Escape of the Ctenophore Mnemiopsis Leidyi from the Scyphomedusa Predator Chrysaora Quinquecirrha
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ctenophore Relationships and Their Placement As the Sister Group to All Other Animals
ARTICLES DOI: 10.1038/s41559-017-0331-3 Ctenophore relationships and their placement as the sister group to all other animals Nathan V. Whelan 1,2*, Kevin M. Kocot3, Tatiana P. Moroz4, Krishanu Mukherjee4, Peter Williams4, Gustav Paulay5, Leonid L. Moroz 4,6* and Kenneth M. Halanych 1* Ctenophora, comprising approximately 200 described species, is an important lineage for understanding metazoan evolution and is of great ecological and economic importance. Ctenophore diversity includes species with unique colloblasts used for prey capture, smooth and striated muscles, benthic and pelagic lifestyles, and locomotion with ciliated paddles or muscular propul- sion. However, the ancestral states of traits are debated and relationships among many lineages are unresolved. Here, using 27 newly sequenced ctenophore transcriptomes, publicly available data and methods to control systematic error, we establish the placement of Ctenophora as the sister group to all other animals and refine the phylogenetic relationships within ctenophores. Molecular clock analyses suggest modern ctenophore diversity originated approximately 350 million years ago ± 88 million years, conflicting with previous hypotheses, which suggest it originated approximately 65 million years ago. We recover Euplokamis dunlapae—a species with striated muscles—as the sister lineage to other sampled ctenophores. Ancestral state reconstruction shows that the most recent common ancestor of extant ctenophores was pelagic, possessed tentacles, was bio- luminescent and did not have separate sexes. Our results imply at least two transitions from a pelagic to benthic lifestyle within Ctenophora, suggesting that such transitions were more common in animal diversification than previously thought. tenophores, or comb jellies, have successfully colonized from species across most of the known phylogenetic diversity of nearly every marine environment and can be key species in Ctenophora. -
Quinquecirrha (Scyphomedusa)
MARINE ECOLOGY - PROGRESS SERIES Vol. 19: 39-41. 1984 hblished August 30 Mar. Ecol. Prog. Ser. I I Changes in the lower Chesapeake Bay food chain in presence of the sea nettle Chrysaora quinquecirrha (Scyphomedusa) David Feigenbaum and Michael Kelly Department of Oceanography, Old Dominion University, Norfolk, Virginia 23508. USA ABSTUCT: The abundance of 4 levels of the lower Chesapeake Bay food chain (Chlorophyll a, herbivores, ctenophore Mnemiopsis leidyi, and Scyphomedusa Chrysaora quinquecimha) were moni- tored twice weekly at 4 stations from May 10 through Sep 30, 1982 in the Lafayette and Elizabeth Rivers (Virginia). The herbivore standing stock, largely copepods, declined sharply in late May when M. leidyi appeared, but rebounded a month later when C. quinquecirrha medusae reduced the ctenophore population. Despite the additional presence of Aurelia aurita (Scyphomedusa) from Jul onward, herbivore abundance remained at moderate levels until the end of the study period. Phytoplankton abundance fluctuated and may have been responsible for brief periods of food shortage; however, the major periods of low herbivore abundance do not seem to have been kept low by food limitation. M. leidyi made a modest resurgence in late Aug when the C. quinquecin-ha population underwent its seasonal decline. Our data suggest that C. quinquecirrha contributes to the secondary productivity of the lower Chesapeake Bay by controlling M. leidyi during summer. INTRODUCTION quence of the sharp reduction in zooplankton standing stock is oxygen depletion in the depths of the fjord due Coelenterate medusae are gelatinous organisms to decaying phytoplankton and dying medusae which with fast growth rates and high metabolic require- accumulate there. -
Life Cycle of Chrysaora Fuscescens (Cnidaria: Scyphozoa) and a Key to Sympatric Ephyrae1
Life Cycle of Chrysaora fuscescens (Cnidaria: Scyphozoa) and a Key to Sympatric Ephyrae1 Chad L. Widmer2 Abstract: The life cycle of the Northeast Pacific sea nettle, Chrysaora fuscescens Brandt, 1835, is described from gametes to the juvenile medusa stage. In vitro techniques were used to fertilize eggs from field-collected medusae. Ciliated plan- ula larvae swam, settled, and metamorphosed into scyphistomae. Scyphistomae reproduced asexually through podocysts and produced ephyrae by undergoing strobilation. The benthic life history stages of C. fuscescens are compared with benthic life stages of two sympatric species, and a key to sympatric scyphome- dusa ephyrae is included. All observations were based on specimens maintained at the Monterey Bay Aquarium jelly laboratory, Monterey, California. The Northeast Pacific sea nettle, Chry- tained at the Monterey Bay Aquarium, Mon- saora fuscescens Brandt, 1835, ranges from terey, California, for over a decade, with Mexico to British Columbia and generally ap- cultures started by F. Sommer, D. Wrobel, pears along the California and Oregon coasts B. B. Upton, and C.L.W. However the life in late summer through fall (Wrobel and cycle remained undescribed. Chrysaora fusces- Mills 1998). Relatively little is known about cens belongs to the family Pelagiidae (Gersh- the biology or ecology of C. fuscescens, but win and Collins 2002), medusae of which are when present in large numbers it probably characterized as having a central stomach plays an important role in its ecosystem giving rise to completely separated and because of its high biomass (Shenker 1984, unbranched radiating pouches and without 1985). Chrysaora fuscescens eats zooplankton a ring-canal. -
Swimming and Feeding by the Scyphomedusa Chrysaora Quinquecirrha
Marine Biology (1997) 129: 355±362 Ó Springer-Verlag 1997 M. D. Ford á J. H. Costello á K. B. Heidelberg J. E. Purcell Swimming and feeding by the scyphomedusa Chrysaora quinquecirrha Received: 29 March 1997 / Accepted: 11 April 1997 Abstract The semaeostome scyphomedusa, Chrysaora the eastern USA during the summer. At these times, quinquecirrha (Desor, 1848), is an abundant and im- C. quinquecirrha consumes a variety of zooplankton and portant planktonic predator in estuaries and coastal can directly in¯uence copepod populations (Purcell waters of the eastern USA during the summer. We 1992, but see Purcell et al. 1994b), ®sh eggs and larvae videotaped free-swimming medusae in the laboratory (Cowan and Houde 1993; Purcell et al. 1994a) and and in the ®eld in order to determine the relationship ctenophores (Miller 1974; Purcell and Cowan 1995). between swimming motions and prey encounter with Indirect eects of predation by C. quinquecirrha have capture surfaces. Medusae were collected from the been suggested to play a major role in the structure and Choptank River (Chesapeake Bay) in September 1992 function of the Chesapeake Bay ecosystem (Feigenbaum and in the Niantic River, Connecticut, USA in July and Kelly 1984; Baird and Ulanowicz 1989). Because 1994. We used newly hatched Artemia sp. nauplii and this medusa consumes such a wide variety of prey types, ¯uorescein dye to trace water motions around swimming it may appear that C. quinquecirrha is a generalist feeder medusae. Swimming results in a pulsed series of toroids with few patterns of prey selection, but in one study which travel along the medusan oral arms and tentacles. -
Growth and Development of Chrysaora Quinquecirrha Reared Under Different Diet Compositions
UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL GROWTH AND DEVELOPMENT OF CHRYSAORA QUINQUECIRRHA REARED UNDER DIFFERENT DIET COMPOSITIONS Mestrado em Ecologia Marinha Guilherme da Costa Cruz Dissertação orientada por: Doutora Susana Garrido e Professor Pedro Ré 2015 GROWTH AND DEVELOPMENT OF CHRYSAORA QUINQUECIRRHA UNDER DIFFERENT DIETS Index I. ACKNOWLEDGEMENTS .................................................................................................................. 4 II. ABSTRACT/RESUMO ...................................................................................................................... 6 III. INTRODUCTION ............................................................................................................................. 9 III. 1. THE MEDICAL POTENTIAL OF VENOM............................................................................................. 11 III. 2. NATURAL ECOLOGY AND LIFE CYCLE .............................................................................................. 12 III. 3. NATURAL DIET AND FEEDING BEHAVIOUR ...................................................................................... 14 III. 4. GROWTH FACTORS AND BLOOMS ................................................................................................ 16 III. 5. JELLYFISH REARING AND AQUARIUM PRECAUTIONS .......................................................................... 18 III. 6. THE SPECIES UNDER STUDY: CHRYSAORA QUINQUECIRRHA ................................................................ -
Title BOLINOPSIS RUBRIPUNCTATA N. SP., a NEW LOBATEAN
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository BOLINOPSIS RUBRIPUNCTATA N. SP., A NEW Title LOBATEAN CTENOPHORE FROM SETO Author(s) Tokioka, Takasi PUBLICATIONS OF THE SETO MARINE BIOLOGICAL Citation LABORATORY (1964), 12(1): 93-99 Issue Date 1964-06-30 URL http://hdl.handle.net/2433/175350 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University BOLINOPSIS RUBRIPUNCTATA N. SP., A NEW LOBATEAN CTENOPHORE FROM SETO l) TAKAS! TOKIOKA Seto Marine Biological Laboratory With 3 Text-figures On the early afternoon of January 6 this year Mr. Torao YAMAMOTO brought me a perfect living Cyanea nozakii KrsHINOUYE of a medium-size caught inside the wharf at the fishing port of Seto about 1 km east of the laboratory and told me that many ctenophores were gathered near the northwest corner of the port together with some cyaneas. In a hope to get another good specimen of Cyanea or to find out some interesting medusae, I followed him to the port by bicycle and made a close observation there. The swarm there formed was composed mainly of Bolinopsis mikado (MosER), a significant number of Ocyropsis fusca RANG and some of Leucothea japonica KoMAr, Cestum amphitrites MERTENS and Beroe cucumis FABRICIUS, besides a considerable amount of Noctiluca and some hydromedusae. Among those ctenophores I found two specimens of a lobatean of a moderate size which were respectively marked distinctly with scarlet lines and large bright red spots up to about 15 in number. One of them was caught by bucket and the other by polyethylene bag, and then both specimens were carried to the laboratory on foot. -
Stomolophus Meleagris
Programa de Estudios de Posgrado “EFECTO DE TEMPERATURAS OSCILANTES EN LA FISIOLOGÍA DE PÓLIPOS DE MEDUSA Stomolophus meleagris (RHIZOSTOMEAE: STOMOLOPHIDAE)” TESIS Que para obtener el grado de Maestro en Ciencias Uso, Manejo y Preservación de los Recursos Naturales Orientación Biología Marina P r e s e n t a Carolina Olguín Jacobson La Paz, Baja California Sur, Septiembre, 2016 ii COMITÉ TUTORAL Dra. Lucía Ocampo Director de Tesis Centro de Investigaciones Biológicas del Noroeste, S. C., La Paz, B. C. S. Dra. Liliana Carvalho Saucedo Co-Tutor Centro de Investigaciones Biológicas del Noroeste, S. C., La Paz, B. C. S. Dr. Agustín Schiariti Co-Tutor Instituto Nacional de Investigación y Desarrollo Pesquero, Mar del Plata, Argentina. COMITÉ REVISOR DE TESIS Dra. Lucía Ocampo Dra. Liliana Carvalho Saucedo Dr. Agustín Schiariti JURADO EN EXAMEN DE GRADO Dra. Lucía Ocampo Dra. Liliana Carvalho Saucedo Dr. Agustín Schiariti SUPLENTE Dra. Elisa Serviere Zaragoza iii RESUMEN Los pólipos de la clase Scyphozoa generan medusas que son liberadas a la columna de agua y pueden llegar a generar blooms, como es el caso de Stomolophus meleagris. Estos blooms pueden tener variaciones estacionales y/o anuales y son aprovechados como un recurso pesquero en México desde hace más de 10 años incrementando la economía nacional. La producción de medusas está supeditada a la estrobilación de los pólipos y a los factores ambientales que la regulan como la temperatura. Se simuló en el laboratorio una oscilación térmica con un pico máximo (cresta) de 30°C y un mínimo (valle) de 20°C que representa la variación de la temperatura del mar durante una estación cálida (verano-otoño). -
The Ctenophore Mnemiopsis Leidyi A. Agassiz 1865 in Coastal Waters of the Netherlands: an Unrecognized Invasion?
Aquatic Invasions (2006) Volume 1, Issue 4: 270-277 DOI 10.3391/ai.2006.1.4.10 © 2006 The Author(s) Journal compilation © 2006 REABIC (http://www.reabic.net) This is an Open Access article Research article The ctenophore Mnemiopsis leidyi A. Agassiz 1865 in coastal waters of the Netherlands: an unrecognized invasion? Marco A. Faasse1 and Keith M. Bayha2* 1National Museum of Natural History Naturalis, P.O.Box 9517, 2300 RA Leiden, The Netherlands E-mail: [email protected] 2Dauphin Island Sea Lab, 101 Bienville Blvd., Dauphin Island, AL, 36528, USA E-mail: [email protected] *Corresponding author Received 3 December 2006; accepted in revised form 11 December 2006 Abstract The introduction of the American ctenophore Mnemiopsis leidyi to the Black Sea was one of the most dramatic of all marine bioinvasions and, in combination with eutrophication and overfishing, resulted in a total reorganization of the pelagic food web and significant economic losses. Given the impacts this animal has exhibited in its invaded habitats, the spread of this ctenophore to additional regions has been a topic of much consternation. Here, we show the presence of this invader in estuaries along the Netherlands coast, based both on morphological observation and molecular evidence (nuclear internal transcribed spacer region 1 [ITS-1] sequence). Furthermore, we suggest the possibility that this ctenophore may have been present in Dutch waters for several years, having been misidentified as the morphologically similar Bolinopsis infundibulum. Given the level of shipping activity in nearby ports (e.g. Antwerp and Rotterdam), we find it likely that M. leidyi found its way to the Dutch coast in the ballast water of cargo ships, as is thought for Mnemiopsis in the Black and Caspian Seas. -
Impact of Scyphozoan Venoms on Human Health and Current First Aid Options for Stings
toxins Review Impact of Scyphozoan Venoms on Human Health and Current First Aid Options for Stings Alessia Remigante 1,2, Roberta Costa 1, Rossana Morabito 2 ID , Giuseppa La Spada 2, Angela Marino 2 ID and Silvia Dossena 1,* ID 1 Institute of Pharmacology and Toxicology, Paracelsus Medical University, Strubergasse 21, A-5020 Salzburg, Austria; [email protected] (A.R.); [email protected] (R.C.) 2 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, I-98166 Messina, Italy; [email protected] (R.M.); [email protected] (G.L.S.); [email protected] (A.M.) * Correspondence: [email protected]; Tel.: +43-662-2420-80564 Received: 10 February 2018; Accepted: 21 March 2018; Published: 23 March 2018 Abstract: Cnidaria include the most venomous animals of the world. Among Cnidaria, Scyphozoa (true jellyfish) are ubiquitous, abundant, and often come into accidental contact with humans and, therefore, represent a threat for public health and safety. The venom of Scyphozoa is a complex mixture of bioactive substances—including thermolabile enzymes such as phospholipases, metalloproteinases, and, possibly, pore-forming proteins—and is only partially characterized. Scyphozoan stings may lead to local and systemic reactions via toxic and immunological mechanisms; some of these reactions may represent a medical emergency. However, the adoption of safe and efficacious first aid measures for jellyfish stings is hampered by the diffusion of folk remedies, anecdotal reports, and lack of consensus in the scientific literature. Species-specific differences may hinder the identification of treatments that work for all stings. -
Numerical Increases and Distributional Shifts of Chrysaora Quinquecirrha (Desor) and Aurelia Aurita (Linne)´ (Cnidaria: Scyphozoa) in the Northern Gulf of Mexico
Hydrobiologia 451: 97–111, 2001. 97 © 2001 Kluwer Academic Publishers. Printed in the Netherlands. Numerical increases and distributional shifts of Chrysaora quinquecirrha (Desor) and Aurelia aurita (Linne)´ (Cnidaria: Scyphozoa) in the northern Gulf of Mexico W. M. Graham Dauphin Island Sea Lab and Department of Marine Science, University of South Alabama, 101 Bienville Blvd, Dauphin Island, AL, 36528, U.S.A. E-mail: [email protected] Key words: jellyfish, medusae, Mississippi River, SEAMAP, eutrophication, hypoxia Abstract Fisheries resource trawl survey data from the National Marine Fisheries Service from a 11–13-year period to 1997 were examined to quantify numerical and distributional changes of two species of northern Gulf of Mexico scyphomedusae: the Atlantic sea nettle, Chrysaora quinquecirrha (Desor), and the moon jelly, Aurelia aurita (Linné). Trawl surveys were grouped into 10 statistical regions from Mobile Bay, Alabama to the southern extent of Texas, and extended seaward to the shelf break. Records of summertime C. quinquecirrha medusa populations show both an overall numerical increase and a distributional expansion away from shore in the down-stream productivity field of two major river system outflows: Mobile Bay and the Mississippi-Atchafalaya Rivers. In addition, there is a significant overlap between summer C. quinquecirrha and lower water column hypoxia on the Louisiana shelf. In trawl surveys from the fall, A. aurita medusae showed significant trends of numerical increase in over half of the regions analyzed. For both species, there were statistical regions of no significant change, but there were no regions that showed significant decrease in number or distribution. The relationships between natural and human-induced (e.g. -
Chrysaora Quinquecirrha
MARINE ECOLOGY PROGRESS SERIES Vol. 180: 187-196,1999 Published May 3 Mar Ecol Prog Ser Temperature, salinity and food effects on asexual reproduction and abundance of the scyphozoan Chrysaora quinquecirrha Jennifer E. ~urcell'**,Jacques R. white1,**,David A. Nemaziel, David A. wright2 'University of Maryland Center for Environmental Science (UMCES). Horn Point Laboratory. PO Box 775, Cambridge, Maryland 21613, USA 2UMCES, Chesapeake Biological Laboratory. PO Box 38. Solomons, Maryland 20688-0038, USA ABSTRACT: Outbreaks of jellyfish are reported worldwide, yet the environmental factors that control the sizes of jellyfish populations are not well understood. The scyphomedusan Chrysaora quinquecir- rha occurs in the mesohaline portion of Chesapeake Bay each summer. Population sizes of the medusae show dramatic annual variations that are correlated with salinity and temperature. We measured the total numbers of ephyrae and polyps produced by benthic polyps of C. quinquecirrha in laboratory experiments lasting 42 d, and found that temperature (15. 20, 25°C) was not a statistically significant factor at low salinities (5 to 20P:m); however, ephyra production increased significantly with increasing temperature at high salinities (20 to 35%). Conversely, each 5°C decrease in temperature delayed stro- bilation (ephyra production) by about 1 wk. Salinity significantly affected the numbers of ephyrae and polyps produced in all experiments. Ephyra and polyp production was lower at both low (<l1%o) and high salinities (t25%0)than at intermediate salinities. Also, more ephyrae, but not polyps, were pro- duced with more available prey. Medusa numbers were 2 orders of magnitude lower in July 1996 when water temperatures, salinities, and zooplankton densities in Chesapeake Bay all were lower than in July 1995. -
Running Head: B. ABYSSICOLA PATTERNS of PREDATION 1
Running head: B. ABYSSICOLA PATTERNS OF PREDATION 1 Beroe abyssicola Patterns of Predation: A Behavioral Analysis Jacob L. Beemer1 FHL 470 1Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250 Contact information: Jacob Beemer Marine Biology Department University of Washington 620 University Road Friday Harbor, WA 98250 [email protected] B. ABYSSICOLA PATTERNS OF PREDATION 2 Abstract Ctenophores play an important role in many marine ecosystems worldwide and affect multiple trophic levels. They consume large amounts of plankton while, in turn, are also consumed by fish. Beroe abyssicola is a carnivorous ctenophore that preys upon Bolinopsis infundibulum, a planktivorous carnivore. While many studies exist on the feeding behaviors of other ctenophore genera, research on the genus Beroe is lacking. This study aimed to discern the patterns of predatory behavior of B. abyssicola and found that size was a significant factor in feeding behavior. We also tested whether seawater conditioned with the chemical signature of B. infundibulum would cause a change in the behavior of B. abyssicola but found no significant effect. Lastly, we tested whether B. abyssicola would consume a species of Pleurobrachia but found no evidence for this. B. ABYSSICOLA PATTERNS OF PREDATION 3 Introduction Pelagic and nearshore trophic systems are highly variable both temporally and spatially. Within these environments, certain groups of organisms create limits on population size which, left unchecked, could shift the ecological balance (Kozloff 1990). One such animal is Bolinopsis infundibulum, a planktivorous ctenophore. This species goes through annual cycles of population growth followed by rapid decline, consuming large amounts of copepods in the interim (Båmstedt & Martinussen 2015).