Understanding the Interaction Between Anabaena Sp. and a Heterocyst-Specific Epibiont

Total Page:16

File Type:pdf, Size:1020Kb

Understanding the Interaction Between Anabaena Sp. and a Heterocyst-Specific Epibiont Understanding the interaction between Anabaena sp. and a heterocyst-specific epibiont Iglika V. Pavlova MBL Microbial Diversity course 2005 Abstract Anabaena sp. and an associated heterocyst-specific epibiontic bacterium were isolated from School Street Marsh in Woods Hole, MA in 1997 during the Microbial Diversity course. A two-member culture of the cyanobacterium and the epibiont have been maintained at WHOI by John Waterbury. Anabaena species with similar heterocyst-specific epibionts have also been isolated from other locations (7, 8, 9). Successful culture of the epibiont separately from the School Street Marsh cyanobacterium was achieved on two occasions (1, 10), but the isolates were not preserved. The epibiont was identified to be an α-proteobacterium within the Rhizobiaceae group (10). The close and specific association between the cyanobacterium and the epibiont strongly suggests there might be a physiological benefit or benefits to the cyanobacterium, the epibiont, or to both partners. This study was designed to understand the potential benefits of the interaction for the epibiontic bacterium. Several approaches were used to isolate the epibiont in pure culture, unsuccessfully. This report describes the rationale for undertaking the project and the approaches used to isolate the epibiont, in the hopes that this will be useful information for the future isolation of an axenic epibiont culture. Rationale Cyanobacterial associations with heterotrophic bacteria from environmental isolates have been described before and have been implicated in increasing the growth of the cyanobacterium (5, 6, 7). Benefit to the cyanobacterium may be derived from a range of associations, including the presence of heterotrophic bacteria in the culture medium, attraction of such bacteria to cyanobacterial secretions (either along the whole filament, or secretions stemming from the heterocyst in filamentous bacteria), or the attachment of the bacterium to the cyanobacterium outer surface (5, 6, 7, 9). The attachment of bacteria to the outer surface, and the specific attachment to heterocysts to the exclusion of vegetative cells, is very interesting as the closeness and specificity of the interaction indicates that it may have been selected for over time, with a benefit to one or both partners. The specificity of epibiont attachment is not under question, as the epibiont has not been observed to bind to vegetative cells. Importantly, the epibiontic bacterium was shown to associate de novo to heterocysts that are very likely to be non-metabolizing (10). The issue regarding this two-species interaction is whether the specificity is based on metabolic benefits in addition to the specific attachment. The epibiont side of the interaction, while more likely to involve benefits than the cyanobacterial side (i.e., a parasitic interaction is more likely for the epibiont than for the cyanobacterium), has not been investigated and was the focus of this proposal. A specific association of epibiont to heterocyst based on metabolism is not hard to envision, as heterocyst cells are physiologically distinct from vegetative cells. Heterocysts are the site of nitrogen fixation in filamentous cyanobacteria that harbor them (3). Moreover, they are thought to have evolved as a result of selection for a specialized low-oxygen environment for nitrogen fixation, an extremely oxygen-sensitive process. One of these specializations is a thick cell wall, with a specific lipopolysaccharide (LPS) on the surface of the cell, which can serve as a site for attachment and as a source of nutrients for the epibiont (3). The Anabaena LPS contains glucose, galactose and mannose (12). Nitrogen fixation in the heterocyst provides other possible nutrients for the epibiont. First, ammonia is generated, which through a series of intermediates (e.g., glutamine) is converted to phycocyanin. Phycocyanin is a polypeptide made up of repeating units of arginine and aspartate, which serves for nitrogen storage and transport. At the ends of the heterocyst, the degradation products of phycocyanin, arginine and aspartate, are found. Second, nitrogenase produces as a co-product molecular hydrogen, which is an attractive electron donor for many bacteria, and could be used by the epibiont. Importantly, there is some preliminary evidence that hydrogen may play a role in the Rhizobium-legume symbiosis. Many such symbioses harbor Rhizobium strains that are defective in uptake hydrogenase (HUP), an enzyme that oxidizes hydrogen with energy conservation, and hydrogen is found to leak out of the nodules (2, 11). We currently don’t know whether the School Street Marsh Anabaena sp. has HUP, and if it does, how much of the molecular hydrogen is metabolized by this enzyme. Based on the above considerations, the following two major experimental approaches were designed to address the potential benefits for the epibiont of the association with the cyanobacterium: 1. Determine growth requirements of epibiont Currently, the epibiont has only been grown in complex rich media (MP media, see recipe below). One approach is to test different sources of carbon and nitrogen, in the presence or absence of hydrogen gas, and measure biomass accumulation. A second approach is to do chemotaxis assays to analyze epibiont chemoattraction to different sources of carbon and nitrogen, and to hydrogen gas. 2. Quantitative electron microscopic studies of de novo association and dissociation between epibiont and Anabaena sp. For the association experiments, the two axenic cultures will be mixed in different media, and the following parameters measured over time using electron microscopy: a) the number of heterocysts harboring epibionts, b) the number of epibionts attached to each heterocyst, c) the number of epibionts not attached to the Anabaena sp., and d) whether any vegetative cells have epibionts attached to them. For the disassociation experiments, a growing two-membered culture will be monitored over time for the association between epibionts and newly formed heterocysts in various media. The prediction is that if the epibiont attaches to obtain hydrogen and/or carbon sources from the cyanobacterium, it will not attach when these are available in the environment. Scanning Electron Microscopy 1. Cyanobacterial filaments were placed onto a glass slide with appropriate medium, and the clumps were teased apart gently and placed onto a 0.2 µm filter. 2. Samples were fixed for 4 hours in 2% glutaraldehyde, 1.5% formaldehyde solution. 3. Samples were dehydrated with 2,2-dimethoxypropane (only one was sufficient) and kept in absolute ethanol overnight. 4. The next day, the samples were dried using a critical-point drier, mounted on an SEM stub and sputter-coated, and stored in a dessicator. 5. SEM was performed on a JEOL JSM-840 scanning electron microscope. Figures 1-4 show some of the photomicrographs obtained. Figure 1 shows a cyanobacterial clump. Figures 2-4 are close-ups of single filaments with heterocysts and attached epibionts. Note the range in length of the filaments from ~1 to ~8 µm. Approaches for the isolation of an epibiont culture Media Both liquid and solid media was used for the purifications. The first medium described below is for culture of cyanobacteria; the other media are heterotrophic media used for the isolation of the epibiont. All recipes are for 1 L of medium. All media used had 25% seawater, which is the same salinity as the media used for the two-member culture. All solid media were with 1% agar. BOX and BNAX media These are the media that John Waterbury routinely uses in his lab for culture of cyanobacteria. Since I was using modular media (different combinations), I made stock solutions and would mix them as desired, which is a different approach from how this media is typically prepared. There is no need to adjust pH, as the seawater acts as a very efficient buffer. BOX (ml) BNAX (ml) Cyano trace metals (g/L) ddH20 750 750 ZnS04x7H20 0.222 Filtered seawater 250 250 MnCl2x4H20 1.4 20 mM Na2C03 0.1 0.1 Co(N03)2x6H20 0.025 20 mM K2HP04 0.1 0.1 Na2MoO4x2H20 0.39 200 mM Na2N03 -- 1.0 Citric Acid hydrate 6.25 200 mM NH4Cl -- 0.1 Ferric Ammonium Cyano trace metals 0.5 0.5 Citrate (brown) 6.0 0.1 mM EDTA (disodium) 0.5 0.5 Oligotrophic CYPS medium Many bacteria grow optimally under limiting amounts of nutrients. I also thought that this media could provide a way to promote the growth of the epibiont and discourage the growth of the contaminating bacteria (see below, “Major problem: culture contamination”). The CYPS medium is commonly used by Jeanne Pointdexter for the growth of oligotrophic marine organisms. Casamino acids 0.05% Peptone 0.05% Yeast extract 0.05% Seawater 25% Marine Purity medium This is the medium that was used successfully for the purification of the epibiont (10). Please note that this medium does not necessarily have the optimal concentrations and combinations of nutrients for epibiont growth, as indicated by the slow growth of the epibiont under these conditions (10, John Waterbury, personal communication). MP medium (g) NaCl 20 Make separately NaCl/AC broth, MgS04, and CaCl2 solutions 0 AC broth* 17 with dH20, autoclave, cool down to <65 C, and mix. MgS04x7H20 8 CaCl2x2H20 0.6 *The manual directions for AC broth (Difco) is 34 g/L. Brad Stevenson (10) used 17 g/L. I used both 17g/L and 8.5 g/L. Other media combinations Other combinations of oligotrophic media were also used to better define the growth requirements of the epibiontic bacterium and to provide (as above) a selection against the contaminating bacteria. The major principle was to use a base medium and provide different carbon sources: Base medium Carbon sources (additional) BOX medium components All at 0.05% 0.05% peptone Mannose, malate, glucose, galactose, cellobiose, acetate, succinate Combinations Base medium + one carbon source Other culture parameters Cyanobacterial cultures were grown in a 300C incubator with a 12 h light/12 h dark cycle, with no shaking.
Recommended publications
  • Azolla-Anabaena Symbiosis-From Traditional Agriculture to Biotechnology
    Indian Journal of Biotechnology Vol 2, January 2003, pp 26-37 Azolla-Anabaena Symbiosis-From Traditional Agriculture to Biotechnology Anjuli Pabby, Radha Prasanna and P K Singh* National Centre for Conservation and Utilization of Blue-Green Algae, Indian Agricultural Research Institute, New Delhi 110 012, India The Azolla - Anabaena symbiosis has attracted attention as a biofertilizer worldwide, especially in South East Asia. But its utilization and genetic improvement has been limited mainly due to problems associated with the isolation and characterization of cyanobionts and the relative sensitivity of the fern to extremes of temperature and light intensity. This paper reviews the historical background of Azolla, its metabolic capabilities and present day utilization in agriculture. An outline of biotechnological interventions, carried out in India and abroad, is also discussed for a better understanding of the symbiotic interactions, which can go a long way in further exploitation of this association in agriculture and environmental management. Keywords: Azolla, Anabaena, biofertilizer, fingerprinting, symbiont Introduction food and medicine, besides its role in environmental Azolla is a small aquatic fern of demonstrated management and as controlling agent for weeds and agronomic significance in both developed and mosquitoes. It also improves water quality by removal developing countries (Singh, 1979a; Lumpkin & of excess quantities of nitrate and phosphorus and is Plucknett, 1980; Watanabe, 1982; Giller, 2002). The also used as fodder, feed for fish, ducks and rabbits association between Azolla and Anabaena azollae is a (Wagner, 1997). Besides its extensive use as a N- symbiotic one, wherein the eukaryotic partner Azolla supplement in rice-based ecosystems, it has also been houses the prokaryotic endosymbiont in its leaf used in other crops such as taro, wheat, tomato and cavities and provides carbon sources and in turn banana (Van Hove, 1989; Marwaha et al.
    [Show full text]
  • Inferring Microbial Interaction Networks Based on Consensus Similarity Network Fusion
    SCIENCE CHINA Life Sciences THEMATIC ISSUE: Computational life sciences November 2014 Vol.57 No.11: 1115–1120 • RESEARCH PAPER • doi: 10.1007/s11427-014-4735-x Inferring microbial interaction networks based on consensus similarity network fusion JIANG XingPeng1,2 & HU XiaoHua2* 1College of Computing and Informatics, Drexel University, Philadelphia, PA 19104, USA; 2School of Computer, Central China Normal University, Wuhan 430079, China Received May 15, 2014; accepted July 21, 2014; published online October 17, 2014 With the rapid accumulation of high-throughput metagenomic sequencing data, it is possible to infer microbial species rela- tions in a microbial community systematically. In recent years, some approaches have been proposed for identifying microbial interaction network. These methods often focus on one dataset without considering the advantage of data integration. In this study, we propose to use a similarity network fusion (SNF) method to infer microbial relations. The SNF efficiently integrates the similarities of species derived from different datasets by a cross-network diffusion process. We also introduce consensus k-nearest neighborhood (Ck-NN) method instead of k-NN in the original SNF (we call the approach CSNF). The final network represents the augmented species relationships with aggregated evidence from various datasets, taking advantage of comple- mentarity in the data. We apply the method on genus profiles derived from three microbiome datasets and we find that CSNF can discover the modular structure of microbial interaction network which cannot be identified by analyzing a single dataset. species interaction, metagenome, diffusion process, biological network, modularity Citation: Jiang XP, Hu XH. Inferring microbial interaction networks based on consensus similarity network fusion.
    [Show full text]
  • Bioaugmentation of Chlorinated Solvents
    BIOAUGMENTATION FOR REMEDIATION OF CHLORINATED SOLVENTS: TECHNOLOGY DEVELOPMENT, STATUS, AND RESEARCH NEEDS October 2005 GeoSyntec Consultants TABLE OF CONTENTS LIST OF TABLES ...........................................................................................................................................III LIST OF FIGURES .........................................................................................................................................III ACRONYMNS AND ABBREVIATIONS........................................................................................................V FOREWORD...................................................................................................................................................VII EXECUTIVE SUMMARY ............................................................................................................................... IX 1. INTRODUCTION ..........................................................................................................................................1 2. EARLY DEVELOPMENT OF BIOAUGMENTATION.............................................................................5 3. RECENT PROGRESS IN CHLORINATED SOLVENT BIOREMEDIATION .....................................13 4. DEHALORESPIRATION: THE KEY PROCESS UNDERLYING CURRENT BIOAUGMENTATION PRACTICES..............................................................................................................................................................19 4.1 THE UBIQUITY CONCEPT REVISITED
    [Show full text]
  • Planktothrix Agardhii É a Mais Comum
    Accessing Planktothrix species diversity and associated toxins using quantitative real-time PCR in natural waters Catarina Isabel Prata Pereira Leitão Churro Doutoramento em Biologia Departamento Biologia 2015 Orientador Vitor Manuel de Oliveira e Vasconcelos, Professor Catedrático Faculdade de Ciências iv FCUP Accessing Planktothrix species diversity and associated toxins using quantitative real-time PCR in natural waters The research presented in this thesis was supported by the Portuguese Foundation for Science and Technology (FCT, I.P.) national funds through the project PPCDT/AMB/67075/2006 and through the individual Ph.D. research grant SFRH/BD65706/2009 to Catarina Churro co-funded by the European Social Fund (Fundo Social Europeu, FSE), through Programa Operacional Potencial Humano – Quadro de Referência Estratégico Nacional (POPH – QREN) and Foundation for Science and Technology (FCT). The research was performed in the host institutions: National Institute of Health Dr. Ricardo Jorge (INSA, I.P.), Lisboa; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Porto and Centre for Microbial Resources (CREM - FCT/UNL), Caparica that provided the laboratories, materials, regents, equipment’s and logistics to perform the experiments. v FCUP Accessing Planktothrix species diversity and associated toxins using quantitative real-time PCR in natural waters vi FCUP Accessing Planktothrix species diversity and associated toxins using quantitative real-time PCR in natural waters ACKNOWLEDGMENTS I would like to express my gratitude to my supervisor Professor Vitor Vasconcelos for accepting to embark in this research and supervising this project and without whom this work would not be possible. I am also greatly thankful to my co-supervisor Elisabete Valério for the encouragement in pursuing a graduate program and for accompanying me all the way through it.
    [Show full text]
  • Anabaena Variabilis ATCC 29413
    Standards in Genomic Sciences (2014) 9:562-573 DOI:10.4056/sig s.3899418 Complete genome sequence of Anabaena variabilis ATCC 29413 Teresa Thiel1*, Brenda S. Pratte1 and Jinshun Zhong1, Lynne Goodwin 5, Alex Copeland2,4, Susan Lucas 3, Cliff Han 5, Sam Pitluck2,4, Miriam L. Land 6, Nikos C Kyrpides 2,4, Tanja Woyke 2,4 1Department of Biology, University of Missouri-St. Louis, St. Louis, MO 2DOE Joint Genome Institute, Walnut Creek, CA 3Lawrence Livermore National Laboratory, Livermore, CA 4Lawrence Berkeley National Laboratory, Berkeley, CA 5Los Alamos National Laboratory, Los Alamos, NM 6Oak Ridge National Laboratory, Oak Ridge, TN *Correspondence: Teresa Thiel ([email protected]) Anabaena variabilis ATCC 29413 is a filamentous, heterocyst-forming cyanobacterium that has served as a model organism, with an extensive literature extending over 40 years. The strain has three distinct nitrogenases that function under different environmental conditions and is capable of photoautotrophic growth in the light and true heterotrophic growth in the dark using fructose as both carbon and energy source. While this strain was first isolated in 1964 in Mississippi and named Ana- baena flos-aquae MSU A-37, it clusters phylogenetically with cyanobacteria of the genus Nostoc . The strain is a moderate thermophile, growing well at approximately 40° C. Here we provide some additional characteristics of the strain, and an analysis of the complete genome sequence. Introduction Classification and features Anabaena variabilis ATCC 29413 (=IUCC 1444 = The general characteristics of A. variabilis are PCC 7937) is a semi-thermophilic, filamentous, summarized in Table 1 and its phylogeny is shown heterocyst-forming cyanobacterium.
    [Show full text]
  • Escherichia Coli
    log bio y: O ro p c e i n M A l c Clinical Microbiology: Open a c c i e n s i l s Delmas et al., Clin Microbiol 2015, 4:2 C Access ISSN: 2327-5073 DOI:10.4172/2327-5073.1000195 Commentary Open Access Escherichia coli: The Good, the Bad and the Ugly Julien Delmas*, Guillaume Dalmasso and Richard Bonnet Microbes, Intestine, Inflammation and Host Susceptibility, INSERM U1071, INRA USC2018, Université Clermont Auvergne, Clermont-Ferrand, France *Corresponding author: Julien Delmas, Microbes, Intestine, Inflammation and Host Susceptibility, INSERM U1071, INRA USC2018, Université Clermont Auvergne, Clermont-Ferrand, France, Tel: +334731779; E-mail; [email protected] Received date: March 11, 2015, Accepted date: April 21, 2015, Published date: Aptil 28, 2015 Copyright: © 2015 Delmas J, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract The species Escherichia coli comprises non-pathogenic commensal strains that form part of the normal flora of humans and virulent strains responsible for acute infections inside and outside the intestine. In addition to these pathotypes, various strains of E. coli are suspected of promoting the development or exacerbation of chronic diseases of the intestine such as Crohn’s disease and colorectal cancer. Description replicate within both intestinal epithelial cells and macrophages. These properties were used to define a new pathotype of E. coli designated Escherichia coli is a non-sporeforming, facultatively anaerobic adherent-invasive E.
    [Show full text]
  • Stouthamer1973
    Antonie van Leeuwenhoek 39 (1973) 545-565 545 A theoretical study on the amount of ATP required for synthesis of microbial cell material A. H. STOUTHAMER Biological Laboratory, Free University, de Boelelaan 1087, Amsterdam, the Netherlands STOUTHAMER, A.H. 1973. A theoretical study on the amount of ATP required for synthesis of microbial cell material. Antonie van Leeuwenhoek 39: 545-565. The amount of ATP required for the formation of microbial cells growing under various conditions was calculated. It was assumed that the chemical com­ position of the cell was the same under all these conditions. The analysis of the chemical composition of microbial cells of Morowitz ( 1968) was taken as a base. It was assumed that 4 moles of ATP are required for the incorporation of one mole of amino acid into protein. The amount of ATP required on account of the instability and frequent regeneration of messenger RNA was calculated from data in the literature pertaining to the relative rates of synthesis of the various classes of RNA molecules in the cell. An estimate is given of the amount of ATP required for transport processes. For this purpose it was assumed that 0.5 mole of ATP is necessary for the uptake of 1 g-ion of potassium or ammo­ nium, and 1 mole of ATP for the uptake of 1 mole of phosphate, amino acid, acetate, malate etc. The results of the calculations show that from preformed monomers (glucose, amino acids and nucleic acid bases) 31.9 g cells can be formed per g-mole of ATP when acetyl-CoA is formed from glucose.
    [Show full text]
  • Umezakia Natans M.Watan. Does Not Belong to Stigonemataceae but To
    Fottea 11(1): 163–169, 2011 163 Umezakia natans M.WATAN . does not belong to Stigonemataceae but to Nostocaceae Yuko NIIYAMA 1, Akihiro TUJI 1 & Shigeo TSUJIMURA 2 1Department of Botany, National Museum of Nature and Science, 4–1–1 Amakubo, Tsukuba, Ibaraki 305–0005, Japan; e–mail: [email protected] 2Lake Biwa Environmental Research Institute, 5–34 Yanagasaki, Otsu, Shiga 520–0022, Japan Abstract: Umezakia natans M.WA T A N . was described by Dr. M. Watanabe in 1987 as a new species in the family of Stigonemataceae, following the rules of the Botanical Code. According to the original description, this planktonic filamentous species grows well in a growth media with pH being 7 to 9, and with a smaller proportion of sea water. Both heterocytes and akinetes were observed, as well as true branches developing perpendicular to the original trichomes in cultures older than one month. Watanabe concluded that Umezakia was a monotypic and only planktonic genus belonging to the family of Stigonemataceae. Unfortunately, the type culture has been lost. In 2008, we successfully isolated a new strain of Umezakia natans from a sample collected from Lake Suga. This lake is situated very close to the type locality, Lake Mikata in Fukui Prefecture, Japan. We examined the morphology of this U. natans strain, and conducted a DNA analysis using 16S rDNA regions. Morphological characters of the newly isolated strain were in a good agreement with the original description of U. natans. Furthermore, results of the DNA analysis showed that U. natans appeared in a cluster containing Aphanizomenon ovalisporum and Anabaena bergii.
    [Show full text]
  • Protein Phosphorylation and a Novel Phosphatase in the Cyanobacterium Anabaena
    Cyanobacteria 1 Running head: CYANOBACTERIA Protein Phosphorylation and a Novel Phosphatase in the Cyanobacterium Anabaena Robert Mullis A Senior Thesis submitted in partial fulfillment of the requirements for graduation in the Honors Program Liberty University Spring 2008 Cyanobacteria 2 Acceptance of Senior Honors Thesis This Senior Honors Thesis is accepted in partial fulfillment of the requirements for graduation from the Honors Program of Liberty University. _______________________________ L. Daniel Howell, Ph.D. Chairman of Thesis _______________________________ Mark Hemric, Ph.D. Committee Member _______________________________ Emily Heady, Ph.D. Committee Member _______________________________ Brenda Ayres, Ph.D. Honors Assistant Director _______________________________ Date Cyanobacteria 3 Abstract The focus of this paper is a dual-specific protein phosphatase (DSP) previously found in the periplasm of the cyanobacterium Anabaena PCC 7120 that may regulate circadian rhythms in that organism. To fully understand the topic, summaries of enzyme action, cyanobacteria, circadian rhythms, and phosphorylation cycles are required and therefore discussed in this report before the presentation of previous and current laboratory research centered on the phosphatase. A continuous cyanobacterial culture was maintained while cells were collected for harvesting periplasm. Tests to determine size, enzyme activity, and protein content were performed on the periplasm of the bacterial cells. Initial findings revealed at least one periplasmic protein
    [Show full text]
  • Aerobic Microorganism' William B
    THE RELATION OF OXIDATION-REDUCTION POTENTIAL TO THE GROWTH OF AN .AEROBIC MICROORGANISM' WILLIAM B. WOOD, JR., MARY LEE WOOD AND I. L. BALDWIN University of Wisconsin Received for publication August 2, 1935 INTRODUCTION The possible relationship between the oxidation-reduction po- tentials of culture media and the ability of micro6rganisms to initiate growth has recently interested bacteriologists. The work of Aubel and Aubertin (1927), Dubos (1929a), Fildes (1929), Knight and Fildes (1930), Plotz and Geloso (1930), and others, has established the fact that the growth of certain anaerobes is greatly influenced by the oxidation-reduction potential of the medium. In the case of aerobic bacteria, however, conflicting results have been reported. Allyn and Baldwin (1930, 1932) demonstrated that the potential of the medium was of consider- able importance in determining whether or not small inocula of Rhizobium, an aerobic organism, could initiate growth. Knaysi and Dutky (1934), on the other hand, finding that Bacillus mega- therium would not grow in the absence of dissolved oxygen, even when the potential of the mediuim was varied over a considerable range, concluded that "the limiting factor in the growth of Bacil- lus megatherium in vacuum is the oxygen content and not the oxidation-reduction potential of the culture medium." Their experiments offer no information, however, as to whether or not the potential of the medium affects the growth of this organism under aerobic conditions. The purpose of this paper is to report: (a) experimental evi- 1 Published with the approval of the Director of the Wisconsin Agricultural Experiment Station. 593 594 W.
    [Show full text]
  • Hypothesis Paper Why O2 Is Required by Complex Life on Habitable Planets and the Concept of Planetary “Oxygenation Time”
    5703_06_p415-438 5/27/05 1:30 PM Page 415 ASTROBIOLOGY Volume 5, Number 3, 2005 © Mary Ann Liebert, Inc. Hypothesis Paper Why O2 Is Required by Complex Life on Habitable Planets and the Concept of Planetary “Oxygenation Time” DAVID C. CATLING,1 CHRISTOPHER R. GLEIN,1 KEVIN J. ZAHNLE,2 and CHRISTOPHER P. MCKAY2 ABSTRACT Life is constructed from a limited toolkit: the Periodic Table. The reduction of oxygen provides the largest free energy release per electron transfer, except for the reduction of fluorine and chlorine. However, the bonding of O2 ensures that it is sufficiently stable to accumulate in a planetary atmosphere, whereas the more weakly bonded halogen gases are far too reactive ever to achieve significant abundance. Consequently, an atmosphere rich in O2 provides the largest feasible energy source. This universal uniqueness suggests that abundant O2 is necessary for the high-energy demands of complex life anywhere, i.e., for actively mobile organisms of -ϳ10؊1–100 m size scale with specialized, differentiated anatomy comparable to advanced meta zoans. On Earth, aerobic metabolism provides about an order of magnitude more energy for a given intake of food than anaerobic metabolism. As a result, anaerobes do not grow beyond the complexity of uniseriate filaments of cells because of prohibitively low growth efficiencies in a food chain. The biomass cumulative number density, n, at a particular mass, m, scales as n ,Ͼm)ؔm؊1 for aquatic aerobes, and we show that for anaerobes the predicted scaling is nؔm؊1.5) close to a growth-limited threshold. Even with aerobic metabolism, the partial pressure of at- ϳ 3 mospheric O2 (PO2) must exceed 10 Pa to allow organisms that rely on O2 diffusion to evolve ϳ ؊3 ϳ 3 4 ϳ ؊2 to a size 10 m.
    [Show full text]
  • Harmful Cyanobacteria Blooms and Their Toxins In
    Harmful cyanobacteria blooms and their toxins in Clear Lake and the Sacramento-San Joaquin Delta (California) 10-058-150 Surface Water Ambient Monitoring Program (SWAMP) Prepared for: Central Valley Regional Water Quality Control Board 11020 Sun Center Drive, Suite 200 Rancho Cordova, CA 95670 Prepared by: Cécile Mioni (Project Director) & Raphael Kudela (Project co-Director) University of California, Santa Cruz - Institute of Marine Sciences Dolores Baxa (Project co-Director) University of California, Davis – School of Veterinary Medicine Contract manager: Meghan Sullivan Central Valley Regional Water Quality Control Board _________________ With technical contributions by: Kendra Hayashi (Project manager), UCSC Thomas Smythe (Field Officer) and Chris White, Lake County Water Resources Scott Waller (Field Officer) and Brianne Sakata, EMP/DWR Tomo Kurobe (Molecular Biologist), UCD David Crane (Toxicology), DFG-WPCL Kim Ward, SWRCB/DWQ Lenny Grimaldo (Assistance for Statistic Analyses), Bureau of Reclamation Peter Raimondi (Assistance for Statistic Analyses), UCSC Karen Tait, Lake County Health Office Abstract Harmful cyanobacteria and their toxins are growing contaminants of concern. Noxious toxins produced by HC, collectively referred as cyanotoxins, reduce the water quality and may impact the supply of clean water for drinking as well as the water quality which directly impacts the livelihood of other species including several endangered species. USEPA recently (May 29, 2008) made the decision to add microcystin toxins as an additional cause of impairment for the Klamath River, CA. However, harmful cyanobacteria are some of the less studied causes of impairment in California water bodies and their distribution, abundance and dynamics, as well as the conditions promoting their proliferation and toxin production are not well characterized.
    [Show full text]