Glossary of Terms Applicable to Petroleum Geochemistry

Total Page:16

File Type:pdf, Size:1020Kb

Glossary of Terms Applicable to Petroleum Geochemistry Glossary of Terms Applicable to Petroleum Geochemistry Frederik W. Vlierboom Occidental Petroleum Corporation BakersFeld, California, U.S.A. Note: Terms denoted by asterisks (*) are defined as entries to black streak. It is practically insoluble in carbon elsewhere in the Glossary. disulfide but partly soluble in turpentine; decom- poses prior to fusion. ABNORMAL PRESSURE: Any departure from hydro- static pressure. Overpressures generally range ALCOHOLS: A class of oxygen-containing organic above 12 kPa/m (0.53 psi/ft) and underpressures compounds having the structure R--OH, where R is range below 9.8 kPa/m (0.43psi/ft). a hydrocarbon radical. ABSORPTION: Penetration of a substance into the ALGAE: General biological term for a large group of body of another (includes dissolution). lower plants of single cell or cell aggregates, the majority living in water and containing chlorophyll* ACIDIFICATION: The process by which most of the (autotroph). In geology, generally designating all inorganic mineral matrix of a rock is destroyed with phytoplankton, e.g., diatoms,* dinoflagellates, and acid to release the insoluble organic matter (kerogen) seaweed. for further study. Hydrochloric acid (HC1) is used to destroy carbonates; hydrofluoric acid (HF) is used to ALGINITE: The coal maceral* of the exinite* group destroy the silicates. formed from algal remains. It is rare in humic coal* but is the principal constituent of the sapropelic* ACTIVATION ENERGY: The extra amount of energy a Boghead coal.* molecule must have before it can participate in a certain reaction (E in the Arrhenius equation*). ALICYCLIC: Referring to saturated cyclic hydrocar- bons. ACYCLIC: Having no rings. ALIPHATIC: Referring to all organic compounds char- ADSORPTION: The adhesion of a thin layer of acterized by open-chain structures. molecules of gases, liquids, or dissolved substances to the surface of solids. ALKANES: Saturated* hydrocarbons with either straight or branched (by not cyclic) chains of carbon AEROBE: A bacterium that utilizes molecular oxygen atoms. Alkanes have the general formula CnH2n+2, for its metabolic processes. e.g., phytane; C20H42. AEROBIC: A term applied to bacteria or other microor- n-ALKANES: Alkanes having a continuous, ganisms living or active only in the presence of unbranched, noncyclic chain of carbon atoms. Also molecular oxygen. called straight-chain alkanes or normal alkanes. AIR SPACE: Synonym for headspace.* ALKENE: An unsaturated hydrocarbon with at least one carbon-carbon double bond present. ALBERTITE: An asphaltite* with specific gravity of 1.07-1.10 and 2550% fixed carbon; having brilliant ALKYL: The adjective form of alkane, made by luster, conchoidal fracture, hardness 1-2, and brown dropping -ane and adding -yl. The same substitu- Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3837691/9781629811208_backmatter.pdf by guest on 24 September 2021 160 Vlierboom tion can be made to convert the names for specific API GRAVITY: An arbitrary scale known as the API alkanes (such as propane) to names for attached degree used for reporting the gravity or the density groups (propyl). of a petroleum product. The degree API is related to the specific gravity scale (6OoF/60"F)by the formula: ALLOCHTHONOUS: Originating elsewhere. Contrast with autochthonous.* 141.5 Degree API = -131.5 Specific gravity at 60°F ALPHA: A designation meaning that the indicated group in a polycyclic compound is attached below the plan of the beta ring. AROMATICS: Hydrocarbons derived from or related to benzene,' C6&. The benzene nucleus is the origin AMINO ACIDS: Amino acids are compounds having of a group of characteristic chemical properties both amino (-NH) and carboxylic acid (--COOH) known as the aromatic character of the molecule. groups. They occur in nature in the free state and in Only one hydrogen atom is bound to each carbon proteins: which are condensation products of amino atom of the ring; they may be replaced by various acids. Most natural acids can be represented by types of side chains. Typical aromatics are benzene, toluene, and xylene. The general structure is shown here. c 4 \ H-C C-H in which R represents an aliphatic, aromatic, or hetero- I II cyclic group. H-$, ,c-H AMORPHOUS ORGANIC MATTER: Kerogen F particles exhibiting no distinctive morphology. Some amorphous organic material is apparently of AROMATIZATION: The process of converting an algal origin; other examples represent highly alicyclic system to an aromatic one. Aromatization is degraded material of uncertain or perhaps eclectic an oxidative process that occurs during catagenesis origin. and metagenesis. AMU: See Atomic mass unit.* ARRHENIUS EQUATION: k = Ae-E/RT,where k is the rate constant, A is the frequency factor, E is the acti- ANAEROBE: A microorganism that functions under vation energy,* R is the universal gas constant, and T anaerobic conditions. is the absolute temperature. ANAEROBIC: A term applied to bacteria or other ASH: Inorganic residue obtained after combustion of microorganisms that live and grow in the absence of fuels or caustobiolites.* molecular oxygen. ASPHALT: A term applied to both native asphalt* and ANCHIMETAMORPHISM: Meaning high-age meta- pyrogenous asphalts (i.e., man-made asphalt from morphism and applied in those instances where thermal treatment of residual oils). They are reactions are interpreted as essentially governed by generally hard, dark-colored, nonvolatile materials time. It is not recommended to use this term in with low fusing points, low specific gravities connection with organic metamorphism.* (1.0-1.1), and low fixed-carbon values (4-20%). They are generally soluble in carbon disulfide, but are ANOXIC: Conditions where Q is absent or where the soluble only to the extend of 10-70°h in petroleum concentration of 02is very low (less than 0.1 mL/L naphtha. water). ASPHALTENES: The portion of petroleum and of ANTHRACITE: See Coal rank.* other bitumen that is soluble in solvents such as benzene, chloroform, and carbon disulfide (hence, ANTHRAXOLITE: A coal-like, lustrous, probably soluble or extractable bitumen), but which is highly coalified asphaltite* rich in carbon (8595%); insoluble in low-boiling (C3-7) alkanes. They hardness 3-4, specific gravity near 2; insoluble in generally contain more than 40 carbon atoms per organic solvents, practically infusible. molecule. Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/3837691/9781629811208_backmatter.pdf by guest on 24 September 2021 Glossa y of Terms Applicable to Petroleum Geochemistry 161 ASPHALTIC CRUDE OILS: Crude oils with a high (cycloparaffins). A naphthenic-base crude contains content of asphaltenes, and often also of vanadium predominantly naphthene hydrocarbons. An and sulfur, and with API gravities below about 35. asphalt-base crude is one containing a relatively high They can be classified as asphaltic-paraffinic crudes proportion of nonhydrocarbon constituents such as or as asphaltic-naphtheniccrudes. nitrogen, sulfur, and oxygen compounds. The term aromatic base is not used because there are no oils ASPHALTIC ROCK: Predominantly sedimentary known to contain predominantly aromatic hydrocar- rocks containing in their porous space native bons. asphalt.* An asphaltic sandstone is very often, but incorrectly, called a tar sand; asphaltic limestone is BENZENE: See Aromatics.* generally, but inadequately, called bituminous limestone. BICYCLANES: Saturated compounds having two condensed rings in their molecules. ASPHALTITE: A group name embracing solid forms of native naphthabitumens7 which are harder and BIOCHEMICAL PHASE: See Organic metamorphism.' less fusible than true asphalt*. They are composed principally of hydrocarbons (substantially free from BIODEGRADATION: The alteration of organic matter, oxygenated bodies and crystallizable alkanes), either including oils, by microbes (bacteria); in the case of pure or associated with mineral matter. Asphaltites oils, usually producing poorer quality oils depleted are derived either from naphthabitumen* or in normal paraffins and with added sulfur. kerogen* and altered during or after migration.* They are usually found in veins and fissures. BIOGENIC: Formed biologically by an organism or According to their solubility in carbon disulfide and within an organism. benzene, they are divided into two groups: (1) largely soluble: gilsonite,* glance pitch,* and BIOGENIC GAS: (1) Natural gas, virtually all methane, grahamite*; and (2) largely insoluble: elaterite,* produced by microbes (bacteria) in shallow rocks. wurtzilite,* albertite,* impsonite,* and anthraxolite.* Biogenic methane can be recognized by its relative It is possible that elaterite and wurtzilite represent abundance of the 12C isotope; also called marsh gas. immature kerogenous material; if so, they should be Hydrogen sulfide is also a biogenic gas. (2) Dry gas treated as sapropelites*. Albertite, impsonite, and (virtually pure methane) formed by anaerobic anthraxolite may be asphaltites with a high microorganisms called methanogens. maturity* acquired after migration. BIOLOGICAL MARKERS: Organic compounds whose ASSAY: See Fischer assay.* carbon structure, or skeleton, is formed by living organisms and is sufficiently stable to be recognized ATOMIC MASS UNIT (AMU): A mass approximately in crude oil or the organic matter of ancient equal to that of one neutron, used in describing the sediments. Typical markers are the porphyrins, masses of atoms, molecules, or ions. pristane, phytane, steranes, carotenes, and penta-
Recommended publications
  • X Hydrogeologic Framework and Geochemistry of Ground Water
    U.S. DEPARTMENT OF THE INTERIOR PREPARED IN COOPERATION WITH THE WATER-RESOURCES INVESTIGATIONS REPORT 02-4123 U.S. GEOLOGICAL SURVEY U.S. DEPARTMENT OF THE NAVY, SOUTHERN DIVISION, SHEET 1 of 3 NAVAL FACILITIES ENGINEERING COMMAND Taylor. C.J., and Hostettler, F.D., 2002, Hydrogeologic Framework and Geochemistry of Ground Water and Petroleum in the Silurian-Devonian Carbonate Aquifer, South-Central Louisville, Kentucky science USGSfor a changing world INTRODUCTION (A) (B) (C) (D) Previously published investigations concerning the ground-water resources HOLE DIAMETER, ACOUSTIC HOLE DIAMETER. ACOUSTIC HOLE DIAMETER. ACOUSTIC HOLE DIAMETER, ACOUSTIC of the city of Louisville and Jefferson County, Kentucky, have mostly focused on IN INCHES LITHOLOGY TELEVIEWER IN INCHES LITHOLOGY TELEVIEWER IN INCHES LITHOLOGY TELEVIEWER IN INCHES LITHOLOGY TELEVIEWER the highly productive Ohio River alluvial aquifer (Rorabaugh, 1956; Walker, 1957; Bell. 1966: Unthank and others, 1995). In contrast, relatively little attention has been given to the Ordovician and Silurian-Devonian carbonate aquifers that 10h X 10.4 underlie much of the Louisville and Jefferson County area (fig. I) because of their limited potential for water-supply development (Palmquist and Hall, 1960). LLJ LU O O However, detailed information about the ground-water quality and hydrogeology of £ the carbonate aquifer is needed by State and Federal environmental regulators and o: a: ^ ID private consultants for planning and conducting local environmental t,ite 5% CO C/3 t. * assessments and ground-water remediation. The Silurian-Devonian carbonate Q Q aquifer is of particular interest because it underlies much of the urbanized and 40;: 72%- industrialized areas of the city of Louisville, exhibits moderately well-developed NF karst, and is potentially vulnerable to human-induced contamination.
    [Show full text]
  • United States Patent C Patented Aug
    3,336,412 United States Patent C Patented Aug. 15, 1967 1 2 3,336,412 tion reaction can be eliminated by the addition of a halogen PRODUCTION OF UNSATURATED HYDROCAR gas to the reaction mixture. In one preferred embodiment BGNS BY PYROLYSIS 0F SATURATED HY it has now been discovered that the addition of chlorine DROCARBONS to a mixture of methane and oxygen increases the yield of Richard Kenneth Lyon, Elizabeth, and William Bartok, acetylene and eliminates the need for preheating‘ the West?eld, N.J., assignors to Esso Research and Engi neering Company, a corporation of Delaware methane and oxygen reactants. While not wishing to be No Drawing. Filed June 29, 1964, Ser. No. 379,031 bound by any particular theory, it is believed that the ad_ 8 Claims. (Cl. 260-679) dition of chlorine promotes the formation of acetylene in the reaction 3H2+C2<:>2CH4 by formation of HCl This invention relates ‘to an improved process for the 10 thereby driving the reaction in accordance with familiar pyrolysis of certain saturated hydrocarbons to obtain un principles of equilibrium reaction. Furthermore, the re saturated hydrocarbons. More particularly, this invention action H2+Cl2—>2HCl is exothermic and therefore adds relates to the production of unsaturated hydrocarbons additional heat to the reaction. The utilization of chlorine by partial combustion of saturated hydrocarbons. In a pre gas with the unsaturated hydrocarbon-oxygen mixture ferred embodiment, this invention relates to the produc 15 possesses a further advantage in that the halogen gas will tion of acetylene by partial combustion of hydrocarbons not react with the unsaturated hydrocarbon as will water, such as methane.
    [Show full text]
  • Studies of the Temporary Anion States of Unsaturated Hydrocarbons by Electron Transmission Spectroscopy
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Paul Burrow Publications Research Papers in Physics and Astronomy 1978 Studies of the Temporary Anion States of Unsaturated Hydrocarbons by Electron Transmission Spectroscopy Kenneth D. Jordan Paul Burrow Follow this and additional works at: https://digitalcommons.unl.edu/physicsburrow Part of the Atomic, Molecular and Optical Physics Commons This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Paul Burrow Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. digitalcommons.unl.edu Studies of the Temporary Anion States of Unsaturated Hydrocarbons by Electron Transmission Spectroscopy Kenneth D. Jordan Mason Laboratory, Department of Engineering and Applied Science, Yale University, New Haven, Connecticut 06520 Paul D. Burrow Behlen Laboratory of Physics, University of Nebraska, Lincoln, Nebraska 68588 The concept of occupied and unoccupied orbitals has provided a useful means for visualizing many of the most important properties of mo- lecular systems. Yet, there is a curious imbalance in our experimen- tal knowledge of the energies of occupied and unoccupied orbitals. Whereas photoelectron spectroscopy has provided a wealth of data on positive ion states and has established that they can be associated, within the context of Koopmans’ theorem, with the occupied orbitals of the neutral molecule, the corresponding information for the neg- ative ion states, associated with the normally unoccupied orbitals, is sparse. In part this reflects the experimental difficulties connected with measuring the electron affinities of molecules which possess sta- ble anions.
    [Show full text]
  • Articles Produced Within the Euphotic Zone (I.E
    EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmospheric Atmospheric Chemistry Chemistry and Physics and Physics Discussions Open Access Open Access Atmospheric Atmospheric Measurement Measurement Techniques Techniques Discussions Open Access Open Access Biogeosciences Biogeosciences Discussions Open Access Open Access Climate Climate of the Past of the Past Discussions Open Access Open Access Earth System Earth System Dynamics Dynamics Discussions Open Access Geoscientific Geoscientific Open Access Instrumentation Instrumentation Methods and Methods and Data Systems Data Systems Discussions Open Access Open Access Geosci. Model Dev., 6, 301–325, 2013 Geoscientific www.geosci-model-dev.net/6/301/2013/ Geoscientific doi:10.5194/gmd-6-301-2013 Model Development Model Development © Author(s) 2013. CC Attribution 3.0 License. Discussions Open Access Open Access Hydrology and Hydrology and Earth System Earth System Sciences Sciences Evaluation of the carbon cycle components in the Norwegian Earth Discussions Open Access Open Access System Model (NorESM) Ocean Science Ocean Science Discussions J. F. Tjiputra1,2,3, C. Roelandt1,3, M. Bentsen1,3, D. M. Lawrence4, T. Lorentzen1,3, J. Schwinger2,3, Ø. Seland5, and C. Heinze1,2,3 1 Open Access Uni Climate, Uni Research, Bergen, Norway Open Access 2University of Bergen, Geophysical Institute, Bergen, Norway 3 Solid Earth Bjerknes Centre for Climate Research, Bergen, Norway Solid Earth 4National Center for Atmospheric Research, Boulder, Colorado, USA Discussions 5Norwegian Meteorological Institute, Oslo, Norway Correspondence to: J.
    [Show full text]
  • Petroleum Reservoir Quality Prediction: Overview and Contrasting Approaches from Sandstone and Carbonate Communities
    Downloaded from http://sp.lyellcollection.org/ by guest on October 8, 2021 Petroleum reservoir quality prediction: overview and contrasting approaches from sandstone and carbonate communities R. H. WORDEN1*, P. J. ARMITAGE2, A. R. BUTCHER3, J. M. CHURCHILL4, A. E. CSOMA5, C. HOLLIS6, R. H. LANDER7 &J.E.OMMA8 1Department of Earth, Ocean and Ecological Sciences, University of Liverpool, 4 Brownlow Street, Liverpool L18 1LX, UK 2BP Upstream Technology, Chertsey Road, Sunbury, Middlesex TW16 7LN, UK 3Geological Survey of Finland, Espoo, 02151 Finland 4Shell UK Limited, 1 Altens Farm Road, Aberdeen AB12 3FY, UK 5MOL Group Exploration, Okto´ber Huszonharmadika u. 18, Budapest, H-1117, Hungary 6University of Manchester, Manchester, M13 9PL, UK 7Geocosm, Town Plaza 233, Durango, CO 81301, USA 8Rocktype, Oxford OX4 1LN, UK *Correspondence: [email protected] Abstract: The porosity and permeability of sandstone and carbonate reservoirs (known as reser- voir quality) are essential inputs for successful oil and gas resource exploration and exploitation. This chapter introduces basic concepts, analytical and modelling techniques and some of the key controversies to be discussed in 20 research papers that were initially presented at a Geological Society conference in 2014 titled ‘Reservoir Quality of Clastic and Carbonate Rocks: Analysis, Modelling and Prediction’. Reservoir quality in both sandstones and carbonates is studied using a wide range of techniques: log analysis and petrophysical core analysis, core description, routine petrographic tools and, ideally, less routine techniques such as stable isotope analysis, fluid inclu- sion analysis and other geochemical approaches. Sandstone and carbonate reservoirs both benefit from the study of modern analogues to constrain the primary character of sediment before they become a hydrocarbon reservoir.
    [Show full text]
  • MODULE 11: GLOSSARY and CONVERSIONS Cell Engines
    Hydrogen Fuel MODULE 11: GLOSSARY AND CONVERSIONS Cell Engines CONTENTS 11.1 GLOSSARY.......................................................................................................... 11-1 11.2 MEASUREMENT SYSTEMS .................................................................................. 11-31 11.3 CONVERSION TABLE .......................................................................................... 11-33 Hydrogen Fuel Cell Engines and Related Technologies: Rev 0, December 2001 Hydrogen Fuel MODULE 11: GLOSSARY AND CONVERSIONS Cell Engines OBJECTIVES This module is for reference only. Hydrogen Fuel Cell Engines and Related Technologies: Rev 0, December 2001 PAGE 11-1 Hydrogen Fuel Cell Engines MODULE 11: GLOSSARY AND CONVERSIONS 11.1 Glossary This glossary covers words, phrases, and acronyms that are used with fuel cell engines and hydrogen fueled vehicles. Some words may have different meanings when used in other contexts. There are variations in the use of periods and capitalization for abbrevia- tions, acronyms and standard measures. The terms in this glossary are pre- sented without periods. ABNORMAL COMBUSTION – Combustion in which knock, pre-ignition, run- on or surface ignition occurs; combustion that does not proceed in the nor- mal way (where the flame front is initiated by the spark and proceeds throughout the combustion chamber smoothly and without detonation). ABSOLUTE PRESSURE – Pressure shown on the pressure gauge plus at- mospheric pressure (psia). At sea level atmospheric pressure is 14.7 psia. Use absolute pressure in compressor calculations and when using the ideal gas law. See also psi and psig. ABSOLUTE TEMPERATURE – Temperature scale with absolute zero as the zero of the scale. In standard, the absolute temperature is the temperature in ºF plus 460, or in metric it is the temperature in ºC plus 273. Absolute zero is referred to as Rankine or r, and in metric as Kelvin or K.
    [Show full text]
  • Understanding Longterm Carbon Cycle Trends: the Late Paleocene Through
    PALEOCEANOGRAPHY, VOL. 28, 1–13, doi:10.1002/palo.20060, 2013 Understanding long-term carbon cycle trends: The late Paleocene through the early Eocene N. Komar,1 R. E. Zeebe,1 and G. R. Dickens2,3 Received 13 June 2013; revised 5 September 2013; accepted 12 September 2013. [1] The late Paleocene to the early Eocene (58–52 Ma) was marked by significant changes in global climate and carbon cycling. The evidence for these changes includes stable isotope records that reveal prominent decreases in ı18Oandı13C, suggesting a rise in Earth’s surface temperature (4ıC) and a drop in net carbon output from the ocean and atmosphere. Concurrently, deep-sea carbonate records at several sites indicate a deepening of the calcite compensation depth (CCD). Here we investigate possible causes (e.g., increased volcanic degassing or decreased net organic burial) for these observations, but from a new perspective. The basic model employed is a modified version of GEOCARB III. However, we have coupled this well-known geochemical model to LOSCAR (Long-term Ocean-atmosphere Sediment CArbon cycle Reservoir model), which enables simulation of seawater carbonate chemistry, the CCD, and ocean ı13C. We have also added a capacitor, in this case represented by gas hydrates, that can store and release 13C-depleted carbon to and from the shallow geosphere over millions of years. We further consider accurate input data (e.g., ı13C of carbonate) on a currently accepted timescale that spans an interval much longer than the perturbation. Several different scenarios are investigated with the goal of consistency amongst inferred changes in temperature, the CCD, and surface ocean and deep ocean ı13C.
    [Show full text]
  • Respiration in Aquatic Ecosystems This Page Intentionally Left Blank Respiration in Aquatic Ecosystems
    Respiration in Aquatic Ecosystems This page intentionally left blank Respiration in Aquatic Ecosystems EDITED BY Paul A. del Giorgio Université du Québec à Montréal, Canada Peter J. le B. Williams University of Wales, Bangor, UK 1 3 Great Clarendon Street, Oxford OX2 6DP Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide in Oxford New York Auckland Bangkok BuenosAires Cape Town Chennai Dar es Salaam Delhi Hong Kong Istanbul Karachi Kolkata Kuala Lumpur Madrid Melbourne Mexico City Mumbai Nairobi São Paulo Shanghai Taipei Tokyo Toronto Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries Published in the United States by Oxford University Press Inc., New York © Oxford University Press 2005 The moral rights of the author have been asserted Database right Oxford University Press (maker) First published 2005 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this book in any other binding or cover and you must impose this
    [Show full text]
  • 25WORDS ETHYLENE Ethylene, C2H4 ,Is an Unsaturated
    25WORDS ETHYLENE Ethylene, C2H4 ,is an unsaturated hydrocarbon that is used in industrial plants and sometimes as a hormone in an average medicine cabinet. It also is the most globally produced organic compound in the world. Ethylene, C2H4, is a hydrocarbon gas that is widely used in the world's industry for purposes like ripening fruit, making detergents, and for making soda. It is also highly flammable and colorless. Ethylene is an unsaturated hydrocarbon, composed of four hydrogen atoms bound to a pair of carbon atoms by means of a double bond. Ethylene has a molar mass of 28.05 g/mol Ethylene is the simplest member of the class called alkenes. It is a colorless, quite sweet- smelling gas. This gas is very reactive and burns with a very bright flame. ethylene (C2H4); Ethylene is known as the simplest alkene and an important hormone in organic chemistry. Over 80% of ethylene is used as a main component of polyethylene and to ripen fruit faster. Ethylene, C2H4, is a colorless gas that can be used as an inhalation anesthetic. This gas is also commonly used to keep fruit ripe as well as to cut and wield metals. Ethylene, C2H4, is an unsaturated hydrocarbon. It is used in anesthetic agents and in detergents. It is the most widely produced organic compound in the world. Ethylene (C2H4): Ethylene is an unsaturated hydrocarbon that is used in the production of polyethylene, a widely used plastic. It can be modified to become ethylene glycol (an antifreeze) and ethylene dichloride (used in creating polyvinyl chloride Ethlyene; Ethylene, C2H4, is a colorless, odorless gas that can be produced in nature as well as man-made processes.
    [Show full text]
  • WO 2015/000840 Al 8 January 2015 (08.01.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/000840 Al 8 January 2015 (08.01.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every CIOG 67/04 (2006.01) CIOG 69/06 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/EP2014/063848 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 30 June 2014 (30.06.2014) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (30) Priority Data: ZW. 13 174781 .8 2 July 2013 (02.07.2013) EP (84) Designated States (unless otherwise indicated, for every (71) Applicants: SAUDI BASIC INDUSTRIES CORPORA¬ kind of regional protection available): ARIPO (BW, GH, TION [SA/SA]; P.O. Box 5101, 11422 Riyadh (SA). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, SABIC GLOBAL TECHNOLOGIES [NL/NL]; Plastics- UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, laan 1, NL-4612 PX Bergen Op Zoom (NL).
    [Show full text]
  • Deep Sea Drilling Project Initial Reports Volume 56 & 57
    65. GEOCHEMISTRY OF CARBON: LEGS 56 AND 57, DEEP SEA DRILLING PROJECT K. S. Schorno, Phillips Petroleum Company, Bartlesville, Oklahoma INTRODUCTION RESULTS Forty-three core sections from Sites 434, 435, 438, The organic geochemical data accumulated during 439, and 440 on the landward side and six core sections this study are given in Tables 1 and 2. The 49 cores ex- from Site 436 on the seaward side of the Japan Trench amined are mostly diatomaceous muds and mudstones. (Figures 1 and 2) were obtained through the JOIDES The carbonate content of these muds is low, averaging Organic Geochemistry Advisory Panel for study of the 1.9 per cent of the total sediment with a maximum of origin and state of genesis of the organic matter associ- only 7.2 per cent. ated with these continental slope, accretionary wedge, The organic carbon content averages 0.57 per cent. and outer trench slope sediments of the Japan Trench. The average organic carbon content in the sediments The lipid fraction of these sediments is derived primarily farthest from shore on the seaward side of the trench from terrigenous organic matter and thus is allochtho- from Site 436 is well below the average of all cores stud- nous to the area. The associated kerogen fraction is of ied (0.13 versus 0.57 per cent) and is equal to the average mixed allochthonous and autochthonous origin. The to- value for open marine DSDP sediments (0.1 per cent). tal organic carbon content seaward of the trench is less The organic carbon contents of the midslope terrace than that on the landward side.
    [Show full text]
  • The Geochemistry of Oils and Gases from the Cumberland Overthrust Sheet in Virginia and Tennessee
    The Geochemistry of Oils and Gases From the Cumberland Overthrust Sheet in Virginia and Tennessee By Kristin O. Dennen, Mark Deering, and Robert C. Burruss Chapter G.12 of Coal and Petroleum Resources in the Appalachian Basin: Distribution, Geologic Framework, and Geochemical Character Edited by Leslie F. Ruppert and Robert T. Ryder Professional Paper 1708 U.S. Department of the Interior U.S. Geological Survey Suggested citation: Dennen, K.O., Deering, Mark, and Burruss, R.C., 2014, The geochemistry of oils and gases from the Cumberland overthrust sheet in Virginia and Tennessee, chap. G.12 of Ruppert, L.F., and Ryder, R.T., eds., Coal and petroleum resources in the Appalachian basin; Distribution, geologic framework, and geochemical character: U.S. Geological Survey Professional Paper 1708, 38 p., http://dx.doi.org/10.3133/pp1708G.12. iii Contents Abstract ...........................................................................................................................................................1 Introduction.....................................................................................................................................................1 Petroleum Geology Overview ......................................................................................................................1 Regional Geology ..................................................................................................................................1 Structure of the Cumberland Overthrust Sheet ...............................................................................4
    [Show full text]