Anti-Beta2-Glycoprotein I (Beta2gpi) Monoclonal Antibodies with Lupus Anticoagulant-Like Activity Enhance the Beta2gpi Binding to Phospholipids

Total Page:16

File Type:pdf, Size:1020Kb

Anti-Beta2-Glycoprotein I (Beta2gpi) Monoclonal Antibodies with Lupus Anticoagulant-Like Activity Enhance the Beta2gpi Binding to Phospholipids Anti-beta2-glycoprotein I (beta2GPI) monoclonal antibodies with lupus anticoagulant-like activity enhance the beta2GPI binding to phospholipids. H Takeya, … , T Koike, K Suzuki J Clin Invest. 1997;99(9):2260-2268. https://doi.org/10.1172/JCI119401. Research Article beta2-Glycoprotein I (beta2GPI), a plasma glycoprotein with phospholipid-binding property, is known to be the actual target antigen for autoimmune type anticardiolipin antibodies (aCLs). Certain groups of aCLs (anti-beta2GPI antibodies) exert lupus anticoagulant (LA) activity and perturb the function of vascular endothelial cells. This investigation aimed at highlighting some insights into the molecular basis by which aCLs exert their biological effects by using anti-beta2GPI mAbs with well-characterized epitopes from mice and from patients with antiphospholipid syndrome. Anti-beta2GPI mAbs directed against the third domain (Cof-20 and Cof-22) and fourth domain (Cof-21, EY1C8, and EY2C9) of beta2GPI inhibited the thrombin generation induced by Russell's viper venom in diluted plasma and that induced by the prothrombinase complex reconstituted with purified clotting factors. This anticoagulant activity was abrogated in the presence of an excess amount of phospholipids, thus resembling the LA activity. In stark contrast, anti-beta2GPI mAbs directed against the fifth domain and the carboxy-terminal region of the fourth domain showed no LA-like activity. These findings suggest that the LA activity of anti-beta2GPI antibodies depends on their epitope specificity. Experiments carried out to clarify the mechanism of the LA activity showed that anti-beta2GPI mAbs with LA-like activity, but not those without this effect, enhance the beta2GPI binding to phospholipids. In addition, the F(ab')2 fragment, but not the Fab' fragment, of the anti-beta2GPI mAbs was found […] Find the latest version: https://jci.me/119401/pdf Anti–␤2-Glycoprotein I (␤2GPI) Monoclonal Antibodies with Lupus Anticoagulant-like Activity Enhance the ␤2GPI Binding to Phospholipids Hiroyuki Takeya,* Tatsuyuki Mori,* Esteban C. Gabazza,* Kenji Kuroda,* Hiroshi Deguchi,* Eiji Matsuura,‡ Kenji Ichikawa,§ Takao Koike,§ and Koji Suzuki* *Department of Molecular Pathobiology, Mie University School of Medicine, Tsu-City, Mie 514, Japan; and ‡Department of Biochemistry I, and §Department of Medicine II, Hokkaido University School of Medicine, Sapporo 060, Japan Abstract endothelial cells. The well-documented heterogeneous LA activity of aCLs (anti-␤2GPI antibodies) may also be ex- ␤2-Glycoprotein I (␤2GPI), a plasma glycoprotein with plained by their epitope specificity. (J. Clin. Invest. 1997. 99: phospholipid-binding property, is known to be the actual 2260–2268.) Key words: antiphospholipid • apolipoprotein • target antigen for autoimmune type anticardiolipin anti- autoantibodies • prothrombin • phospholipid bodies (aCLs). Certain groups of aCLs (anti-␤2GPI anti- bodies) exert lupus anticoagulant (LA) activity and perturb Introduction the function of vascular endothelial cells. This investigation aimed at highlighting some insights into the molecular basis ␤2-Glycoprotein I (␤2GPI)1 is a plasma glycoprotein with an by which aCLs exert their biological effects by using anti- apparent molecular mass of 50 kD (326 amino acids) (1–3). ␤2GPI mAbs with well-characterized epitopes from mice ␤2GPI is composed of five short-consensus-repeat domains, and from patients with antiphospholipid syndrome. Anti- the so-called sushi domains, often found in the structure of ␤2GPI mAbs directed against the third domain (Cof-20 and complement factors and selectins (4). ␤2GPI strongly binds to Cof-22) and fourth domain (Cof-21, EY1C8, and EY2C9) of anionic phospholipids; the fifth sushi domain (domain V) be- ␤2GPI inhibited the thrombin generation induced by Rus- ing the major phospholipid-binding region (5–9). The high sell’s viper venom in diluted plasma and that induced by the structural homology among the human, bovine, rat, and mouse prothrombinase complex reconstituted with purified clot- ␤2GPI molecules suggests that ␤2GPI might play an important ting factors. This anticoagulant activity was abrogated in physiological role in vivo (10). ␤2GPI exhibits anticoagulant the presence of an excess amount of phospholipids, thus properties in vitro, such as the inhibition of the intrinsic blood resembling the LA activity. In stark contrast, anti-␤2GPI coagulation pathway (11, 12), and the prothrombinase activity mAbs directed against the fifth domain and the carboxy- of activated platelets (13). Recently, ␤2GPI became the sub- terminal region of the fourth domain showed no LA-like ject of increasing interest since it was demonstrated that it is activity. These findings suggest that the LA activity of anti- the actual target antigen of autoimmune-type anticardiolipin ␤2GPI antibodies depends on their epitope specificity. Ex- antibodies (aCLs) (14–17, see references 18 and 19 for recent periments carried out to clarify the mechanism of the LA review). We and others have also recently demonstrated that activity showed that anti-␤2GPI mAbs with LA-like activ- aCLs bind to ␤2GPI even in the absence of cardiolipin (20, 21). ity, but not those without this effect, enhance the ␤2GPI The presence of antiphospholipid antibodies is defined by binding to phospholipids. In addition, the F(abЈ)2 fragment, the detection of aCL by immunoabsorbent assays or by the de- but not the FabЈ fragment, of the anti-␤2GPI mAbs was tection of lupus anticoagulant (LA) activity (22–24). Bevers et found to enhance the LA activity and the ␤2GPI binding to al. (25) reported that the expression of LA activity depends on phospholipids, suggesting that anti-␤2GPI antibodies in- the potential of LA antibodies to bind to phospholipid-bound duce formation of multiple complexes of ␤2GPI on the sur- prothrombin. However, originally, the term LA was defined as face of phospholipids because of their bivalent property. antiphospholipid antibodies that prolong the clotting time of This clustering of ␤2GPI molecules induced by anti-␤2GPI phospholipid-dependent coagulation tests. Based on this defi- antibodies, probably because of their multivalent property nition, LA antibodies may recognize a heterogeneous group of and epitope specificity, might hinder the lateral mobility antigens. In fact, certain groups of aCLs also possess LA activ- and activation of clotting factors on the surface of phospho- ity (26). According to the classification by Galli et al. (26), lipids and thus exert LA activity. Clustering of ␤2GPI mole- aCLs of type A prolong the phospholipid-dependent clotting cules may also explain the molecular mechanism by which time, while those of type B lack this anticoagulant activity. anti-␤2GPI antibodies alter the function of leukocytes and Nevertheless, both types require ␤2GPI for detection in aCL tests.2 The molecular basis of the different properties of types A and B aCLs (aCLs with or without LA activity, respectively) is unknown. Address correspondence to Koji Suzuki, Ph.D., Department of Mo- lecular Pathobiology, Mie University School of Medicine, Edobashi 2-174, Tsu-city, Mie 514, Japan. Phone: 81-592-31-5036; FAX: 81-592- 31-5209; E-mail: [email protected] 1. Abbreviations used in this paper: aCL, anticardiolipin antibody; Received for publication 28 June 1996 and accepted in revised APTT, activated partial thromboplastin time; ␤2GPI, ␤2-glycopro- form 27 January 1997. tein I; LA, lupus anticoagulant; RVV, Russell’s viper venom. 2. References 25 and 26 use the term LA in a limited fashion to desig- J. Clin. Invest. nate antibodies with anticoagulant activity that recognize prothrom- © The American Society for Clinical Investigation, Inc. bin; type A and type B aCL refer to antibodies to ␤2GPI with and 0021-9738/97/05/2260/09 $2.00 without anticoagulant activity, respectively. In this report, however, Volume 99, Number 9, May 1997, 2260–2268 we consider type A aCL to be LA. 2260 Takeya et al. The presence of antiphospholipid antibodies has been X activator coupled to 2-fluoro-1-methylpyridinium toluene-4-sul- linked to a major risk of developing thromboembolic compli- fonate-activated Cellulofine (Seikagaku Kogyo Co., Tokyo, Japan) cations in various autoimmune disorders (27, 28). Numerous (45). Factor V was purified from freshly frozen platelet-free plasma studies have been carried out regarding the effect of antiphos- (46, 47), using affinity column chromatography with anti–Factor V mu- pholipid antibodies on coagulation factors and inhibitors present rine mAb-coupled Sepharose gel, and was activated with thrombin, as described (46). ␤2GPI was purified from normal human sera by se- in the fluid phase, and on cellular regulators of hemostasis. quential cardiolipin-affinity, ion exchange and protein A–Sepharose However, the paradox of the in vitro anticoagulant activity of column chromatographies, as described (41). All purified proteins antiphospholipid antibodies and their relation with increased were homogeneous with Ͼ 95% of purity, as judged by SDS-poly- thrombotic complication in vivo remain unsolved (29). Epide- acrylamide gel electrophoresis followed by silver staining and were miological studies described a significant relationship be- stored in small aliquots at Ϫ80ЊC until use. The synthetic chromoge- tween the presence of aCL (anti-␤2GPI antibodies) and the nic peptide substrate of thrombin, S-2238 (D-Phe-pipecolyl-Arg- history of thrombosis (30–33). Induction of antiphospholipid pNA), was purchased from Chromogenix AB (Mölndal,
Recommended publications
  • B Cell Activation and Escape of Tolerance Checkpoints: Recent Insights from Studying Autoreactive B Cells
    cells Review B Cell Activation and Escape of Tolerance Checkpoints: Recent Insights from Studying Autoreactive B Cells Carlo G. Bonasia 1 , Wayel H. Abdulahad 1,2 , Abraham Rutgers 1, Peter Heeringa 2 and Nicolaas A. Bos 1,* 1 Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands; [email protected] (C.G.B.); [email protected] (W.H.A.); [email protected] (A.R.) 2 Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands; [email protected] * Correspondence: [email protected] Abstract: Autoreactive B cells are key drivers of pathogenic processes in autoimmune diseases by the production of autoantibodies, secretion of cytokines, and presentation of autoantigens to T cells. However, the mechanisms that underlie the development of autoreactive B cells are not well understood. Here, we review recent studies leveraging novel techniques to identify and characterize (auto)antigen-specific B cells. The insights gained from such studies pertaining to the mechanisms involved in the escape of tolerance checkpoints and the activation of autoreactive B cells are discussed. Citation: Bonasia, C.G.; Abdulahad, W.H.; Rutgers, A.; Heeringa, P.; Bos, In addition, we briefly highlight potential therapeutic strategies to target and eliminate autoreactive N.A. B Cell Activation and Escape of B cells in autoimmune diseases. Tolerance Checkpoints: Recent Insights from Studying Autoreactive Keywords: autoimmune diseases; B cells; autoreactive B cells; tolerance B Cells. Cells 2021, 10, 1190. https:// doi.org/10.3390/cells10051190 Academic Editor: Juan Pablo de 1.
    [Show full text]
  • How Does Protein Zero Assemble Compact Myelin?
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 May 2020 doi:10.20944/preprints202005.0222.v1 Peer-reviewed version available at Cells 2020, 9, 1832; doi:10.3390/cells9081832 Perspective How Does Protein Zero Assemble Compact Myelin? Arne Raasakka 1,* and Petri Kursula 1,2 1 Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway 2 Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7A, FI-90220 Oulu, Finland; [email protected] * Correspondence: [email protected] Abstract: Myelin protein zero (P0), a type I transmembrane protein, is the most abundant protein in peripheral nervous system (PNS) myelin – the lipid-rich, periodic structure that concentrically encloses long axonal segments. Schwann cells, the myelinating glia of the PNS, express P0 throughout their development until the formation of mature myelin. In the intramyelinic compartment, the immunoglobulin-like domain of P0 bridges apposing membranes together via homophilic adhesion, forming a dense, macroscopic ultrastructure known as the intraperiod line. The C-terminal tail of P0 adheres apposing membranes together in the narrow cytoplasmic compartment of compact myelin, much like myelin basic protein (MBP). In mouse models, the absence of P0, unlike that of MBP or P2, severely disturbs the formation of myelin. Therefore, P0 is the executive molecule of PNS myelin maturation. How and when is P0 trafficked and modified to enable myelin compaction, and how disease mutations that give rise to incurable peripheral neuropathies alter the function of P0, are currently open questions. The potential mechanisms of P0 function in myelination are discussed, providing a foundation for the understanding of mature myelin development and how it derails in peripheral neuropathies.
    [Show full text]
  • B Cell Checkpoints in Autoimmune Rheumatic Diseases
    REVIEWS B cell checkpoints in autoimmune rheumatic diseases Samuel J. S. Rubin1,2,3, Michelle S. Bloom1,2,3 and William H. Robinson1,2,3* Abstract | B cells have important functions in the pathogenesis of autoimmune diseases, including autoimmune rheumatic diseases. In addition to producing autoantibodies, B cells contribute to autoimmunity by serving as professional antigen- presenting cells (APCs), producing cytokines, and through additional mechanisms. B cell activation and effector functions are regulated by immune checkpoints, including both activating and inhibitory checkpoint receptors that contribute to the regulation of B cell tolerance, activation, antigen presentation, T cell help, class switching, antibody production and cytokine production. The various activating checkpoint receptors include B cell activating receptors that engage with cognate receptors on T cells or other cells, as well as Toll-like receptors that can provide dual stimulation to B cells via co- engagement with the B cell receptor. Furthermore, various inhibitory checkpoint receptors, including B cell inhibitory receptors, have important functions in regulating B cell development, activation and effector functions. Therapeutically targeting B cell checkpoints represents a promising strategy for the treatment of a variety of autoimmune rheumatic diseases. Antibody- dependent B cells are multifunctional lymphocytes that contribute that serve as precursors to and thereby give rise to acti- cell- mediated cytotoxicity to the pathogenesis of autoimmune diseases
    [Show full text]
  • Proteins That Interact with the Mucin-Type Glycoprotein Msb2p
    bioRxiv preprint doi: https://doi.org/10.1101/786475; this version posted September 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Msb2p Interacting Proteins Prabhakar et al. Proteins That Interact with the Mucin-Type Glycoprotein Msb2p Include Regulators of the Actin Cytoskeleton by Aditi Prabhakar, Nadia Vadaie, Thomas Krzystek, and Paul J. Cullen† Department of Biological Sciences at SUNY-Buffalo, 14260-1300 Running title: Msb2p interacting proteins Key Words: protein microarray, mucin, MAP kinase, actin cytoskeleton, Msb2p, actin capping, secretion, glutamine synthetase. † Corresponding author: Paul J. Cullen Address: Department of Biological Sciences 532 Cooke Hall State University of New York at Buffalo Buffalo, NY 14260-1300 Phone: (716)-645-4923 FAX: (716)-645-2975 e-mail: [email protected] 36 pages, 8 Figures, 3 Tables, , 1 Supplemental Table; 50,465 characters 1 bioRxiv preprint doi: https://doi.org/10.1101/786475; this version posted September 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Msb2p Interacting Proteins Prabhakar et al. ABSTRACT Transmembrane mucin-type glycoproteins can regulate signal transduction pathways. In yeast, signaling mucins regulate mitogen-activated protein kinase (MAPK) pathways that induce cell differentiation to filamentous growth (fMAPK pathway) and the response to osmotic stress (HOG pathway). To explore regulatory aspects of signaling mucin function, protein microarrays were used to identify proteins that interact with the cytoplasmic domain of the mucin-like glycoprotein, Msb2p.
    [Show full text]
  • Characterization of a Novel Peripheral Nervous System Myelin
    Characterization ofa Novel Peripheral Nervous System Myelin Protein (PMP22/SR13) G. Jackson Snipes,** Ueli Suter, * Andrew A. Welcher, * and Eric M. Shooter* *Department ofNeurobiology and f Department of Pathology (Neuropathology), Stanford University School of Medicine, Stanford, CA 94305 Abstract. We have recently described a novel cDNA, protein could be detected by either immunoblot analysis SR13 (Welcher, A . A., U. Suter, M . De Leon, G. J. or by immunohistochemistry. Northern and immunoblot Snipes, and E. M. Shooter. 1991. Proc. Natl. Acad. analysis of SRI 3 mRNA and protein expression during Sci. USA. 88 .7195-7199), that is repressed after sciatic development of the peripheral nervous system reveal a nerve crush injury and shows homology to both the pattern similar to other myelin proteins. Furthermore, growth arrest-specific mRNA, gas3 (Manfioletti, G., we demonstrate by in situ mRNA hybridization on tis- M. E. Ruaro, G. Del Sal, L. Philipson, and sue sections and on individual nerve fibers that SR13 C. Schneider. 1990. Mol. Cell Biol. 10:2924-2930), mRNA is produced predominantly by Schwann cells. and to the myelin protein, PASII (Kitamura, K., M. We conclude that the SR13 protein is apparently exclu- Suzuki, and K. Uyemura. 1976. Biochim. Biophys. sively expressed in the peripheral nervous system Acta. 455 :806-816). In this report, we show that the where it is a major component of myelin. Thus, we 22-kD SR13 protein is expressed in the compact portion propose the name Peripheral Myelin Protein-22 (PMP- of essentially all myelinated fibers in the peripheral 22) for the proteins and cDNAs previously designated nervous system.
    [Show full text]
  • Inhibin Α Subunit Is Expressed by Bovine Ovarian Theca Cells and Its Knockdown Suppresses Androgen Production
    www.nature.com/scientificreports OPEN ‘Free’ inhibin α subunit is expressed by bovine ovarian theca cells and its knockdown suppresses androgen production Mhairi Laird1, Claire Glister1, Warakorn Cheewasopit1,2, Leanne S. Satchell1, Andrew B. Bicknell1 & Phil G. Knight1* Inhibins are ovarian dimeric glycoprotein hormones that suppress pituitary FSH production. They are synthesised by follicular granulosa cells as α plus βA/βB subunits (encoded by INHA, INHBA, INHBB, respectively). Inhibin concentrations are high in follicular fuid (FF) which is also abundant in ‘free’ α subunit, presumed to be of granulosal origin, but its role(s) remains obscure. Here, we report the unexpected fnding that bovine theca cells show abundant INHA expression and ‘free’ inhibin α production. Thus, theca cells may contribute signifcantly to the inhibin α content of FF and peripheral blood. In vitro, knockdown of thecal INHA inhibited INSL3 and CYP17A1 expression and androgen production while INSL3 knockdown reduced INHA and inhibin α secretion. These fndings suggest a positive role of thecal inhibin α on androgen production. However, exogenous inhibin α did not raise androgen production. We hypothesised that inhibin α may modulate the opposing efects of BMP and inhibin on androgen production. However, this was not supported experimentally. Furthermore, neither circulating nor intrafollicular androgen concentrations difered between control and inhibin α-immunized heifers, casting further doubt on thecal inhibin α subunit having a signifcant role in modulating androgen production. Role(s), if any, played by thecal inhibin α remain elusive. Inhibins are glycoproteins of gonadal origin that play a key role in the negative feedback regulation of FSH pro- duction by pituitary gonadotrophs.
    [Show full text]
  • Elevated Alpha-1 Antitrypsin Is a Major Component of Glyca-Associated Risk for Future Morbidity and Mortality
    bioRxiv preprint doi: https://doi.org/10.1101/309138; this version posted April 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Elevated alpha-1 antitrypsin is a major component of GlycA-associated risk for future morbidity and mortality Scott C. Ritchie1,2,3,4*, Johannes Kettunen5,6,7, Marta Brozynska1,2,3,4, Artika P. Nath1,8, Aki S. Havulinna6,9, Satu Männisto6, Markus Perola6,9, Veikko Salomaa6, Mika Ala-Korpela5,7,10,11,12,13, Gad Abraham1,2,3,4, Peter Würtz14,15, Michael Inouye1,2,3,4* 1Systems Genomics Lab, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia 2Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, United Kingdom 3Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia 4School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia 5Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu 90014, Finland 6National Institute for Health and Welfare, Helsinki 00271, Finland 7NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio 70211, Finland 8Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC 3010, Australia 9Institute for Molecular Medicine Finland, University of Helsinki, Helsinki 00014, Finland 10Population Health Science,
    [Show full text]
  • HILIC Glycopeptide Mapping with a Wide-Pore Amide Stationary Phase Matthew A
    HILIC Glycopeptide Mapping with a Wide-Pore Amide Stationary Phase Matthew A. Lauber and Stephan M. Koza Waters Corporation, Milford, MA, USA APPLICATION BENEFITS INTRODUCTION ■■ Orthogonal selectivity to conventional Peptide mapping of biopharmaceuticals has longed been used as a tool for reversed phase (RP) peptide mapping for identity tests and for monitoring residue-specific modifications.1-2 In a traditional enhanced characterization of hydrophilic analysis, peptides resulting from the use of high fidelity proteases, like trypsin protein modifications, such as glycosylation and Lys-C, are separated with very high peak capacities by reversed phase (RP) separations with C bonded stationary phases using ion-pairing reagents. ■■ Class-leading HILIC separations 18 of IgG glycopeptides to interrogate Separations such as these are able to resolve peptides with single amino acid sites of modification differences such as asparagine; and the two potential products of asparagine deamidation, aspartic acid and isoaspartic acid.3-4 ■■ MS compatible HILIC to enable detailed investigations of sample constituents Nevertheless, not all protein modifications are so easily resolved by RP separations. Glycosylated peptides, in comparison, are often separated with ■■ Enhanced glycan information that relatively poor selectivity, particularly if one considers that glycopeptide complements RapiFluor-MS released isoforms usually differ in their glycan mass by about 10 to 2,000 Da. So, N-glycan analyses while RP separations are advantageous for generic peptide
    [Show full text]
  • A Comprehensive Review of Our Current Understanding of Red Blood Cell (RBC) Glycoproteins
    membranes Review A Comprehensive Review of Our Current Understanding of Red Blood Cell (RBC) Glycoproteins Takahiko Aoki Laboratory of Quality in Marine Products, Graduate School of Bioresources, Mie University, 1577 Kurima Machiya-cho, Mie, Tsu 514-8507, Japan; [email protected]; Tel.: +81-59-231-9569; Fax: +81-59-231-9557 Received: 18 August 2017; Accepted: 24 September 2017; Published: 29 September 2017 Abstract: Human red blood cells (RBC), which are the cells most commonly used in the study of biological membranes, have some glycoproteins in their cell membrane. These membrane proteins are band 3 and glycophorins A–D, and some substoichiometric glycoproteins (e.g., CD44, CD47, Lu, Kell, Duffy). The oligosaccharide that band 3 contains has one N-linked oligosaccharide, and glycophorins possess mostly O-linked oligosaccharides. The end of the O-linked oligosaccharide is linked to sialic acid. In humans, this sialic acid is N-acetylneuraminic acid (NeuAc). Another sialic acid, N-glycolylneuraminic acid (NeuGc) is present in red blood cells of non-human origin. While the biological function of band 3 is well known as an anion exchanger, it has been suggested that the oligosaccharide of band 3 does not affect the anion transport function. Although band 3 has been studied in detail, the physiological functions of glycophorins remain unclear. This review mainly describes the sialo-oligosaccharide structures of band 3 and glycophorins, followed by a discussion of the physiological functions that have been reported in the literature to date. Moreover, other glycoproteins in red blood cell membranes of non-human origin are described, and the physiological function of glycophorin in carp red blood cell membranes is discussed with respect to its bacteriostatic activity.
    [Show full text]
  • Into the Membrane of Rabies Virus (RABV) Particles Improves the Speed and Magnitude of Vaccine-Induced Antibody Responses
    Thomas Jefferson University Jefferson Digital Commons Department of Microbiology and Immunology Faculty Papers Department of Microbiology and Immunology 11-1-2019 Incorporating B cell activating factor (BAFF) into the membrane of rabies virus (RABV) particles improves the speed and magnitude of vaccine-induced antibody responses. Joseph R Plummer Thomas Jefferson University James P McGettigan Thomas Jefferson University Follow this and additional works at: https://jdc.jefferson.edu/mifp Part of the Medical Immunology Commons Let us know how access to this document benefits ouy Recommended Citation Plummer, Joseph R and McGettigan, James P, "Incorporating B cell activating factor (BAFF) into the membrane of rabies virus (RABV) particles improves the speed and magnitude of vaccine- induced antibody responses." (2019). Department of Microbiology and Immunology Faculty Papers. Paper 111. https://jdc.jefferson.edu/mifp/111 This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Microbiology and Immunology Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: [email protected]. RESEARCH ARTICLE Incorporating B cell activating factor (BAFF) into the membrane of rabies virus (RABV) particles improves the speed and magnitude of vaccine-induced antibody responses 1 1,2 Joseph R.
    [Show full text]
  • Human Serum/Plasma Glycoprotein Analysis by H-NMR, an Emerging
    Journal of Clinical Medicine Review Human Serum/Plasma Glycoprotein Analysis by 1H-NMR, an Emerging Method of Inflammatory Assessment Rocío Fuertes-Martín 1,2, Xavier Correig 2,* , Joan-Carles Vallvé 2,3 and Núria Amigó 1,2 1 Biosfer Teslab SL, 43201 Reus, Spain; [email protected] (R.F.-M.); [email protected] (N.A.) 2 Metabolomic s platform, IISPV, CIBERDEM, Rovira i Virgili University, 43007 Tarragona, Spain; [email protected] 3 Lipids and Arteriosclerosis Research Unit, Sant Joan de Reus University Hospital, 43201 Reus, Spain * Correspondence: [email protected]; Tel.: +34-977-559-623 Received: 19 December 2019; Accepted: 17 January 2020; Published: 27 January 2020 Abstract: Several studies suggest that variations in the concentration of plasma glycoproteins can influence cellular changes in a large number of diseases. In recent years, proton nuclear magnetic resonance (1H-NMR) has played a major role as an analytical tool for serum and plasma samples. In recent years, there is an increasing interest in the characterization of glycoproteins through 1H-NMR in order to search for reliable and robust biomarkers of disease. The objective of this review was to examine the existing studies in the literature related to the study of glycoproteins from an analytical and clinical point of view. There are currently several techniques to characterize circulating glycoproteins in serum or plasma, but in this review, we focus on 1H-NMR due to its great robustness and recent interest in its translation to the clinical setting. In fact, there is already a marker in H-NMR representing the acetyl groups of the glycoproteins, GlycA, which has been increasingly studied in clinical studies.
    [Show full text]
  • Activin and Inhibin in the Human Adrenal Gland. Regulation and Differential Effects in Fetal and Adult Cells
    Activin and inhibin in the human adrenal gland. Regulation and differential effects in fetal and adult cells. S J Spencer, … , P C Goldsmith, R B Jaffe J Clin Invest. 1992;90(1):142-149. https://doi.org/10.1172/JCI115827. Research Article Recent experimental data have revealed that activins and inhibins exert pivotal effects on development. As part of our studies on growth and differentiation of the human fetal adrenal gland, we examined the subunit localization, as well as the mitogenic and steroidogenic actions of activin and inhibin in human fetal and adult adrenals. All three activin and inhibin subunit proteins (alpha, beta A, and beta B) were detected in the fetal and adult adrenal cortex. Immunoreactive activin-A dimer was demonstrated in midgestation fetal and neonatal adrenals. ACTH1-24-stimulated fetal adrenal cell expression of alpha and beta A subunit messenger RNA. In addition, ACTH elicited a rise in levels of immunoreactive alpha subunit secreted by fetal and adult adrenal cells. Human recombinant activin-A inhibited mitogenesis and enhanced ACTH-stimulated cortisol secretion by cultured fetal zone cells, but not definitive zone or adult adrenal cells. Recombinant inhibin-A had no apparent mitogenic or steroidogenic effects. Thus, activin selectively suppressed fetal zone proliferation and enhanced the ACTH-induced shift in the cortisol/dehydroepiandrosterone sulfate ratio of fetal zone steroid production. These data indicate that activin-A may be an autocrine or paracrine factor regulated by ACTH, involved in modulating growth and differentiated function of the human fetal adrenal gland. Find the latest version: https://jci.me/115827/pdf Activin and Inhibin in the Human Adrenal Gland Regulation and Differential Effects in Fetal and Adult Cells Susan J.
    [Show full text]