Uva-DARE (Digital Academic Repository)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Near-Infrared Multi-Band Ultraprecise Spectroimager for SOFIA
NIMBUS: The Near-Infrared Multi-Band Ultraprecise Spectroimager for SOFIA Michael W. McElwaina, Avi Mandella, Bruce Woodgatea, David S. Spiegelb, Nikku Madhusudhanc, Edward Amatuccia, Cullen Blaked, Jason Budinoffa, Adam Burgassere, Adam Burrowsd, Mark Clampina, Charlie Conroyf, L. Drake Demingg, Edward Dunhamh, Roger Foltza, Qian Gonga, Heather Knutsoni, Theodore Muencha, Ruth Murray-Clayf, Hume Peabodya, Bernard Rauschera, Stephen A. Rineharta, Geronimo Villanuevaj aNASA Goddard Space Flight Center, Greenbelt, MD, USA; bInstitute for Advanced Study, Princeton, NJ, USA; cYale University, New Haven, CT, USA; dPrinceton University, Princeton, NJ, USA; eUniversity of California, San Diego, La Jolla, CA, USA; fHarvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA; gUniversity of Maryland, College Park, MD, USA; hLowell Observatory, Flagstaff, AZ, USA; iCalifornia Institute of Technology, Pasadena, CA; jCatholic University of America, Washington, DC, USA. ABSTRACT We present a new and innovative near-infrared multi-band ultraprecise spectroimager (NIMBUS) for SOFIA. This design is capable of characterizing a large sample of extrasolar planet atmospheres by measuring elemental and molecular abundances during primary transit and occultation. This wide-field spectroimager would also provide new insights into Trans-Neptunian Objects (TNO), Solar System occultations, brown dwarf atmospheres, carbon chemistry in globular clusters, chemical gradients in nearby galaxies, and galaxy photometric redshifts. NIMBUS would be the premier ultraprecise -
RTT TECHNOLOGY TOPIC January 2015 Defence Spectrum – the New Battleground?
RTT TECHNOLOGY TOPIC January 2015 Defence Spectrum – the new battleground? In this month’s technology topic we look at contemporary military radio developments, the integration of LTE user devices into defence communication systems, the relevance of military research to 5 G deployment efficiency and related spectral utilisation and regulatory issues. Defence communication systems are deployed across the whole radio spectrum from long wave to light. This includes mobile communication systems at VHF and UHF and L Band and S band, LEO, MEO and GSO satellite systems (VHF to E band) and mobile and fixed radar (VHF to E band). Legacy defence systems are being upgraded to provide additional functionality. This requires more rather than less spectrum. Increased radar resolution requires wider channel bandwidths; longer range requires more power and improved sensitivity. Improved sensitivity increases the risk of inter system interference. Emerging application requirements including unmanned aerial vehicles require a mix of additional terrestrial, satellite and radar bandwidth. These requirements are geographically and spectrally diverse rather than battlefield and spectrally specific. The assumption in many markets is that the defence industry will be willing and able to surrender spectrum for mobile broadband consumer and civilian use. The AWS 3 auction in the US is a contemporary example with a $5 billion transition budget to cover legacy military system decommissioning in the DOD coordination zone between 1755 and 1780 MHz This transition strategy assumes an increased use of LTE network hardware and user hardware in battlefield systems. While this might imply an opportunity for closer coordination and cooperation between the mobile broadband and defence community it seems likely that an increase in the amount of defence bandwidth needed to support a broadening range of RF dependent systems could be a problematic component in the global spectral allocation and auction process. -
Ncar S-Pol Second Frequency (K -Band) Radar
P12R.6 NCAR S-POL SECOND FREQUENCY (KA-BAND) RADAR Gordon Farquharson,∗ Frank Pratte, Milan Pipersky, Don Ferraro, Alan Phinney, Eric Loew, Robert Rilling, Scott Ellis, and Jothiram Vivekanandan National Center for Atmospheric Research, Boulder, Colorado 1. INTRODUCTION The National Center for Atmospheric Research (NCAR) has recently extended the observational capability of the S-band dual-polarimetric weather radar system (S-Pol, Keeler et al. (2000)) by adding a Ka-band (35 GHz) po- larimetric Doppler radar (Vivekanandan et al., 2004). The Transmitter Ka-band radar employs a dual channel receiver and can be configured for either HH and HV, or HH and VV polari- metric measurements. The Ka-band and S-band antenna beams are matched and aligned, and timing signals for both systems are generated from the Global Position Sys- tem (GPS) ensuring that a common resolution volume is sampled by both systems. This dual-wavelength capabil- ity provides the potential for retrieving water vapor profiles Radar Processor (Ellis et al., 2005) and liquid water content in Rayleigh scattering conditions (Vivekanandan et al., 1999), im- proving remote sensing of various precipitation types, and studies on cloud microphysics. 2. RADAR DESCRIPTION Receiver The K -band radar is housed in three enclosures which a Figure 1: K -band radar attached to the S-band dish. The are mounted to the S-Pol S-band dish and pedestal struc- a transmitter, receiver, and processor enclosures are vis- ture (Figure 1); these include the transmitter enclosure, ible. The K -band antenna is mounted to the receiver the receiver enclosure, and the radar processor enclo- a enclosure and is facing away from the viewer in the pho- sure. -
Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on Behalf of the Satellite Industry Association1
Spectrum & the Technological Transformation of the Satellite Industry Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on behalf of the Satellite Industry Association1 1 AT&T, a member of SIA, does not necessarily endorse all conclusions of this study. Page 1 of 75 Spectrum & the Technological Transformation of the Satellite Industry 1. Table of Contents 1. Table of Contents ................................................................................................ 1 2. Executive Summary ............................................................................................. 4 2.1. What the satellite industry does for the U.S. today ............................................... 4 2.2. What the satellite industry offers going forward ................................................... 4 2.3. Innovation in the satellite industry ........................................................................ 5 3. Introduction ......................................................................................................... 7 3.1. Overview .................................................................................................................. 7 3.2. Spectrum Basics ...................................................................................................... 8 3.3. Satellite Industry Segments .................................................................................... 9 3.3.1. Satellite Communications .............................................................................. -
And H-Band Spectra of Globular Clusters in The
A&A 543, A75 (2012) Astronomy DOI: 10.1051/0004-6361/201218847 & c ESO 2012 ! Astrophysics Integrated J-andH-band spectra of globular clusters in the LMC: implications for stellar population models and galaxy age dating!,!!,!!! M. Lyubenova1,H.Kuntschner2,M.Rejkuba2,D.R.Silva3,M.Kissler-Patig2,andL.E.Tacconi-Garman2 1 Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany e-mail: [email protected] 2 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching bei München, Germany 3 National Optical Astronomy Observatory, 950 North Cherry Ave., Tucson, AZ, 85719 USA Received 19 January 2012 / Accepted 1 May 2012 ABSTRACT Context. The rest-frame near-IR spectra of intermediate age (1–2 Gyr) stellar populations aredominatedbycarbonbasedabsorption features offering a wealth of information. Yet, spectral libraries that include the near-IR wavelength range do not sample a sufficiently broad range of ages and metallicities to allowforaccuratecalibrationofstellar population models and thus the interpretation of the observations. Aims. In this paper we investigate the integrated J-andH-band spectra of six intermediate age and old globular clusters in the Large Magellanic Cloud (LMC). Methods. The observations for six clusters were obtained with the SINFONI integral field spectrograph at the ESO VLT Yepun tele- scope, covering the J (1.09–1.41 µm) and H-band (1.43–1.86 µm) spectral range. The spectral resolution is 6.7 Å in J and 6.6 Å in H-band (FWHM). The observations were made in natural seeing, covering the central 24"" 24"" of each cluster and in addition sam- pling the brightest eight red giant branch and asymptotic giant branch (AGB) star candidates× within the clusters’ tidal radii. -
X-Band Tt&C and K-Band Downlink Antennas For
X-BAND TT&C AND K-BAND DOWNLINK ANTENNAS FOR FUTURE LEO MISSIONS Martin Wenåker [email protected] RUAG Space AB Jan Zackrisson [email protected] Hans Ekström [email protected] Gothenburg, Sweden Johan Petersson [email protected] Patrik Dimming [email protected] P-1342182-RSE Presentation Outline . Introduction . Design Background and Heritage . X-Band TT&C Antenna . K-/Ka-Band Beacon/DDL Antenna . Conclusion 2/17 | X-BAND TT&C AND K-BAND DOWNLINK ANTENNAS FOR FUTURE LEO MISSIONS | RUAG Space | January 22, 2020 Introduction . X-Band TT&C antenna . K-/Ka-Band Beacon/DDL Antenna − Designed and manufactured as an EM − Pre-development running in parallel activity in an add-on to the original with the X-Band continuing study study − Novel dual band design 3/17 | X-BAND TT&C AND K-BAND DOWNLINK ANTENNAS FOR FUTURE LEO MISSIONS | RUAG Space | January 22, 2020 Design Background and Heritage – Ruag Space . Ruag space antenna activities started in the mid 70’s within wide coverage antennas > 300 helix antennas delivered . Other types of antennas are also designed and developed − Reflector antennas (JWST, SIRAL/Cryosat) − Array antennas (Array elements for telecom) − Slot antennas (ERS1/ERS2 , MetOp SG Scatterometer) 4/17 | X-BAND TT&C AND K-BAND DOWNLINK ANTENNAS FOR FUTURE LEO MISSIONS | RUAG Space | January 22, 2020 Design Background and Heritage – Ruag Space . Several variants are used for our helix antennas . Three main variants − Wires - shaped to a helix radiator − Etched metallic strips on substrates - shaped to a helix radiator − Machined in one piece of metal - shaped to a helix radiator 5/17 | X-BAND TT&C AND K-BAND DOWNLINK ANTENNAS FOR FUTURE LEO MISSIONS | RUAG Space | January 22, 2020 X-Band TT&C Antenna . -
The H-Band Emitting Region of the Luminous Blue Variable P Cygni: Spectrophotometry and Interferometry of the Wind
The Astrophysical Journal, 769:118 (12pp), 2013 June 1 doi:10.1088/0004-637X/769/2/118 C 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE H-BAND EMITTING REGION OF THE LUMINOUS BLUE VARIABLE P CYGNI: SPECTROPHOTOMETRY AND INTERFEROMETRY OF THE WIND N. D. Richardson1,9,10, G. H. Schaefer2,D.R.Gies1,10, O. Chesneau3,J.D.Monnier4, F. Baron1,4, X. Che4, J. R. Parks1, R. A. Matson1,10, Y. Touhami1,D.P.Clemens5, E. J. Aldoretta1,10, N. D. Morrison6, T. A. ten Brummelaar2, H. A. McAlister1,S.Kraus7,S.T.Ridgway8, J. Sturmann2, L. Sturmann2, B. Taylor5, N. H. Turner2, C. D. Farrington2, and P. J. Goldfinger2 1 Center for High Angular Resolution Astronomy, Department of Physics and Astronomy, Georgia State University, P.O. Box 4106, Atlanta, GA 30302-4106, USA; [email protected] 2 The CHARA Array, Georgia State University, P.O. Box 3965, Atlanta, GA 30302-3965, USA 3 Nice Sophia-Antipolis University, CNRS UMR 6525, Observatoire de la Coteˆ d’Azur, BP 4229, F-06304 Nice Cedex 4, France 4 Department of Astronomy, University of Michigan, 941 Dennison Bldg., Ann Arbor, MI 48109-1090, USA 5 Institute for Astrophysical Research, Boston University, 725 Commonwealth Ave., Boston, MA 02215, USA 6 Ritter Astrophysical Research Center, Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft, Toledo, OH 43606, USA 7 University of Exeter, Astrophysics Group, Stocker Road, Exeter, EX4 4QL, UK 8 National Optical Astronomical Observatory, 950 North Cherry Ave., Tucson, AZ 85719, USA Received 2013 February 7; accepted 2013 April 3; published 2013 May 14 ABSTRACT We present the first high angular resolution observations in the near-infrared H band (1.6 μm) of the luminous blue variable star P Cygni. -
Stellar Spectra in the Hband
110 Wing and Jørgensen, JAAVSO Volume 31, 2003 Stellar Spectra in the H Band Robert F. Wing Department of Astronomy, Ohio State University, Columbus, OH 43210 Uffe G. Jørgensen Niels Bohr Institute, and Astronomical Observatory, University of Copenhagen, DK-2100 Copenhagen, Denmark Presented at the 91st Annual Meeting of the AAVSO, October 26, 2002 [Ed. note: Since this paper was given, the AAVSO has placed 5 near-IR SSP-4 photometers with observers around the world; J and H observations of program stars are being obtained and added to the AAVSO International Database.] Abstract The H band is a region of the infrared centered at wavelength 1.65 microns in a clear window between atmospheric absorption bands. Cool stars such as Mira variables are brightest in this band, and the amplitudes of the light curves of Miras are typically 5 times smaller in H than in V. Since the AAVSO is currently exploring the possibility of distributing H-band photometers to interested members, it is of interest to examine the stellar spectra that these photometers would measure. In most red giant stars, the strongest spectral features in the H band are a set of absorption bands due to the CO molecule. Theoretical spectra calculated from model atmospheres are used to illustrate the pronounced flux peak in H which persists over a wide range of temperature. The models also show that the light in the H band emerges from deeper layers of the star’s atmosphere than the light in any other band. 1. Introduction When multicolor photometry in the infrared was first standardized in the 1960s, Harold Johnson and his colleagues acquired filters to match the windows in the atmospheric absorption and named them with letters of the alphabet (Johnson 1966). -
Near–Infrared Classification Spectroscopy: <I>H</I>–Band Spectra of Fundamental MK Standards
Smith ScholarWorks Astronomy: Faculty Publications Astronomy 11-20-1998 Near–Infrared Classification Spectroscopy: H–band Spectra of Fundamental MK Standards Michael R. Meyer University of Massachusetts Amherst Suzan Edwards Smith College, [email protected] Kenneth H. Hinkle Kitt Peak National Stephen E. Strom University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.smith.edu/ast_facpubs Part of the Astrophysics and Astronomy Commons Recommended Citation Meyer, Michael R.; Edwards, Suzan; Hinkle, Kenneth H.; and Strom, Stephen E., "Near–Infrared Classification Spectroscopy: H–band Spectra of Fundamental MK Standards" (1998). Astronomy: Faculty Publications, Smith College, Northampton, MA. https://scholarworks.smith.edu/ast_facpubs/15 This Article has been accepted for inclusion in Astronomy: Faculty Publications by an authorized administrator of Smith ScholarWorks. For more information, please contact [email protected] THE ASTROPHYSICAL JOURNAL, 508:397È409, 1998 November 20 ( 1998. The American Astronomical Society. All rights reserved. Printed in U.S.A. NEAR-INFRARED CLASSIFICATION SPECTROSCOPY: H-BAND SPECTRA OF FUNDAMENTAL MK STANDARDS MICHAEL R. MEYER1 Five College Astronomy Department, University of Massachusetts, Amherst, MA 01003; mmeyer=as.arizona.edu SUZAN EDWARDS Five College Astronomy Department, Smith College, Northampton, MA 01063; edwards=makapuu.ast.smith.edu KENNETH H. HINKLE Kitt Peak NationalObservatory,2 National Optical Astronomy Observatories, Tucson, AZ 85721; hinkle=noao.edu AND STEPHEN E. STROM Five College Astronomy Department, University of Massachusetts, Amherst, MA 01003; sstrom=tsaile.phast.umass.edu Received 1998 April 7; accepted 1998 June 26 ABSTRACT We present a catalog of H-band spectra for 85 stars of approximately solar abundance observed at a resolving power of 3000 with the KPNO Mayall 4 m Fourier Transform Spectrometer. -
Geometric Distances of Quasars Measured by Spectroastrometry and Reverberation Mapping: Monte Carlo Simulations
DRAFT VERSION MARCH 2, 2021 Typeset using LATEX default style in AASTeX62 Geometric Distances of Quasars Measured by Spectroastrometry and Reverberation Mapping: Monte Carlo Simulations YU-YANG SONGSHENG,1, 2 YAN-RONG LI,1 PU DU,1 AND JIAN-MIN WANG1, 2, 3 1Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049, China 2University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China 3National Astronomical Observatories of China, Chinese Academy of Sciences, 20A Datun Road, Beijing 100020, China (Received ***; Revised ***; Accepted ***) ABSTRACT Recently, GRAVITY onboard the Very Large Telescope Interferometer (VLTI) first spatially resolved the structure of the quasar 3C 273 with an unprecedented resolution of 10µas. A new method of measuring ∼ parallax distances has been successfully applied to the quasar through joint analysis of spectroastrometry (SA) and reverberation mapping (RM) observation of its broad line region (BLR). The uncertainty of this SA and RM (SARM) measurement is about 16% from real data, showing its great potential as a powerful tool for precision cosmology. In this paper, we carry out detailed analyses of mock data to study impacts of data qualities of SA observations on distance measurements and establish a quantitative relationship between statistical uncertainties of distances and relative errors of differential phases. We employ a circular disk model of BLR for the SARM analysis. We show that SARM analyses of observations generally generate reliable quasar distances, even for relatively poor SA measurements with error bars of 40% at peaks of phases. Inclinations and opening angles of ◦ BLRs are the major parameters governing distance uncertainties. -
The NIR Upgrade to the SALT Robert Stobie Spectrograph
The NIR Upgrade to the SALT Robert Stobie Spectrograph Andrew I. Sheinis,1,a Marsha J. Wolf,1,b Matthew A. Bershady,1 David A.H. Buckley,2 Kenneth H. Nordsieck,1 Ted B. Williams3 1 University of Wisconsin – Madison, Dept. of Astronomy, 475 N. Charter St., Madison, WI 53706 2 South African Astronomical Observatory, Observatory 7935, South Africa 3 Dept. of Physics and Astronomy, Rutgers University, Piscataway, NJ 08855 ABSTRACT The near infrared (NIR) upgrade to the Robert Stobie Spectrograph (RSS) on the Southern African Large Telescope (SALT), RSS/NIR, extends the spectral coverage of all modes of the visible arm. The RSS/NIR is a low to medium resolution spectrograph with broadband imaging, spectropolarimetric, and Fabry-Perot imaging capabilities. The visible and NIR arms can be used simultaneously to extend spectral coverage from approximately 3200 Å to 1.6 !m. Both arms utilize high efficiency volume phase holographic gratings via articulating gratings and cameras. The NIR camera is designed around a 2048x2048 HAWAII-2RG detector housed in a cryogenic dewar. The Epps optical design of the camera consists of 6 spherical elements, providing sub-pixel rms image sizes of 7.5 " 1.0 !m over all wavelengths and field angles. The exact long wavelength cutoff is yet to be determined in a detailed thermal analysis and will depend on the semi-warm instrument cooling scheme. Initial estimates place instrument limiting magnitudes at J = 23.4 and H(1.4- 1.6 !m) = 21.6 for S/N = 3 in a 1 hour exposure. Keywords: astronomical spectrographs, optical design, near infrared spectroscopy, volume phase holographic gratings, Fabry-Perot imaging, spectropolarimetry 1. -
A Revision of the X-Ray Properties of MWC 297
A&A 447, 1041–1048 (2006) Astronomy DOI: 10.1051/0004-6361:20053630 & c ESO 2006 Astrophysics Chandra X-ray observations of the stellar group near the Herbig Be star MWC 297 A revision of the X-ray properties of MWC 297 F. Damiani, G. Micela, and S. Sciortino INAF - Osservatorio Astronomico di Palermo G.S.Vaiana, Piazza del Parlamento 1, 90134 Palermo, Italy e-mail: [email protected] Received 14 June 2005 / Accepted 11 October 2005 ABSTRACT We present a Chandra ACIS-I X-ray observation of the region near the Herbig early-Be star MWC 297, where we detect a tight group of point X-ray sources. These are probably physically associated to MWC 297, because of their obvious clustering with respect to the more scattered field-source population. These data are compared to earlier ASCA data with much poorer spatial resolution, from which the detection of strong quiescent and flaring emission from MWC 297 itself was claimed. We argue that this star, contributing only 5% to the total X-ray emission of the group, was probably not the dominant contributor to the observed ASCA emission, while the X-ray brightest star in the group is a much better candidate. This is also supported by the spectral analysis of the Chandra data, with reference to the ASCA spectra. We conclude that none of the X-ray data available for MWC 297 justify the earlier claim of strong magnetic activity in this star. The X-ray emission of MWC 297 during the Chandra observation is even weaker than that found in other Herbig stars with the same spectral type, even accounting for its large line-of-sight absorption.