Summer 2017 Ask a Scientist!

Total Page:16

File Type:pdf, Size:1020Kb

Summer 2017 Ask a Scientist! News for the kids to learn about the bay? ou ready Are y of Tampa Bay! Got a Question? Summer 2017 Ask a Scientist! In This Issue: Are Jellyfish made of jelly? How can they sting me? • All about Jellyfish! • Jellyfish in the Gulf of Mexico No, jellyfish are not made of • What is a jellyfish bloom? jelly; at least not the kind of • Fun Facts jelly you would want to eat on a peanut butter and jelly • Let’s make a jellyfish! sandwich! Jellyfish are mostly made of water. They are about 95% water, to be exact! Jellyfish are very simple animals Mark your Calendars! appearing about 600 million years ago. That’s before the dinosaurs! Unlike true fish, jellyfish are invertebrates, meaning they lack a backbone. They also lack hearts, blood, and even a brain! Jellyfish belong the jellyfish’s special survival weapon: to the group of animals called Cnidarians thousands of microscopic spears. These (“nahy-dair-ee-uh n”), which include our spears are inside a structure called the true jellyfish as well as corals, hydroids, box nematocyst. The nematocyst allow jellyfish, and anemones. These Cnidarians the jellyfish to capture its food. The have the common characteristics of radial nematocysts release their little spears upon symmetry (can be split into equal pieces contact with its prey or, unfortunately, if like a pizza), stinging cells, and being either they come in contact with an unsuspecting Help Clean our bell- or cup-shaped. The true jellyfish’s swimmer. The spears also release venom. body is shaped like a bell and is made up The strength of the venom depends on the Shorelines! of three layers: an outer layer, the gel-like species of jellyfish. middle layer, and an inner layer. They have Saturday September 23, Some jellyfish stings can have little to no a simple nerve system that allows them to effect on humans, while others can be 9 am - Noon respond to their surrounding environment very painful. These nematocysts and their and catch their food. Calling all volunteers harpoons are the reason jellyfish sting. for our fall cleanup. Practically all jellyfish are carnivores, Sources: The most help for the meaning they eat other animals. They Castro, Peter, and Michael E. Huber. Marine Biology. cleanup is needed at the have developed an amazing adaptation New York, NY: McGraw-Hill Education, 2013. Print; Skyway fishing piers. Visit to catch their prey. On the border of their Cousteau, Fabien. Ocean. Ed. Peter Frances and bell-like body are special appendages Angeles G. Guerrero. New York: DK Pub., 2008. Print; tampabaywatch.org/volunteer oceanservice.noaa.gov; smithsonianmag.com; called tentacles. These tentacles contain to sign up. seafriends.org Meet & Greet: The Jellyfish of Tampa Bay MOON PORTUGUESE ATLANTIC SEA JELLYFISH MAN’O WAR NETTLE Aurelia aurita Physalia physalis Chrysaora quinquecirrha The moon jellyfish gets its The Portuguese man o’ war is The Atlantic sea nettle gets its name name from its circular moon- actually not a true jellyfish; even from the stinging nettle plant. It has like shape. Along its circular though it is often mistaken as one. a painful sting, especially to those bell it has small skinny It is a closely related animal called a who are sensitive. The Atlantic tentacles that are used to siphonophore. The Portuguese man’o sea nettle can be found mainly catch plankton. The on the East Coast of war is actually not one animal but a moon jellyfish is found around the United States as colony of specialized “clones” called the world and is one of the well as in the Gulf zooids. These individual zooids found most widespread of all jellies. of Mexico. It is It can be found in the open that they can survive better if they usually found ocean and along the coast at work as a team. Some zooids act for in the open the surface of the water. Its defense, feeding, reproduction, and ocean, but color can range from clear to as a float. The float is what gives the has the ability to live in pink, purple, and even orange animal its name resembling a sailing lower salinity depending on what type of warship. The Portuguese man’ o war float can reach up to 12 inches with waters, like food it is eating. estuaries. tentacles that may reach as long as Sources: Cousteau, Fabien. Ocean. Estuaries are Ed. Peter Frances and Angeles G. 100 feet. The long nematocyst-rich Guerrero. New York: DK Pub., 2008. a special area Print; montereybayaquarium.org; tentacles used normally for feeding where freshwater montereybayaquarium.org can provide an excruciatingly painful and saltwater meets sting to humans. and mixes. Tampa Bay is an Sources: oceanservice.noaa.gov; example of an estuary. animals.nationalgeographic.com; Sources: aqua.org; thesun.co.uk aquariumofpacific.org Jellyfish Blooms A couple of jellyfish can be considered a pest, The leading but hundreds of jellyfish —a bloom—can issue become a great concern. Jellyfish blooms have surrounding the potential to cause a lot of damage to our jellyfish blooms environment. A large part of the problem is that is what they scientists have not been able to identify the root of eat. Jellyfish the blooms. There are many different ideas for what mainly feed on is the cause. baitfish and Some believe the blooms are due to warmer climate. plankton. This is a problem because the jellies Jellyfish multiply at a faster rate in warmer waters. are eating food that other organisms depend Jellyfish also reproduce faster in waters with high on. Plankton includes many juvenile animals— levels of nutrients. High nutrient levels can be due for example, fish eggs. The jellyfish consuming to land pollution and runoff. Another hypothesis juvenile animals before they have a chance to is that the blooms may be due to overfishing. The grow can reduce population’s numbers. removal of jellyfish predators like fish and turtles These jellyfish blooms not only throw off the may be transforming the environment into one that balance of our delicate marine environment, allows the jellyfish to thrive. These changes to their but also can make for an unpleasant swimming environment may lead to overpopulation of jellyfish. experience! Sources: www.ncbi.nlm.nih.gov; coastalscience.noaa.gov; ocean.si.edu; seagrant.uaf.edu; cbc.ca Fun Facts about Jellies! The lion’s mane jellyfish can rival the size of a blue whale! Its main body can get up to seven feet with tentacles up to 150 feet! Moon jellyfish can be found in every ocean on Earth! If a moon jellyfish is starved, it can shrink to a tenth of its original size! Most jellyfish have algae in their bodies called zooxanthellae that photosynthesize. A group of jellyfish can be called a bloom, but also a smack! Sources: aqua.org; tnaqua.org; ocean.si.edu; seagrant.uaf.edu; oceana.org Jellyfish are not actuallyDid fish. YouThey are invertebrates!Know... source: kids.nationalgeographic.com Fun Activity: Dancing Jellyfish Craft Supplies: Instructions Paper plate, 1. Draw the shape of a jellyfish body (a bell) on a small piece of cardboard, paint, cardboard and cut it out. Paint the piece of cardboard with your paintbrush, yarn, color choice of paint. Set it aside to dry. googly eyes, and glue 2. Paint the top of a paper plate (the side you eat on) and a large craft popsicle stick with blue paint. Set them aside to dry. 3. When your paper plate is dry, have an adult use a craft knife or scissors to cut a slit in the paper plate about 2/3 down. This is the slit for your jellyfish. 4. Turn your painted jellyfish body over (to the unpainted side) and add a line of glue to the bottom of your jelly. Cut several strands of yarn and place them on the tacky glue to make jellyfish tentacles. After your tentacles are in place, glue the top of your popsicle stick to the center of your jellyfish. Make sure the painted blue side of your popsicle stick is facing forward. Turn your swimming jellyfish craft over and glue two googly eyes on the front (can also be drawn on). 5. Slide your jellyfish popsicle stick into the slit in your paper plate. Your painted jellyfish should be facing forward on the blue side of the paper plate. 6. To make your jellyfish swim, hold the stick from behind the paper plate with one hand while stabilizing the paper plate with your other hand. When you move around the craft stick behind the paper plate, your jellyfish swims around! Source: iheartcraftythings.com Kids’ Pages is a quarterly newsletter supplement to the Tampa Bay Watch Log. Please get your kids involved and sign them up to be a member today! eMail [email protected] or visit TAMPABAYWATCH.ORG. Cover masthead artwork drawn by Sarah Kelly, one of Tampa Bay’s talented youth artists. Jellyf sh Topic: Summer 2017 edition Instructions: Read through the appropriate Kids’ Pages edition and answer the questions below. Once all the questions have been completed, refer to the Answer Key to check your work. Multiple Choice (choose one): Fill in the Blank: 1. Jellyfish appeared in the historic record how many 6. Just about all jellyfish are ___________________, millions of years ago? meaning they eat other animals. a. 800 7. The structure known as a ________________ contains b. 600 the microscopic spears used to capture food and c. 400 sometimes release venom. d. 200 8. The names for a group of jellyfish include a 2. Which of the following anatomical features does the _______________ or a _________________.
Recommended publications
  • Quinquecirrha (Scyphomedusa)
    MARINE ECOLOGY - PROGRESS SERIES Vol. 19: 39-41. 1984 hblished August 30 Mar. Ecol. Prog. Ser. I I Changes in the lower Chesapeake Bay food chain in presence of the sea nettle Chrysaora quinquecirrha (Scyphomedusa) David Feigenbaum and Michael Kelly Department of Oceanography, Old Dominion University, Norfolk, Virginia 23508. USA ABSTUCT: The abundance of 4 levels of the lower Chesapeake Bay food chain (Chlorophyll a, herbivores, ctenophore Mnemiopsis leidyi, and Scyphomedusa Chrysaora quinquecimha) were moni- tored twice weekly at 4 stations from May 10 through Sep 30, 1982 in the Lafayette and Elizabeth Rivers (Virginia). The herbivore standing stock, largely copepods, declined sharply in late May when M. leidyi appeared, but rebounded a month later when C. quinquecirrha medusae reduced the ctenophore population. Despite the additional presence of Aurelia aurita (Scyphomedusa) from Jul onward, herbivore abundance remained at moderate levels until the end of the study period. Phytoplankton abundance fluctuated and may have been responsible for brief periods of food shortage; however, the major periods of low herbivore abundance do not seem to have been kept low by food limitation. M. leidyi made a modest resurgence in late Aug when the C. quinquecin-ha population underwent its seasonal decline. Our data suggest that C. quinquecirrha contributes to the secondary productivity of the lower Chesapeake Bay by controlling M. leidyi during summer. INTRODUCTION quence of the sharp reduction in zooplankton standing stock is oxygen depletion in the depths of the fjord due Coelenterate medusae are gelatinous organisms to decaying phytoplankton and dying medusae which with fast growth rates and high metabolic require- accumulate there.
    [Show full text]
  • Life Cycle of Chrysaora Fuscescens (Cnidaria: Scyphozoa) and a Key to Sympatric Ephyrae1
    Life Cycle of Chrysaora fuscescens (Cnidaria: Scyphozoa) and a Key to Sympatric Ephyrae1 Chad L. Widmer2 Abstract: The life cycle of the Northeast Pacific sea nettle, Chrysaora fuscescens Brandt, 1835, is described from gametes to the juvenile medusa stage. In vitro techniques were used to fertilize eggs from field-collected medusae. Ciliated plan- ula larvae swam, settled, and metamorphosed into scyphistomae. Scyphistomae reproduced asexually through podocysts and produced ephyrae by undergoing strobilation. The benthic life history stages of C. fuscescens are compared with benthic life stages of two sympatric species, and a key to sympatric scyphome- dusa ephyrae is included. All observations were based on specimens maintained at the Monterey Bay Aquarium jelly laboratory, Monterey, California. The Northeast Pacific sea nettle, Chry- tained at the Monterey Bay Aquarium, Mon- saora fuscescens Brandt, 1835, ranges from terey, California, for over a decade, with Mexico to British Columbia and generally ap- cultures started by F. Sommer, D. Wrobel, pears along the California and Oregon coasts B. B. Upton, and C.L.W. However the life in late summer through fall (Wrobel and cycle remained undescribed. Chrysaora fusces- Mills 1998). Relatively little is known about cens belongs to the family Pelagiidae (Gersh- the biology or ecology of C. fuscescens, but win and Collins 2002), medusae of which are when present in large numbers it probably characterized as having a central stomach plays an important role in its ecosystem giving rise to completely separated and because of its high biomass (Shenker 1984, unbranched radiating pouches and without 1985). Chrysaora fuscescens eats zooplankton a ring-canal.
    [Show full text]
  • Swimming and Feeding by the Scyphomedusa Chrysaora Quinquecirrha
    Marine Biology (1997) 129: 355±362 Ó Springer-Verlag 1997 M. D. Ford á J. H. Costello á K. B. Heidelberg J. E. Purcell Swimming and feeding by the scyphomedusa Chrysaora quinquecirrha Received: 29 March 1997 / Accepted: 11 April 1997 Abstract The semaeostome scyphomedusa, Chrysaora the eastern USA during the summer. At these times, quinquecirrha (Desor, 1848), is an abundant and im- C. quinquecirrha consumes a variety of zooplankton and portant planktonic predator in estuaries and coastal can directly in¯uence copepod populations (Purcell waters of the eastern USA during the summer. We 1992, but see Purcell et al. 1994b), ®sh eggs and larvae videotaped free-swimming medusae in the laboratory (Cowan and Houde 1993; Purcell et al. 1994a) and and in the ®eld in order to determine the relationship ctenophores (Miller 1974; Purcell and Cowan 1995). between swimming motions and prey encounter with Indirect eects of predation by C. quinquecirrha have capture surfaces. Medusae were collected from the been suggested to play a major role in the structure and Choptank River (Chesapeake Bay) in September 1992 function of the Chesapeake Bay ecosystem (Feigenbaum and in the Niantic River, Connecticut, USA in July and Kelly 1984; Baird and Ulanowicz 1989). Because 1994. We used newly hatched Artemia sp. nauplii and this medusa consumes such a wide variety of prey types, ¯uorescein dye to trace water motions around swimming it may appear that C. quinquecirrha is a generalist feeder medusae. Swimming results in a pulsed series of toroids with few patterns of prey selection, but in one study which travel along the medusan oral arms and tentacles.
    [Show full text]
  • Growth and Development of Chrysaora Quinquecirrha Reared Under Different Diet Compositions
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL GROWTH AND DEVELOPMENT OF CHRYSAORA QUINQUECIRRHA REARED UNDER DIFFERENT DIET COMPOSITIONS Mestrado em Ecologia Marinha Guilherme da Costa Cruz Dissertação orientada por: Doutora Susana Garrido e Professor Pedro Ré 2015 GROWTH AND DEVELOPMENT OF CHRYSAORA QUINQUECIRRHA UNDER DIFFERENT DIETS Index I. ACKNOWLEDGEMENTS .................................................................................................................. 4 II. ABSTRACT/RESUMO ...................................................................................................................... 6 III. INTRODUCTION ............................................................................................................................. 9 III. 1. THE MEDICAL POTENTIAL OF VENOM............................................................................................. 11 III. 2. NATURAL ECOLOGY AND LIFE CYCLE .............................................................................................. 12 III. 3. NATURAL DIET AND FEEDING BEHAVIOUR ...................................................................................... 14 III. 4. GROWTH FACTORS AND BLOOMS ................................................................................................ 16 III. 5. JELLYFISH REARING AND AQUARIUM PRECAUTIONS .......................................................................... 18 III. 6. THE SPECIES UNDER STUDY: CHRYSAORA QUINQUECIRRHA ................................................................
    [Show full text]
  • Stomolophus Meleagris
    Programa de Estudios de Posgrado “EFECTO DE TEMPERATURAS OSCILANTES EN LA FISIOLOGÍA DE PÓLIPOS DE MEDUSA Stomolophus meleagris (RHIZOSTOMEAE: STOMOLOPHIDAE)” TESIS Que para obtener el grado de Maestro en Ciencias Uso, Manejo y Preservación de los Recursos Naturales Orientación Biología Marina P r e s e n t a Carolina Olguín Jacobson La Paz, Baja California Sur, Septiembre, 2016 ii COMITÉ TUTORAL Dra. Lucía Ocampo Director de Tesis Centro de Investigaciones Biológicas del Noroeste, S. C., La Paz, B. C. S. Dra. Liliana Carvalho Saucedo Co-Tutor Centro de Investigaciones Biológicas del Noroeste, S. C., La Paz, B. C. S. Dr. Agustín Schiariti Co-Tutor Instituto Nacional de Investigación y Desarrollo Pesquero, Mar del Plata, Argentina. COMITÉ REVISOR DE TESIS Dra. Lucía Ocampo Dra. Liliana Carvalho Saucedo Dr. Agustín Schiariti JURADO EN EXAMEN DE GRADO Dra. Lucía Ocampo Dra. Liliana Carvalho Saucedo Dr. Agustín Schiariti SUPLENTE Dra. Elisa Serviere Zaragoza iii RESUMEN Los pólipos de la clase Scyphozoa generan medusas que son liberadas a la columna de agua y pueden llegar a generar blooms, como es el caso de Stomolophus meleagris. Estos blooms pueden tener variaciones estacionales y/o anuales y son aprovechados como un recurso pesquero en México desde hace más de 10 años incrementando la economía nacional. La producción de medusas está supeditada a la estrobilación de los pólipos y a los factores ambientales que la regulan como la temperatura. Se simuló en el laboratorio una oscilación térmica con un pico máximo (cresta) de 30°C y un mínimo (valle) de 20°C que representa la variación de la temperatura del mar durante una estación cálida (verano-otoño).
    [Show full text]
  • Escape of the Ctenophore Mnemiopsis Leidyi from the Scyphomedusa Predator Chrysaora Quinquecirrha
    Marine Biology (1997) 128: 441–446 Springer-Verlag 1997 T. A. Kreps · J. E. Purcell · K. B. Heidelberg Escape of the ctenophore Mnemiopsis leidyi from the scyphomedusa predator Chrysaora quinquecirrha Received: 14 November 1996 / Accepted: 4 December 1996 Abstract The ctenophore Mnemiopsis leidyi A. Agassiz, bay, and effects of medusa predation on ctenophore 1865 is known to be eaten by the scyphomedusan populations could be seen at lower trophic levels (Fe- Chrysaora quinquecirrha (Desor, 1948), which can con- igenbaum and Kelly 1984; Purcell and Cowan 1995). trol populations of ctenophores in the tributaries of Recently, Purcell and Cowan (1995) documented that Chesapeake Bay. In the summer of 1995, we videotaped Mnemiopsis leidyi may occur in situ with one or both interactions in large aquaria in order to determine lobes reduced in size by 80% or more. Lobe reduction whether M. leidyi was always captured after contact was not caused by starvation, and other predators ap- with medusae. Surprisingly, M. leidyi escaped in 97.2% parently were absent. In laboratory experiments, small of 143 contacts. The ctenophores increased swimming Chrysaora quinquecirrha (≤20 mm diameter) partially speed by an average of 300% immediately after contact consumed small ctenophores (≤20 mm in length) that with tentacles and 600% by mid-escape. When caught in were larger than themselves. Therefore, Purcell and the tentacles of C. quinquecirrha, the ctenophores fre- Cowan (1995) concluded that the short-lobed condition quently lost a portion of their body, which allowed them was caused by C. quinquecirrha partially consuming the to escape. Lost parts regenerated within a few days.
    [Show full text]
  • Impact of Scyphozoan Venoms on Human Health and Current First Aid Options for Stings
    toxins Review Impact of Scyphozoan Venoms on Human Health and Current First Aid Options for Stings Alessia Remigante 1,2, Roberta Costa 1, Rossana Morabito 2 ID , Giuseppa La Spada 2, Angela Marino 2 ID and Silvia Dossena 1,* ID 1 Institute of Pharmacology and Toxicology, Paracelsus Medical University, Strubergasse 21, A-5020 Salzburg, Austria; [email protected] (A.R.); [email protected] (R.C.) 2 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, I-98166 Messina, Italy; [email protected] (R.M.); [email protected] (G.L.S.); [email protected] (A.M.) * Correspondence: [email protected]; Tel.: +43-662-2420-80564 Received: 10 February 2018; Accepted: 21 March 2018; Published: 23 March 2018 Abstract: Cnidaria include the most venomous animals of the world. Among Cnidaria, Scyphozoa (true jellyfish) are ubiquitous, abundant, and often come into accidental contact with humans and, therefore, represent a threat for public health and safety. The venom of Scyphozoa is a complex mixture of bioactive substances—including thermolabile enzymes such as phospholipases, metalloproteinases, and, possibly, pore-forming proteins—and is only partially characterized. Scyphozoan stings may lead to local and systemic reactions via toxic and immunological mechanisms; some of these reactions may represent a medical emergency. However, the adoption of safe and efficacious first aid measures for jellyfish stings is hampered by the diffusion of folk remedies, anecdotal reports, and lack of consensus in the scientific literature. Species-specific differences may hinder the identification of treatments that work for all stings.
    [Show full text]
  • Numerical Increases and Distributional Shifts of Chrysaora Quinquecirrha (Desor) and Aurelia Aurita (Linne)´ (Cnidaria: Scyphozoa) in the Northern Gulf of Mexico
    Hydrobiologia 451: 97–111, 2001. 97 © 2001 Kluwer Academic Publishers. Printed in the Netherlands. Numerical increases and distributional shifts of Chrysaora quinquecirrha (Desor) and Aurelia aurita (Linne)´ (Cnidaria: Scyphozoa) in the northern Gulf of Mexico W. M. Graham Dauphin Island Sea Lab and Department of Marine Science, University of South Alabama, 101 Bienville Blvd, Dauphin Island, AL, 36528, U.S.A. E-mail: [email protected] Key words: jellyfish, medusae, Mississippi River, SEAMAP, eutrophication, hypoxia Abstract Fisheries resource trawl survey data from the National Marine Fisheries Service from a 11–13-year period to 1997 were examined to quantify numerical and distributional changes of two species of northern Gulf of Mexico scyphomedusae: the Atlantic sea nettle, Chrysaora quinquecirrha (Desor), and the moon jelly, Aurelia aurita (Linné). Trawl surveys were grouped into 10 statistical regions from Mobile Bay, Alabama to the southern extent of Texas, and extended seaward to the shelf break. Records of summertime C. quinquecirrha medusa populations show both an overall numerical increase and a distributional expansion away from shore in the down-stream productivity field of two major river system outflows: Mobile Bay and the Mississippi-Atchafalaya Rivers. In addition, there is a significant overlap between summer C. quinquecirrha and lower water column hypoxia on the Louisiana shelf. In trawl surveys from the fall, A. aurita medusae showed significant trends of numerical increase in over half of the regions analyzed. For both species, there were statistical regions of no significant change, but there were no regions that showed significant decrease in number or distribution. The relationships between natural and human-induced (e.g.
    [Show full text]
  • Chrysaora Quinquecirrha
    MARINE ECOLOGY PROGRESS SERIES Vol. 180: 187-196,1999 Published May 3 Mar Ecol Prog Ser Temperature, salinity and food effects on asexual reproduction and abundance of the scyphozoan Chrysaora quinquecirrha Jennifer E. ~urcell'**,Jacques R. white1,**,David A. Nemaziel, David A. wright2 'University of Maryland Center for Environmental Science (UMCES). Horn Point Laboratory. PO Box 775, Cambridge, Maryland 21613, USA 2UMCES, Chesapeake Biological Laboratory. PO Box 38. Solomons, Maryland 20688-0038, USA ABSTRACT: Outbreaks of jellyfish are reported worldwide, yet the environmental factors that control the sizes of jellyfish populations are not well understood. The scyphomedusan Chrysaora quinquecir- rha occurs in the mesohaline portion of Chesapeake Bay each summer. Population sizes of the medusae show dramatic annual variations that are correlated with salinity and temperature. We measured the total numbers of ephyrae and polyps produced by benthic polyps of C. quinquecirrha in laboratory experiments lasting 42 d, and found that temperature (15. 20, 25°C) was not a statistically significant factor at low salinities (5 to 20P:m); however, ephyra production increased significantly with increasing temperature at high salinities (20 to 35%). Conversely, each 5°C decrease in temperature delayed stro- bilation (ephyra production) by about 1 wk. Salinity significantly affected the numbers of ephyrae and polyps produced in all experiments. Ephyra and polyp production was lower at both low (<l1%o) and high salinities (t25%0)than at intermediate salinities. Also, more ephyrae, but not polyps, were pro- duced with more available prey. Medusa numbers were 2 orders of magnitude lower in July 1996 when water temperatures, salinities, and zooplankton densities in Chesapeake Bay all were lower than in July 1995.
    [Show full text]
  • There Are Three Species of Chrysaora (Scyphozoa: Discomedusae) in the Benguela Upwelling Ecosystem, Not Two
    Zootaxa 4778 (3): 401–438 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4778.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:01B9C95E-4CFE-4364-850B-3D994B4F2CCA There are three species of Chrysaora (Scyphozoa: Discomedusae) in the Benguela upwelling ecosystem, not two V. RAS1,2*, S. NEETHLING1,3, A. ENGELBRECHT1,4, A.C. MORANDINI5, K.M. BAYHA6, H. SKRYPZECK1,7 & M.J. GIBBONS1,8 1Department of Biodiversity and Conservation Biology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa. 2 [email protected]; https://orcid.org/0000-0003-3938-7241 3 [email protected]; https://orcid.org/0000-0001-5960-9361 4 [email protected]; https://orcid.org/0000-0001-8846-4069 5Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão trav. 14, n. 101, São Paulo, SP, 05508- 090, BRAZIL. [email protected]; https://orcid.org/0000-0003-3747-8748 6Noblis ESI, 112 Industrial Park Boulevard, Warner Robins, United States, GA 31088. [email protected]; https://orcid.org/0000-0003-1962-6452 7National Marine and Information Research Centre (NatMIRC), Ministry of Fisheries and Marine Resources, P.O.Box 912, Swakop- mund, Namibia. [email protected]; https://orcid.org/0000-0002-8463-5112 8 [email protected]; http://orcid.org/0000-0002-8320-8151 *Corresponding author Abstract Chrysaora (Pèron & Lesueur 1810) is the most diverse genus within Discomedusae, and 15 valid species are currently recognised, with many others not formally described.
    [Show full text]
  • Is the Scyphomedusa Cyanea Capillata (L.) Dependent on Gelatinous Prey for Its Early Development?
    SHORT COMMUNICATION SARSIA IS THE SCYPHOMEDUSA CYANEA CAPILLATA (L.) DEPENDENT ON GELATINOUS PREY FOR ITS EARLY DEVELOPMENT? ULF BÅMSTEDT, HARUTO ISHII & MONICA B. MARTINUSSEN BÅMSTEDT, ULF, HARUTO ISHII & MONICA B. MARTINUSSEN 1997 10 06. Is the scyphomedusa Cyanea capillata (L.) dependent on gelatinous prey for its early development? – Sarsia 82:269-273. Bergen. ISSN 0036-4827. Newly released ephyrae of the scyphomedusa Cyanea capillata did not grow on either Artemia nauplii or copepod dominated mixed zooplankton, but grew with an average rate of 16.5 % day–1 (maximum of 30.6 % day–1) with a ctenophore as food. The two first food types did not generate medusae with normal development of tentacles and oral arms over a seven-week period, whereas the ctenophore food did. We suggest that availability of gelatinous prey for newly released ephyrae is a bottleneck in the development, making constraints on the population succession and at least partly explaining inter-annual variations in abundance of C. capillata. Ulf Båmstedt, Haruto Ishii* & Monica B. Martinussen, University of Bergen, Department of Fisher- ies and Marine Biology, Bergen High-Technology Centre, N-5020 Bergen, Norway. * Present address: Tokyo University of Fisheries, 4-5-7, Kounan, Minato-ku, Tokyo, 108 Japan KEYWORDS: Jellyfish; Scyphozoa; growth; predation; food selection; development. fects of the food type on growth and development we INTRODUCTION therefore carried out controlled growth experiments with The scyphomedusa Cyanea capillata is common in C. capillata over a seven-week period and report the most Scandinavian waters, but due to a salinity require- results here. ment of > 20 psu of the polyp stage (CARGO 1984) it is excluded from brackish waters.
    [Show full text]
  • (Gonionemus Vertens) Populations and Habitat in New Jersey Coastal Embayments: 2020
    FINAL Monitoring and Assessment of Clinging Jellyfish (Gonionemus vertens) Populations and Habitat in New Jersey Coastal Embayments: 2020 Prepared By: Joseph Bilinski, Daniel Millemann, and Robert Newby New Jersey Department of Environmental Protection Division of Science and Research December 9, 2020 1 FINAL EXECUTIVE SUMMARY The NJDEP Division of Science and Research (DSR) investigated three waterbodies (Table 1) from May 26th through July 17th (2020) known from previous years as having an active, seasonal presence of Gonionemus vertens (commonly known as the “clinging jellyfish”, G. vertens). Due to the unprecedented COVID-19 pandemic, monitoring was limited only to ‘hot-spots’ and began approximately 2-3 weeks post bloom. From these locations, sampling was conducted to verify the presence or absence of individuals, assess relative abundance through the season, collect medusae for research, as well as collect water samples for environmental DNA (eDNA) analysis. In 2019, an intensive effort was initiated to investigate new waterbodies as well as known locations for G. vertens ground truthing and eDNA sample collection. The Division of Science and Research initiated the development of eDNA detection methods to predict presence or absence of these cnidarians during active periods of their life cycle. During this time, G. vertens DNA was successfully amplified from water samples in laboratory trials, and work continues to optimize these methods. We continue to work in close collaboration with Montclair State University (MSU) to monitor known and potentially new sites, as well as continue our investigations into the life cycle, invasive history, and origins of this species. Information from both sampling efforts (approximately 71 sampled locations/three waterbodies) was used to populate data for the NJ Clinging Jellyfish Interactive Map (https://njdep.maps.arcgis.com/home/item.html?id=7ea0d732d8a64b0da9cc2aff7237b475 ), which was developed in 2016 as a tool to alert the public to areas where clinging jellyfish could potentially be encountered.
    [Show full text]