-band (FWHM). The observations were made in natural seeing, covering the central 24"" 24"" of each cluster and in addition sam- pling the brightest eight red giant branch and asymptotic giant branch (AGB) star candidates× within the clusters’ tidal radii. -
"MHD Simulations of Colliding Stellar Winds in Binary Systems"
University of Innsbruck Institute for Astro- and Particle Physics MHD simulations of colliding stellar winds in binary systems Master’s Thesis in Astrophysics Anna Ogorzałek Submitted to the Faculty of Mathematics, Computer Science and Physics in Partial Fulfillment of the Requirements for the Degree of Magister / Magistra der Naturwissenschaften Supervisor: Dr Ralf Kissmann Innsbruck, August 2014 ii Abstract: Massive binary systems are sources of non-thermal radiation and possibly even γ- rays. This high energy emission originates in the region between the two stars, where their pow- erful winds collide. This region possess extreme physical conditions that have been the subject of multiple studies including hydrodynamical and particle acceleration simulations. There is little known about the magnetic field at the collision region. It is an important factor, since it produces the non-thermal synchrotron emission, as well as influences the particle acceleration. In this work we use 3D magnetohydrodynamical simulations in order to study the magnetic field properties in the collision region, in particular its strength and the geometry (the angle between the field lines and the shock normal). We prescribe a dipolar magnetic field for both stars and perform a param- eter study of its strength and geometry. We conclude that for the studied range of dipol strengths (∼ 100G) no influence on the collision region is found, as it retains its shape and shocks compres- sion ratios. The magnetospheres do not cross the contact discontinuity, and the respective sides of the collision region depend only on the stellar fields. However, this means that prescribing a single field strength over the whole collision region might not be sensible. -
The Hill Book 2009-2010 Table of Contents
The Hill Book Stonehill College 2009-2010 Stonehill College 2009-2010 Founders The Congregation of Holy Cross, a Catholic community of Priests and Brothers, as an independent, Church-related institution. Accreditation New England Association of Schools and Colleges which accredits schools and colleges in the six New England states. Membership in the Association indicates that the institution has been carefully evaluated and found to meet standards agreed upon by the qualified educators. Stonehill College supports the efforts of secondary school officials and governing bodies to have their schools achieve regional accredited status to provide reliable assurance of the quality of the educational preparation of its applicants for admission. American Chemical Society (ACS) Association of University Programs in Health Administration; Full Certification Membership • Association to Advance Collegiate Schools of Business (AACSB International) • Association of American Colleges and Universities (AACU) • Association of Catholic Colleges and Universities (ACCU) • The Council of Independent Colleges (CIC) • National Association of Independent Colleges and Universities (NAICU) • Southeastern Association for Cooperation of Higher Education in Massachusetts (SACHEM) • Southern New England Consortium on Race and Ethnicity (SNECORE) Letter from the President Dear Stonehill Students, In welcoming you to Stonehill College, I hope that your time with us will be one of active participation in the academic and social opportunities present in our community. You may have noticed the simple yet powerful message on the banners displayed at the entrance to our beautiful campus – Stonehill College: Many Minds. One Purpose. The Stonehill community is blessed with so many minds – the faculty, administrators, staff, alumni and your fellow students who play such a large part in your Stonehill education. -
The H-Band Emitting Region of the Luminous Blue Variable P Cygni: Spectrophotometry and Interferometry of the Wind
The Astrophysical Journal, 769:118 (12pp), 2013 June 1 doi:10.1088/0004-637X/769/2/118 C 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE H-BAND EMITTING REGION OF THE LUMINOUS BLUE VARIABLE P CYGNI: SPECTROPHOTOMETRY AND INTERFEROMETRY OF THE WIND N. D. Richardson1,9,10, G. H. Schaefer2,D.R.Gies1,10, O. Chesneau3,J.D.Monnier4, F. Baron1,4, X. Che4, J. R. Parks1, R. A. Matson1,10, Y. Touhami1,D.P.Clemens5, E. J. Aldoretta1,10, N. D. Morrison6, T. A. ten Brummelaar2, H. A. McAlister1,S.Kraus7,S.T.Ridgway8, J. Sturmann2, L. Sturmann2, B. Taylor5, N. H. Turner2, C. D. Farrington2, and P. J. Goldfinger2 1 Center for High Angular Resolution Astronomy, Department of Physics and Astronomy, Georgia State University, P.O. Box 4106, Atlanta, GA 30302-4106, USA; [email protected] 2 The CHARA Array, Georgia State University, P.O. Box 3965, Atlanta, GA 30302-3965, USA 3 Nice Sophia-Antipolis University, CNRS UMR 6525, Observatoire de la Coteˆ d’Azur, BP 4229, F-06304 Nice Cedex 4, France 4 Department of Astronomy, University of Michigan, 941 Dennison Bldg., Ann Arbor, MI 48109-1090, USA 5 Institute for Astrophysical Research, Boston University, 725 Commonwealth Ave., Boston, MA 02215, USA 6 Ritter Astrophysical Research Center, Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft, Toledo, OH 43606, USA 7 University of Exeter, Astrophysics Group, Stocker Road, Exeter, EX4 4QL, UK 8 National Optical Astronomical Observatory, 950 North Cherry Ave., Tucson, AZ 85719, USA Received 2013 February 7; accepted 2013 April 3; published 2013 May 14 ABSTRACT We present the first high angular resolution observations in the near-infrared H band (1.6 μm) of the luminous blue variable star P Cygni. -
Stellar Spectra in the Hband
110 Wing and Jørgensen, JAAVSO Volume 31, 2003 Stellar Spectra in the H Band Robert F. Wing Department of Astronomy, Ohio State University, Columbus, OH 43210 Uffe G. Jørgensen Niels Bohr Institute, and Astronomical Observatory, University of Copenhagen, DK-2100 Copenhagen, Denmark Presented at the 91st Annual Meeting of the AAVSO, October 26, 2002 [Ed. note: Since this paper was given, the AAVSO has placed 5 near-IR SSP-4 photometers with observers around the world; J and H observations of program stars are being obtained and added to the AAVSO International Database.] Abstract The H band is a region of the infrared centered at wavelength 1.65 microns in a clear window between atmospheric absorption bands. Cool stars such as Mira variables are brightest in this band, and the amplitudes of the light curves of Miras are typically 5 times smaller in H than in V. Since the AAVSO is currently exploring the possibility of distributing H-band photometers to interested members, it is of interest to examine the stellar spectra that these photometers would measure. In most red giant stars, the strongest spectral features in the H band are a set of absorption bands due to the CO molecule. Theoretical spectra calculated from model atmospheres are used to illustrate the pronounced flux peak in H which persists over a wide range of temperature. The models also show that the light in the H band emerges from deeper layers of the star’s atmosphere than the light in any other band. 1. Introduction When multicolor photometry in the infrared was first standardized in the 1960s, Harold Johnson and his colleagues acquired filters to match the windows in the atmospheric absorption and named them with letters of the alphabet (Johnson 1966). -
Near–Infrared Classification Spectroscopy: <I>H</I>–Band Spectra of Fundamental MK Standards
Smith ScholarWorks Astronomy: Faculty Publications Astronomy 11-20-1998 Near–Infrared Classification Spectroscopy: H–band Spectra of Fundamental MK Standards Michael R. Meyer University of Massachusetts Amherst Suzan Edwards Smith College, [email protected] Kenneth H. Hinkle Kitt Peak National Stephen E. Strom University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.smith.edu/ast_facpubs Part of the Astrophysics and Astronomy Commons Recommended Citation Meyer, Michael R.; Edwards, Suzan; Hinkle, Kenneth H.; and Strom, Stephen E., "Near–Infrared Classification Spectroscopy: H–band Spectra of Fundamental MK Standards" (1998). Astronomy: Faculty Publications, Smith College, Northampton, MA. https://scholarworks.smith.edu/ast_facpubs/15 This Article has been accepted for inclusion in Astronomy: Faculty Publications by an authorized administrator of Smith ScholarWorks. For more information, please contact [email protected] THE ASTROPHYSICAL JOURNAL, 508:397È409, 1998 November 20 ( 1998. The American Astronomical Society. All rights reserved. Printed in U.S.A. NEAR-INFRARED CLASSIFICATION SPECTROSCOPY: H-BAND SPECTRA OF FUNDAMENTAL MK STANDARDS MICHAEL R. MEYER1 Five College Astronomy Department, University of Massachusetts, Amherst, MA 01003; mmeyer=as.arizona.edu SUZAN EDWARDS Five College Astronomy Department, Smith College, Northampton, MA 01063; edwards=makapuu.ast.smith.edu KENNETH H. HINKLE Kitt Peak NationalObservatory,2 National Optical Astronomy Observatories, Tucson, AZ 85721; hinkle=noao.edu AND STEPHEN E. STROM Five College Astronomy Department, University of Massachusetts, Amherst, MA 01003; sstrom=tsaile.phast.umass.edu Received 1998 April 7; accepted 1998 June 26 ABSTRACT We present a catalog of H-band spectra for 85 stars of approximately solar abundance observed at a resolving power of 3000 with the KPNO Mayall 4 m Fourier Transform Spectrometer. -
The NIR Upgrade to the SALT Robert Stobie Spectrograph
The NIR Upgrade to the SALT Robert Stobie Spectrograph Andrew I. Sheinis,1,a Marsha J. Wolf,1,b Matthew A. Bershady,1 David A.H. Buckley,2 Kenneth H. Nordsieck,1 Ted B. Williams3 1 University of Wisconsin – Madison, Dept. of Astronomy, 475 N. Charter St., Madison, WI 53706 2 South African Astronomical Observatory, Observatory 7935, South Africa 3 Dept. of Physics and Astronomy, Rutgers University, Piscataway, NJ 08855 ABSTRACT The near infrared (NIR) upgrade to the Robert Stobie Spectrograph (RSS) on the Southern African Large Telescope (SALT), RSS/NIR, extends the spectral coverage of all modes of the visible arm. The RSS/NIR is a low to medium resolution spectrograph with broadband imaging, spectropolarimetric, and Fabry-Perot imaging capabilities. The visible and NIR arms can be used simultaneously to extend spectral coverage from approximately 3200 Å to 1.6 !m. Both arms utilize high efficiency volume phase holographic gratings via articulating gratings and cameras. The NIR camera is designed around a 2048x2048 HAWAII-2RG detector housed in a cryogenic dewar. The Epps optical design of the camera consists of 6 spherical elements, providing sub-pixel rms image sizes of 7.5 " 1.0 !m over all wavelengths and field angles. The exact long wavelength cutoff is yet to be determined in a detailed thermal analysis and will depend on the semi-warm instrument cooling scheme. Initial estimates place instrument limiting magnitudes at J = 23.4 and H(1.4- 1.6 !m) = 21.6 for S/N = 3 in a 1 hour exposure. Keywords: astronomical spectrographs, optical design, near infrared spectroscopy, volume phase holographic gratings, Fabry-Perot imaging, spectropolarimetry 1. -
Uva-DARE (Digital Academic Repository)
UvA-DARE (Digital Academic Repository) Terahertz-assisted excitation of the 1.5mm photoluminescence of Er in crystalline Si Moskalenko, A.S.; Yassievich, I.N.; Forcales Fernandez, M.; Klik, M.A.J.; Gregorkiewicz, T. Publication date 2004 Document Version Final published version Published in Physical Review B Link to publication Citation for published version (APA): Moskalenko, A. S., Yassievich, I. N., Forcales Fernandez, M., Klik, M. A. J., & Gregorkiewicz, T. (2004). Terahertz-assisted excitation of the 1.5mm photoluminescence of Er in crystalline Si. Physical Review B, 70, 155201. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:29 Sep 2021 PHYSICAL REVIEW B 70, 155201 (2004) Terahertz-assisted excitation of the 1.5-m photoluminescence of Er in crystalline Si A. -
Interstellar Extinction in the Vicinity of the Galactic Center
Interstellar Extinction in the Vicinity of the Galactic Center Angela S. Cotera Jet Propulsion Laboratory 1'2 Janet P. Simpson e, Edwin F. Erickson, Sean W. J. Colgan NASA/Ames Research Center Michael G. Burton University of New South Wales and David A. Allen 3 Anglo-Australian Observatory Received ; accepted 1now at Steward Observatory, University of Arizona 2SETI Institute 3Deceased ABSTRACT We present J (1.2 #m), H (1.6 #m), K' (2.11 #m) and Br_/ (2.166#m) imagesfrom four large regionswithin the central 40 pc of the Galaxy. Localized variations in the extinction, as determined by observationsof the stellar population, are examinedusing the median H-K' color as a function of position within eachregion. As the value of the derived extinction from the stars is dependentupon the intrinsic magnitude of the assumedstellar type, the J-H vs. H-K' diagrams are first usedto investigate the distribution of stellar types in the four regions. We find that there is a distinct OB population, contrary to earlier assumptions,with the ratio of K and M giants and supergiantsto OB stars approximately twice that of the solar neighborhood. Although the on the scaleof _1 _fluctuations in the extinction are on the order of Av _2, throughout the entire region the extinction variesfrom Av_ 25 to Av g 40. We also examine whether there is any variation in the extinction and stellar numberdensity relative to the unsual radio featuresin these regionsand do not find a significant correlation. Spectral imaging in Br7 2.166#m emissionshowsa strong morphological correspondencebetweenthe 6 cm radio imagesand the diffuse Bry emission.