Respiration in Aquatic Ecosystems This Page Intentionally Left Blank Respiration in Aquatic Ecosystems

Total Page:16

File Type:pdf, Size:1020Kb

Respiration in Aquatic Ecosystems This Page Intentionally Left Blank Respiration in Aquatic Ecosystems Respiration in Aquatic Ecosystems This page intentionally left blank Respiration in Aquatic Ecosystems EDITED BY Paul A. del Giorgio Université du Québec à Montréal, Canada Peter J. le B. Williams University of Wales, Bangor, UK 1 3 Great Clarendon Street, Oxford OX2 6DP Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide in Oxford New York Auckland Bangkok BuenosAires Cape Town Chennai Dar es Salaam Delhi Hong Kong Istanbul Karachi Kolkata Kuala Lumpur Madrid Melbourne Mexico City Mumbai Nairobi São Paulo Shanghai Taipei Tokyo Toronto Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries Published in the United States by Oxford University Press Inc., New York © Oxford University Press 2005 The moral rights of the author have been asserted Database right Oxford University Press (maker) First published 2005 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this book in any other binding or cover and you must impose this same condition on any acquirer A catalogue record for this title is available from the British Library Library of Congress Cataloging in Publication Data (Data available) ISBN 0 19 852709 8 (hbk) ISBN 0 19 852708 X (pbk) 10987654321 Typeset by Newgen Imaging Systems (P) Ltd., Chennai, India Printed in Great Britain on acid-free paper by Antony Rowe Ltd., Chippenham Preface Respiration, in its various biochemical manifestations, is the process by which all organisms obtain vital energy from a variety of reduced compounds, and represents the largest sink of organic matter in the bio- sphere. Although respiration is at the center of the functioning of ecosystems, much of contemporary ecology has chosen to focus attention and research on the productive processes rather than on catabolism. Almost certainly, respiration represents a major area of ignorance in out understanding the global carbon cycle. We decided to embark in this project during the 2000 ASLO meeting in Copenhagen, right after a session on aquatic respiration organized by Erik Smith and one of us. To our knowledge, it was among the first sessions entirely devoted to aquatic respiration at an international meeting, and although we had hoped to attract some interest, we never expected to fill the largest room in the conference center! It become clear that there was a tremendous interest in the topic within the aquatic scientific community, and that there was a need for synthesis and direction in this area of research. No textbook that had reviewed and synthesized the extant information on respiration in natural aquatic systems, independent of production or other traditional areas of focus. In spite of its obvious ecological and biogeochemical importance, most oceanographic and limnologi- cal textbooks usually deal with respiration superficially and only as an extension of production. We set out to fill this gap and provide the first comprehensive review of respiration in aquatic systems, with the help of an outstanding and diverse group of researchers who laid down a biochemical basis, examined the patterns and scales of respiration in diverse aquatic ecosystems. The result is a synthesis that spans the major aquatic ecosystems of the biosphere, and an in depth analysis of the current state of understanding of respiration in aquatic systems. It is our hope that this collective effort will help establish the main scientific questions and challenges that face this particular field, and more important, help bring respiration into focus as a priority area of future research. The book is mainly directed to respiration occurring in the water column of aquatic systems, because there are other excellent textbooks that extensively discuss sediment metabolism. Sediment respiration is discussed in the broader context in individual chapters, as part of the specific aim of integrating water column and benthic metabolic processes. We first (Chapters 1-5) lay down a basis to understand respiration within major categories of organisms, the photoautotrophs, the bacteria, the protozoa and the planktonic metazoa. We then (Chapters 6-12) consider the process in a series of aquatic ecosystems and the current status of attempts to model respiration in various plankton groups (Chapter 13). As the book progresses we shall seek to assess the current state of knowledge concerning respiration in aquatic ecosystems, and to address a series of questions that are key to understanding this process at the ecosystem and biospheric level. Finally, we wish to thank Hugh Ducklow, Jonathan Cole, Mike Pace, Ian Joint and Morten Søndergaard for reviewing various portion of this book. We also thank Ian Sherman and Anita Petrie of Oxford University Press for their patience and encouragement for this project, Ann Mitchel for providing a cover design and Paula Conde for help in editing manuscripts. Paul del Giorgio acknowledges the financial support of the National Science and Engineering Council of Canada. Finally, we would like to dedicate this book to Lawrence Pomeroy and to the late Robert Peters, two pioneers and visionaries who understood early on the importance of respiration in aquatic ecosystems. This page intentionally left blank Contents List of contributors ix 1 Respiration in aquatic ecosystems: history and background 1 Peter J. le B. Williams and Paul A. del Giorgio 2 Ecophysiology of microbial respiration 18 Gary M. King 3 Respiration in aquatic photolithotrophs 36 John A. Raven and John Beardall 4 Respiration in aquatic protists 47 Tom Fenchel 5 Zooplankton respiration 57 Santiago Hernández-León and Tsutomu Ikeda 6 Respiration in wetland ecosystems 83 Charlotte L. Roehm 7 Respiration in lakes 103 Michael L. Pace and Yves T. Prairie 8 Estuarine respiration: an overview of benthic, pelagic, and whole system respiration 122 Charles S. Hopkinson, Jr and Erik M. Smith 9 Respiration and its measurement in surface marine waters 147 Carol Robinson and Peter J. le B. Williams 10 Respiration in the mesopelagic and bathypelagic zones of the oceans 181 Javier Arístegui, Susana Agustí, Jack J. Middelburg, and Carlos M. Duarte 11 Respiration in coastal benthic communities 206 Jack J. Middelburg, Carlos M. Duarte, and Jean-Pierre Gattuso 12 Suboxic respiration in the oceanic water column 225 Louis A. Codispoti, Tadashi Yoshinari, and Allan H. Devol 13 Incorporating plankton respiration in models of aquatic ecosystem function 248 Kevin J. Flynn 14 The global significance of respiration in aquatic ecosystems: from single cells to the biosphere 267 Paul A. del Giorgio and Peter J. le B. Williams This page intentionally left blank List of contributors Susana Agustí Allan H. Devol IMEDEA (CSIC-UIB) School of Oceanography Grupo de Oceanografía Interdisciplinar (GOI) University of Washington Instituto Mediterráneo de Estudios Seattle, WA 98195 Avanzados, C USA Miquel Marqués, 21 Carlos M. Duarte 07190 Esporles (Mallorca) Spain IMEDEA (CSIC-UIB) Grupo de Oceanografía Interdisciplinar (GOI) Instituto Mediterráneo de Estudios Avanzados, C Javier Arístegui Miquel Marqués, 21 Facultad de Ciencias del Mar 07190 Esporles (Mallorca) Campus Universitario de Tafira Spain Universidad de las Palmas de Gran Canaria Tom Fenchel 35017 Las Palmas de Gran Canaria Marine Biological Laboratory Spain University of Copenhagen DK-3000 Helsingør John Beardall Denmark School of Biological Sciences Monash University Kevin J. Flynn Clayton Ecology Research Unit VIC 3800 University of Wales Swansea Australia Swansea SA2 8PP UK Louis A. Codispoti Jean-Pierre Gattuso University of Maryland Center for Laboratoire d’Océanographie de Villefranche Environmental Science CNRS and University of Paris 6 Horn Point Laboratory B. P. 28 P.O. Box 775 06234 Villefranche-sur-Mer Cedex Cambridge France MD 21613 USA Santiago Hernández-León Biological Oceanography Laboratory Paul A. del Giorgio Facultad de Ciencias del Mar Département des sciences biologiques Universidad de Las Palmas de Gran Canaria Université du Québec à Montréal Campus Universitario de Tafira CP 8888, Succ. Centre Ville 35017 Las Palmas de GC Montréal, Québec Canary Islands Canada H3C3P8 Spain x List of contributors Charles S. Hopkinson, Jr John A Raven Ecosystems Center Division of Environmental and Applied Biology Marine Biological Laboratory University of Dundee at SCRI Woods Hole, MA 02543 Invergowrie USA Dundee DD2 5DA UK Tsutomu Ikeda Carol Robinson Marine Biodiversity Laboratory Plymouth Marine Laboratory Graduate School of Fisheries Sciences Prospect Place Hokkaido University West Hoe 3-1-1 Minato-cho Plymouth, PL1 3DH Hakodate 041-0821 UK Japan Charlotte Roehm Gary M. King Département des sciences biologiques Darling Marine Center Université du Québec à Montréal University of Maine CP 8888, Succ. Centre Ville Walpole Montréal, Québec USA 04573 Canada H3C3P8 Jack J. Middelburg Erik M. Smith Netherlands Institute of Ecology Department of Biological Sciences (NIOO-KNAW) University of South Carolina P.O. Box 140 Columbia, SC 29208 4400 AC Yerseke USA The Netherlands
Recommended publications
  • RELATIONSHIP BETWEEN RESPIRATION RATE and BODY SIZE in MARINE PLANKTON ANIMALS AS a Title FUNCTION of the TEMPERATURE of HABITAT
    RELATIONSHIP BETWEEN RESPIRATION RATE AND BODY SIZE IN MARINE PLANKTON ANIMALS AS A Title FUNCTION OF THE TEMPERATURE OF HABITAT Author(s) IKEDA, Tsutomu Citation 北海道大學水産學部研究彙報, 21(2), 91-112 Issue Date 1970-08 Doc URL http://hdl.handle.net/2115/23417 Type bulletin (article) File Information 21(2)_P91-112.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP RELATIONSIDP BETWEEN RESPIRATION RATE AND BODY SIZE IN MARINE PLANKTON ANIMALS AS A FUNCTION OF THE TEMPERATURE OF HABITAT Tsutomu IKEDA * It is generally known that the rate of oxygen consumption (metabolic rate) per unit body weight of animals increases with the decrease in body size of the animals. This concept was initiated from the finding of the "surface law" by Sarrus & Rameaux (1839), and many studies on this problem have been done on mammals and birds ever since (refer to the reviews of Krogh, 1916; Benedict, 1938; Kleiber, 1947; Prosser, 1961a). A detailed study on this subject (Kleiber, 1947) has shown that the metabolic rate is proportional to a given power function of body weight rather than to body surface. Weymouth et al. (1944) showed that this relation-, ship is also applicable to poikilothermal animals according to experiments on a kelp crab, Pugettia producta. Zeuthen (1947), working on the marine micro-fauna, found a similar relationship. The review of Zeuthen (1953) extended this concept to organisms from bacteria to large mammals. In regard to plankton animals, Raymont & Gauld (1951) first suggested that the rate of oxygen consumption in copepods is proportional to their body surface.
    [Show full text]
  • Inferring Microbial Interaction Networks Based on Consensus Similarity Network Fusion
    SCIENCE CHINA Life Sciences THEMATIC ISSUE: Computational life sciences November 2014 Vol.57 No.11: 1115–1120 • RESEARCH PAPER • doi: 10.1007/s11427-014-4735-x Inferring microbial interaction networks based on consensus similarity network fusion JIANG XingPeng1,2 & HU XiaoHua2* 1College of Computing and Informatics, Drexel University, Philadelphia, PA 19104, USA; 2School of Computer, Central China Normal University, Wuhan 430079, China Received May 15, 2014; accepted July 21, 2014; published online October 17, 2014 With the rapid accumulation of high-throughput metagenomic sequencing data, it is possible to infer microbial species rela- tions in a microbial community systematically. In recent years, some approaches have been proposed for identifying microbial interaction network. These methods often focus on one dataset without considering the advantage of data integration. In this study, we propose to use a similarity network fusion (SNF) method to infer microbial relations. The SNF efficiently integrates the similarities of species derived from different datasets by a cross-network diffusion process. We also introduce consensus k-nearest neighborhood (Ck-NN) method instead of k-NN in the original SNF (we call the approach CSNF). The final network represents the augmented species relationships with aggregated evidence from various datasets, taking advantage of comple- mentarity in the data. We apply the method on genus profiles derived from three microbiome datasets and we find that CSNF can discover the modular structure of microbial interaction network which cannot be identified by analyzing a single dataset. species interaction, metagenome, diffusion process, biological network, modularity Citation: Jiang XP, Hu XH. Inferring microbial interaction networks based on consensus similarity network fusion.
    [Show full text]
  • Bioaugmentation of Chlorinated Solvents
    BIOAUGMENTATION FOR REMEDIATION OF CHLORINATED SOLVENTS: TECHNOLOGY DEVELOPMENT, STATUS, AND RESEARCH NEEDS October 2005 GeoSyntec Consultants TABLE OF CONTENTS LIST OF TABLES ...........................................................................................................................................III LIST OF FIGURES .........................................................................................................................................III ACRONYMNS AND ABBREVIATIONS........................................................................................................V FOREWORD...................................................................................................................................................VII EXECUTIVE SUMMARY ............................................................................................................................... IX 1. INTRODUCTION ..........................................................................................................................................1 2. EARLY DEVELOPMENT OF BIOAUGMENTATION.............................................................................5 3. RECENT PROGRESS IN CHLORINATED SOLVENT BIOREMEDIATION .....................................13 4. DEHALORESPIRATION: THE KEY PROCESS UNDERLYING CURRENT BIOAUGMENTATION PRACTICES..............................................................................................................................................................19 4.1 THE UBIQUITY CONCEPT REVISITED
    [Show full text]
  • Understanding the Interaction Between Anabaena Sp. and a Heterocyst-Specific Epibiont
    Understanding the interaction between Anabaena sp. and a heterocyst-specific epibiont Iglika V. Pavlova MBL Microbial Diversity course 2005 Abstract Anabaena sp. and an associated heterocyst-specific epibiontic bacterium were isolated from School Street Marsh in Woods Hole, MA in 1997 during the Microbial Diversity course. A two-member culture of the cyanobacterium and the epibiont have been maintained at WHOI by John Waterbury. Anabaena species with similar heterocyst-specific epibionts have also been isolated from other locations (7, 8, 9). Successful culture of the epibiont separately from the School Street Marsh cyanobacterium was achieved on two occasions (1, 10), but the isolates were not preserved. The epibiont was identified to be an α-proteobacterium within the Rhizobiaceae group (10). The close and specific association between the cyanobacterium and the epibiont strongly suggests there might be a physiological benefit or benefits to the cyanobacterium, the epibiont, or to both partners. This study was designed to understand the potential benefits of the interaction for the epibiontic bacterium. Several approaches were used to isolate the epibiont in pure culture, unsuccessfully. This report describes the rationale for undertaking the project and the approaches used to isolate the epibiont, in the hopes that this will be useful information for the future isolation of an axenic epibiont culture. Rationale Cyanobacterial associations with heterotrophic bacteria from environmental isolates have been described before and have been implicated in increasing the growth of the cyanobacterium (5, 6, 7). Benefit to the cyanobacterium may be derived from a range of associations, including the presence of heterotrophic bacteria in the culture medium, attraction of such bacteria to cyanobacterial secretions (either along the whole filament, or secretions stemming from the heterocyst in filamentous bacteria), or the attachment of the bacterium to the cyanobacterium outer surface (5, 6, 7, 9).
    [Show full text]
  • Escherichia Coli
    log bio y: O ro p c e i n M A l c Clinical Microbiology: Open a c c i e n s i l s Delmas et al., Clin Microbiol 2015, 4:2 C Access ISSN: 2327-5073 DOI:10.4172/2327-5073.1000195 Commentary Open Access Escherichia coli: The Good, the Bad and the Ugly Julien Delmas*, Guillaume Dalmasso and Richard Bonnet Microbes, Intestine, Inflammation and Host Susceptibility, INSERM U1071, INRA USC2018, Université Clermont Auvergne, Clermont-Ferrand, France *Corresponding author: Julien Delmas, Microbes, Intestine, Inflammation and Host Susceptibility, INSERM U1071, INRA USC2018, Université Clermont Auvergne, Clermont-Ferrand, France, Tel: +334731779; E-mail; [email protected] Received date: March 11, 2015, Accepted date: April 21, 2015, Published date: Aptil 28, 2015 Copyright: © 2015 Delmas J, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract The species Escherichia coli comprises non-pathogenic commensal strains that form part of the normal flora of humans and virulent strains responsible for acute infections inside and outside the intestine. In addition to these pathotypes, various strains of E. coli are suspected of promoting the development or exacerbation of chronic diseases of the intestine such as Crohn’s disease and colorectal cancer. Description replicate within both intestinal epithelial cells and macrophages. These properties were used to define a new pathotype of E. coli designated Escherichia coli is a non-sporeforming, facultatively anaerobic adherent-invasive E.
    [Show full text]
  • Stouthamer1973
    Antonie van Leeuwenhoek 39 (1973) 545-565 545 A theoretical study on the amount of ATP required for synthesis of microbial cell material A. H. STOUTHAMER Biological Laboratory, Free University, de Boelelaan 1087, Amsterdam, the Netherlands STOUTHAMER, A.H. 1973. A theoretical study on the amount of ATP required for synthesis of microbial cell material. Antonie van Leeuwenhoek 39: 545-565. The amount of ATP required for the formation of microbial cells growing under various conditions was calculated. It was assumed that the chemical com­ position of the cell was the same under all these conditions. The analysis of the chemical composition of microbial cells of Morowitz ( 1968) was taken as a base. It was assumed that 4 moles of ATP are required for the incorporation of one mole of amino acid into protein. The amount of ATP required on account of the instability and frequent regeneration of messenger RNA was calculated from data in the literature pertaining to the relative rates of synthesis of the various classes of RNA molecules in the cell. An estimate is given of the amount of ATP required for transport processes. For this purpose it was assumed that 0.5 mole of ATP is necessary for the uptake of 1 g-ion of potassium or ammo­ nium, and 1 mole of ATP for the uptake of 1 mole of phosphate, amino acid, acetate, malate etc. The results of the calculations show that from preformed monomers (glucose, amino acids and nucleic acid bases) 31.9 g cells can be formed per g-mole of ATP when acetyl-CoA is formed from glucose.
    [Show full text]
  • Aquatic Primary Productivity Field Protocols for Satellite Validation and Model Synthesis (DRAFT)
    Ocean Optics & Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation IOCCG Protocol Series Volume 7.0, 2021 Aquatic Primary Productivity Field Protocols for Satellite Validation and Model Synthesis (DRAFT) Report of a NASA-sponsored workshop with contributions (alphabetical) from: William M. Balch Bigelow Laboratory for Ocean Sciences, Maine, USA Magdalena M. Carranza Monterey Bay Aquarium Research Institute, California, USA Ivona Cetinic University Space Research Association, NASA Goddard Space Flight Center, Maryland, USA Joaquín E. Chaves Science Systems and Applications, Inc., NASA Goddard Space Flight Center, Maryland, USA Solange Duhamel University of Arizona, Arizona, USA Zachary K. Erickson University Space Research Association, NASA Goddard Space Flight Center, Maryland, USA Andrea J. Fassbender NOAA Pacific Marine Environmental Laboratory, Washington, USA Ana Fernández-Carrera Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany Sara Ferrón University of Hawaii at Manoa, Hawaii, USA E. Elena García-Martín National Oceanography Centre, Southampton, UK Joaquim Goes Lamont Doherty Earth Observatory at Columbia University, New York, USA Helga do Rosario Gomes Lamont Doherty Earth Observatory at Columbia University, New York, USA Maxim Y. Gorbunov Department of Marine and Coastal Sciences, Rutgers University, New Jersey, USA Kjell Gundersen Plankton Research Group, Institute of Marine Research, Bergen, Norway Kimberly Halsey Department of Microbiology, Oregon State University, Oregon, USA Toru Hirawake
    [Show full text]
  • Articles Produced Within the Euphotic Zone (I.E
    EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmospheric Atmospheric Chemistry Chemistry and Physics and Physics Discussions Open Access Open Access Atmospheric Atmospheric Measurement Measurement Techniques Techniques Discussions Open Access Open Access Biogeosciences Biogeosciences Discussions Open Access Open Access Climate Climate of the Past of the Past Discussions Open Access Open Access Earth System Earth System Dynamics Dynamics Discussions Open Access Geoscientific Geoscientific Open Access Instrumentation Instrumentation Methods and Methods and Data Systems Data Systems Discussions Open Access Open Access Geosci. Model Dev., 6, 301–325, 2013 Geoscientific www.geosci-model-dev.net/6/301/2013/ Geoscientific doi:10.5194/gmd-6-301-2013 Model Development Model Development © Author(s) 2013. CC Attribution 3.0 License. Discussions Open Access Open Access Hydrology and Hydrology and Earth System Earth System Sciences Sciences Evaluation of the carbon cycle components in the Norwegian Earth Discussions Open Access Open Access System Model (NorESM) Ocean Science Ocean Science Discussions J. F. Tjiputra1,2,3, C. Roelandt1,3, M. Bentsen1,3, D. M. Lawrence4, T. Lorentzen1,3, J. Schwinger2,3, Ø. Seland5, and C. Heinze1,2,3 1 Open Access Uni Climate, Uni Research, Bergen, Norway Open Access 2University of Bergen, Geophysical Institute, Bergen, Norway 3 Solid Earth Bjerknes Centre for Climate Research, Bergen, Norway Solid Earth 4National Center for Atmospheric Research, Boulder, Colorado, USA Discussions 5Norwegian Meteorological Institute, Oslo, Norway Correspondence to: J.
    [Show full text]
  • Aerobic Microorganism' William B
    THE RELATION OF OXIDATION-REDUCTION POTENTIAL TO THE GROWTH OF AN .AEROBIC MICROORGANISM' WILLIAM B. WOOD, JR., MARY LEE WOOD AND I. L. BALDWIN University of Wisconsin Received for publication August 2, 1935 INTRODUCTION The possible relationship between the oxidation-reduction po- tentials of culture media and the ability of micro6rganisms to initiate growth has recently interested bacteriologists. The work of Aubel and Aubertin (1927), Dubos (1929a), Fildes (1929), Knight and Fildes (1930), Plotz and Geloso (1930), and others, has established the fact that the growth of certain anaerobes is greatly influenced by the oxidation-reduction potential of the medium. In the case of aerobic bacteria, however, conflicting results have been reported. Allyn and Baldwin (1930, 1932) demonstrated that the potential of the medium was of consider- able importance in determining whether or not small inocula of Rhizobium, an aerobic organism, could initiate growth. Knaysi and Dutky (1934), on the other hand, finding that Bacillus mega- therium would not grow in the absence of dissolved oxygen, even when the potential of the mediuim was varied over a considerable range, concluded that "the limiting factor in the growth of Bacil- lus megatherium in vacuum is the oxygen content and not the oxidation-reduction potential of the culture medium." Their experiments offer no information, however, as to whether or not the potential of the medium affects the growth of this organism under aerobic conditions. The purpose of this paper is to report: (a) experimental evi- 1 Published with the approval of the Director of the Wisconsin Agricultural Experiment Station. 593 594 W.
    [Show full text]
  • Understanding Longterm Carbon Cycle Trends: the Late Paleocene Through
    PALEOCEANOGRAPHY, VOL. 28, 1–13, doi:10.1002/palo.20060, 2013 Understanding long-term carbon cycle trends: The late Paleocene through the early Eocene N. Komar,1 R. E. Zeebe,1 and G. R. Dickens2,3 Received 13 June 2013; revised 5 September 2013; accepted 12 September 2013. [1] The late Paleocene to the early Eocene (58–52 Ma) was marked by significant changes in global climate and carbon cycling. The evidence for these changes includes stable isotope records that reveal prominent decreases in ı18Oandı13C, suggesting a rise in Earth’s surface temperature (4ıC) and a drop in net carbon output from the ocean and atmosphere. Concurrently, deep-sea carbonate records at several sites indicate a deepening of the calcite compensation depth (CCD). Here we investigate possible causes (e.g., increased volcanic degassing or decreased net organic burial) for these observations, but from a new perspective. The basic model employed is a modified version of GEOCARB III. However, we have coupled this well-known geochemical model to LOSCAR (Long-term Ocean-atmosphere Sediment CArbon cycle Reservoir model), which enables simulation of seawater carbonate chemistry, the CCD, and ocean ı13C. We have also added a capacitor, in this case represented by gas hydrates, that can store and release 13C-depleted carbon to and from the shallow geosphere over millions of years. We further consider accurate input data (e.g., ı13C of carbonate) on a currently accepted timescale that spans an interval much longer than the perturbation. Several different scenarios are investigated with the goal of consistency amongst inferred changes in temperature, the CCD, and surface ocean and deep ocean ı13C.
    [Show full text]
  • Hypothesis Paper Why O2 Is Required by Complex Life on Habitable Planets and the Concept of Planetary “Oxygenation Time”
    5703_06_p415-438 5/27/05 1:30 PM Page 415 ASTROBIOLOGY Volume 5, Number 3, 2005 © Mary Ann Liebert, Inc. Hypothesis Paper Why O2 Is Required by Complex Life on Habitable Planets and the Concept of Planetary “Oxygenation Time” DAVID C. CATLING,1 CHRISTOPHER R. GLEIN,1 KEVIN J. ZAHNLE,2 and CHRISTOPHER P. MCKAY2 ABSTRACT Life is constructed from a limited toolkit: the Periodic Table. The reduction of oxygen provides the largest free energy release per electron transfer, except for the reduction of fluorine and chlorine. However, the bonding of O2 ensures that it is sufficiently stable to accumulate in a planetary atmosphere, whereas the more weakly bonded halogen gases are far too reactive ever to achieve significant abundance. Consequently, an atmosphere rich in O2 provides the largest feasible energy source. This universal uniqueness suggests that abundant O2 is necessary for the high-energy demands of complex life anywhere, i.e., for actively mobile organisms of -ϳ10؊1–100 m size scale with specialized, differentiated anatomy comparable to advanced meta zoans. On Earth, aerobic metabolism provides about an order of magnitude more energy for a given intake of food than anaerobic metabolism. As a result, anaerobes do not grow beyond the complexity of uniseriate filaments of cells because of prohibitively low growth efficiencies in a food chain. The biomass cumulative number density, n, at a particular mass, m, scales as n ,Ͼm)ؔm؊1 for aquatic aerobes, and we show that for anaerobes the predicted scaling is nؔm؊1.5) close to a growth-limited threshold. Even with aerobic metabolism, the partial pressure of at- ϳ 3 mospheric O2 (PO2) must exceed 10 Pa to allow organisms that rely on O2 diffusion to evolve ϳ ؊3 ϳ 3 4 ϳ ؊2 to a size 10 m.
    [Show full text]
  • The Endosymbiotic Theory
    Origin of Life The Endosymbiotic Theory Cleodie Swire The King's School, Canterbury, E-mail: [email protected] DOI: 10.4103/0974-6102.92200 Definitions Carbon dioxide + Water (with sunlight and chlorophyll) → Carbohydrate + Oxygen Prokaryote – Organism with cells without a true nucleus or other membrane-bound organelles Figure 2 shows that mitochondria and chloroplasts are very similar to prokaryotic cells; these observations Eukaryote – Organism whose cell(s) contain(s) a lead to The Endosymbiotic Theory. distinct, membrane-bound nucleus Theory Autotroph – An organism that can make its own food Researchers comparing the structures of prokaryotes Heterotroph – An organism that must obtain ready- and cell organelles, as shown in Figure 2, came to made food the conclusion that organelles such as mitochondria and chloroplasts had originally been bacteria that Endocytosis – A process in which a cell takes in were taken into larger bacteria by endocytosis and not materials by engulfing them and fusing them with its digested. The cells would have had a mutually beneficial membrane, as shown in Figure 1 (symbiotic) relationship. The ingested cells developed Aerobic – Organism that requires oxygen for survival Anaerobic – Organism that can function without oxygen Symbiosis – Two different organisms benefit from living and working together Endosymbiosis – One organism lives inside another Mitochondrion – Organelle where aerobic respiration occurs within the cell Carbohydrate + Oxygen → Carbon dioxide + Water + Energy Chloroplast – Organelle
    [Show full text]