Ten Paradoxes of Technology/3

Total Page:16

File Type:pdf, Size:1020Kb

Ten Paradoxes of Technology/3 Techné 14:1 Winter 2010 Feenberg, Ten Paradoxes of Technology/3 Ten paradoxes of Technology Andrew Feenberg Canada Research Chair in Philosophy of Technology, School of Communication Simon Fraser University Note: This paper was presented at the 2009 Biennial Meeting of the Society for Philosophy and Technology as a keynote address. Abstract Though we may be competent at using many technologies, most of what we think we know about technology in general is false. Our error stems from the everyday conception of things as separate from each other and from us. In reality technologies belong to an interconnected network the nodes of which cannot exist independently qua technologies. What is more we tend to see technologies as quasi-natural objects, but they are just as much social as natural, just as much determined by the meanings we give them as by the causal laws that rule over their powers. The errors of common sense have political consequences in domains such as, development, medicine and environmental policy. In this paper I summarize many of the conclusions philosophy of technology has reached reflecting on the reality of our technological world. These conclusions appear as paradoxes judged from our everyday perspective. This paper presents a philosophy of technology. It draws on what we have learnt in the last 30 years as we abandoned old Heideggerian and positivist notions and faced the real world of technology. It turns out that most of our common sense ideas about technology are wrong. This is why I have put my ten propositions in the form of paradoxes, although I use the word loosely here to refer to the counter-intuitive nature of much of what we know about technology. 1. The paradox of the parts and the whole. Martin Heidegger, once asked whether birds fly because they have wings or have wings because they fly. The question seems silly but it offers an original point of entry for reflection on technology and development. Birds appear to be equipped with wings and it is this that explains their ability to fly. This is the obvious common sense answer to Heidegger's question. But this answer has implications that are less than obvious. Although our intuitions tell us birds belong in the air, our language seems to say that they are separate from the environment on which they act and even separate from the "equipment" they use to cope with that environment. Birds use wings to fly in something like the way in which we humans use airplanes. Pursuing the analogy we could say that if birds did not have wings they would be just as earthbound as were humans before the Wright brothers—or was it Santos Dumont? —invented the airplane. But this makes no sense. Although there are a few species of flightless birds, most birds could not survive without flying. Flying is not just something birds do; it is their very being. A better analogy to birds' flight would be human speech. Although speechless humans do exist, they lack an essential aspect of what it is to be human. Speech is not properly understood as a tool humans use to communicate because without it they are not fully human. Speech, like flight for Techné 14:1 Winter 2010 Feenberg, Ten Paradoxes of Technology/4 birds, is essential in a way tools are not. One can pick up and put down a tool, but humans can no more abandon speech than birds can abandon flight. Pushed to the extreme the common sense answer to Heidegger's puzzling question breaks down. Of course we usually do not fall into such absurdities when talking about animals, but the misleading implications of ordinary language do reflect our inadequate common sense understanding of technology. This has consequences I will discuss in the rest of this paper. Heidegger's second option, that birds have wings because they fly, challenges us in a different way. It seems absurd on the face of it. How can birds fly unless they have wings? So flying cannot be the cause of wings unless an effect can precede a cause. If we are going to make any sense of Heidegger's point we need to reformulate it in less paradoxical language. Here is what he really means. Birds belong to a specific niche in the environment. That niche consists of treetops in which to dwell, insects to eat, and so on. It is only available to a specific type of animal with a specific type of body. Flying, as a necessary property of an organism that occupies this particular niche, requires wings rather than the other way around as common sense would have it. This is a holistic conception of the relation of the animal to its environment. We are not to think of birds, insects and trees as fully separate things but rather as forming a system in which each relates essentially to the other. But this is not an organic whole the parts of which are so intimately connected they can only be separated by destroying the organism. In the case of an animal and its niche, separation is possible at least temporarily, although it threatens the survival of the animal and perhaps of other elements of the environment dependent on it. These relationships are bit like those of a part of a machine to the whole machine. The part can be separated from the whole but it then loses its function. A tire that has been removed from a car continues to be a tire but it cannot do the things tires are meant to do. Following Heidegger's thought, it is easy to see that the form and even the existence of tires such as we know them depends on the whole car they are destined to serve. And the reciprocal also holds: care and tire are mutually interdependent. The car is not just assembled from pre-existing parts since the nature of the parts is derived from the design of the car and vice versa. The car does not ride on the road because it has tires. Rather, the tires belong to the car because the car rides on the road. I will call this the paradox of the parts and the whole. The apparent origin of complex wholes lies in their parts but, paradoxical though it seems, in reality the parts find their origin in the whole to which they belong. I want to illustrate this paradox with two images, each of which exemplifies the two answers to Heidegger’s question in graphic terms. Techné 14:1 Winter 2010 Feenberg, Ten Paradoxes of Technology/5 The first of these images shows a carburetor in a manufacturer’s catalog. As you can see it is a wonder of sharp edged surfaces and smooth curves in cold, shiny steel. It is completely separate from its environment and fulfills the dream of reason, the dream of pure order. Now look at this second image by the painter Walter Murch. We are once again in the presence of a carburetor, but this time it is portrayed as a warm and fuzzy object that blurs into the air around it. It is compared subtly with a sprouting onion over to the left which establishes a scale that contradicts its strangely monumental aspect. This is a romantic rather than a rationalistic image. It hints at the history and the connectedness of the thing rather than emphasizing its engineering perfection. Which image is truer to life? I prefer Murch’s which I used as cover art for a book called Questioning Technology (1999). Murch sets us thinking about technology’s complexity, the environment in which it functions, the history out of which it arises, rather than answering the question in advance with a nod to its supposedly pure rationality. Examples that confirm the point are easy to find. A technology imported or imitated from a developed country is implanted in a new environment in a less developed country. It is expected that it will perform in the same way everywhere, that it is not a local phenomenon bound to a particular history and environment. In this respect technologies differ from such rooted phenomena as customs or language. Difficult though it be to transfer Western industrial technology to a poor country, it is far easier than importing such things as a different cuisine or different relations between men and women or a different language. So we say that technology is universal in contrast to these particular and local features. And this is usually correct to a considerable extent. Of course it makes no sense to send tractors to farmers who have no access to gasoline. Such gross mistakes are occasionally made but for the most part the problems are more subtle and are often overlooked for a long time. For example, industrial pollutants that were evacuated safely by a good sewage system in a rich country may poison wells in a new, much poorer, locale. Differences in culture too pose problems. The keyboards of the typewriters and computers Japan imported from the West could not represent its written language. Before a technical adaptation was found some Japanese concluded that Techné 14:1 Winter 2010 Feenberg, Ten Paradoxes of Technology/6 modernization would require the adoption of English! Good sewage systems and Roman alphabets form a niche essential to the proper functioning of these technologies just like the water in which fish swim. Technologies resemble animals in belonging to a specific niche in a specific society. They do not work well, if at all, outside that context. But the fact that technologies can be detached from their appropriate niche means they can be imported without bringing along all the contextual elements necessary for their proper functioning.
Recommended publications
  • Intransitivity and Future Generations: Debunking Parfit's Mere Addition Paradox
    Journal of Applied Philosophy, Vol. 20, No. 2,Intransitivity 2003 and Future Generations 187 Intransitivity and Future Generations: Debunking Parfit’s Mere Addition Paradox KAI M. A. CHAN Duties to future persons contribute critically to many important contemporaneous ethical dilemmas, such as environmental protection, contraception, abortion, and population policy. Yet this area of ethics is mired in paradoxes. It appeared that any principle for dealing with future persons encountered Kavka’s paradox of future individuals, Parfit’s repugnant conclusion, or an indefensible asymmetry. In 1976, Singer proposed a utilitarian solution that seemed to avoid the above trio of obstacles, but Parfit so successfully demonstrated the unacceptability of this position that Singer abandoned it. Indeed, the apparently intransitivity of Singer’s solution contributed to Temkin’s argument that the notion of “all things considered better than” may be intransitive. In this paper, I demonstrate that a time-extended view of Singer’s solution avoids the intransitivity that allows Parfit’s mere addition paradox to lead to the repugnant conclusion. However, the heart of the mere addition paradox remains: the time-extended view still yields intransitive judgments. I discuss a general theory for dealing with intransitivity (Tran- sitivity by Transformation) that was inspired by Temkin’s sports analogy, and demonstrate that such a solution is more palatable than Temkin suspected. When a pair-wise comparison also requires consideration of a small number of relevant external alternatives, we can avoid intransitivity and the mere addition paradox without infinite comparisons or rejecting the Independence of Irrelevant Alternatives Principle. Disagreement regarding the nature and substance of our duties to future persons is widespread.
    [Show full text]
  • A Set of Solutions to Parfit's Problems
    NOÛS 35:2 ~2001! 214–238 A Set of Solutions to Parfit’s Problems Stuart Rachels University of Alabama In Part Four of Reasons and Persons Derek Parfit searches for “Theory X,” a satisfactory account of well-being.1 Theories of well-being cover the utilitarian part of ethics but don’t claim to cover everything. They say nothing, for exam- ple, about rights or justice. Most of the theories Parfit considers remain neutral on what well-being consists in; his ingenious problems concern form rather than content. In the end, Parfit cannot find a theory that solves each of his problems. In this essay I propose a theory of well-being that may provide viable solu- tions. This theory is hedonic—couched in terms of pleasure—but solutions of the same form are available even if hedonic welfare is but one aspect of well-being. In Section 1, I lay out the “Quasi-Maximizing Theory” of hedonic well-being. I motivate the least intuitive part of the theory in Section 2. Then I consider Jes- per Ryberg’s objection to a similar theory. In Sections 4–6 I show how the theory purports to solve Parfit’s problems. If my arguments succeed, then the Quasi- Maximizing Theory is one of the few viable candidates for Theory X. 1. The Quasi-Maximizing Theory The Quasi-Maximizing Theory incorporates four principles. 1. The Conflation Principle: One state of affairs is hedonically better than an- other if and only if one person’s having all the experiences in the first would be hedonically better than one person’s having all the experiences in the second.2 The Conflation Principle sanctions translating multiperson comparisons into single person comparisons.
    [Show full text]
  • Unexpected Hanging Paradox - Wikip… Unexpected Hanging Paradox from Wikipedia, the Free Encyclopedia
    2-12-2010 Unexpected hanging paradox - Wikip… Unexpected hanging paradox From Wikipedia, the free encyclopedia The unexpected hanging paradox, hangman paradox, unexpected exam paradox, surprise test paradox or prediction paradox is a paradox about a person's expectations about the timing of a future event (e.g. a prisoner's hanging, or a school test) which he is told will occur at an unexpected time. Despite significant academic interest, no consensus on its correct resolution has yet been established.[1] One approach, offered by the logical school of thought, suggests that the problem arises in a self-contradictory self- referencing statement at the heart of the judge's sentence. Another approach, offered by the epistemological school of thought, suggests the unexpected hanging paradox is an example of an epistemic paradox because it turns on our concept of knowledge.[2] Even though it is apparently simple, the paradox's underlying complexities have even led to it being called a "significant problem" for philosophy.[3] Contents 1 Description of the paradox 2 The logical school 2.1 Objections 2.2 Leaky inductive argument 2.3 Additivity of surprise 3 The epistemological school 4 See also 5 References 6 External links Description of the paradox The paradox has been described as follows:[4] A judge tells a condemned prisoner that he will be hanged at noon on one weekday in the following week but that the execution will be a surprise to the prisoner. He will not know the day of the hanging until the executioner knocks on his cell door at noon that day.
    [Show full text]
  • Russell's Paradox in Appendix B of the Principles of Mathematics
    HISTORY AND PHILOSOPHY OF LOGIC, 22 (2001), 13± 28 Russell’s Paradox in Appendix B of the Principles of Mathematics: Was Frege’s response adequate? Ke v i n C. Kl e m e n t Department of Philosophy, University of Massachusetts, Amherst, MA 01003, USA Received March 2000 In their correspondence in 1902 and 1903, after discussing the Russell paradox, Russell and Frege discussed the paradox of propositions considered informally in Appendix B of Russell’s Principles of Mathematics. It seems that the proposition, p, stating the logical product of the class w, namely, the class of all propositions stating the logical product of a class they are not in, is in w if and only if it is not. Frege believed that this paradox was avoided within his philosophy due to his distinction between sense (Sinn) and reference (Bedeutung). However, I show that while the paradox as Russell formulates it is ill-formed with Frege’s extant logical system, if Frege’s system is expanded to contain the commitments of his philosophy of language, an analogue of this paradox is formulable. This and other concerns in Fregean intensional logic are discussed, and it is discovered that Frege’s logical system, even without its naive class theory embodied in its infamous Basic Law V, leads to inconsistencies when the theory of sense and reference is axiomatized therein. 1. Introduction Russell’s letter to Frege from June of 1902 in which he related his discovery of the Russell paradox was a monumental event in the history of logic. However, in the ensuing correspondence between Russell and Frege, the Russell paradox was not the only antinomy discussed.
    [Show full text]
  • Lecture 5. Zeno's Four Paradoxes of Motion
    Lecture 5. Zeno's Four Paradoxes of Motion Science of infinity In Lecture 4, we mentioned that a conflict arose from the discovery of irrationals. The Greeks' rejection of irrational numbers was essentially part of a general rejection of the infinite process. In fact, until the late 19th century most mathematicians were reluctant to accept infinity. In his last observations on mathematics1, Hermann Weyl wrote: \Mathematics has been called the science of the infinite. Indeed, the mathematician invents finite constructions by which questions are decided that by their very nature refer to the infinite. That is his glory." Besides the conflict of irrational numbers, there were other conflicts about the infinite process, namely, Zeno's famous paradoxes of motion from around 450 B.C. Figure 5.1 Zeno of Citium Zeno's Paradoxes of motion Zeno (490 B.C. - 430 B.C.) was a Greek philosopher of southern Italy and a member of the Eleatic School founded by Parmenides2. We know little 1Axiomatic versus constructive procedures in mathematics, The Mathematical Intelligencer 7 (4) (1985), 10-17. 2Parmenides of Elea, early 5th century B.C., was an ancient Greek philosopher born in Elea, a Greek city on the southern coast of Italy. He was the founder of the Eleatic school of philosophy. For his picture, see Figure 2.3. 32 about Zeno other than Plato's assertion that he went to Athens to meet with Socrates when he was nearly 40 years old. Zeno was a Pythegorean. By a legend, he was killed by a tyrant of Elea whom he had plotted to depose.
    [Show full text]
  • The Surprise Examination Or Unexpected Hanging Paradox Timothy Y
    The Surprise Examination or Unexpected Hanging Paradox Timothy Y. Chow [As published in Amer. Math. Monthly 105 (1998), 41–51; ArXived with permission.] Many mathematicians have a dismissive attitude towards paradoxes. This is un­ fortunate, because many paradoxes are rich in content, having connections with serious mathematical ideas as well as having pedagogical value in teaching elementary logical reasoning. An excellent example is the so­called “surprise examination paradox” (de­ scribed below), which is an argument that seems at first to be too silly to deserve much attention. However, it has inspired an amazing variety of philosophical and mathemati­ cal investigations that have in turn uncovered links to Godel's¨ incompleteness theorems, game theory, and several other logical paradoxes (e.g., the liar paradox and the sorites paradox). Unfortunately, most mathematicians are unaware of this because most of the literature has been published in philosophy journals. In this article, I describe some of this work, emphasizing the ideas that are particularly interesting mathematically. I also try to dispel some of the confusion that surrounds the paradox and plagues even the published literature. However, I do not try to correct every error or explain every idea that has ever appeared in print. Readers who want more comprehensive surveys should see [30, chapters 7 and 8], [20], and [16]. At times I assume some knowledge of mathematical logic (such as may be found in Enderton [10]), but the reader who lacks this background may safely skim these sections. 1. The paradox and the meta­paradox Let us begin by recalling the paradox.
    [Show full text]
  • The Sorites Paradox
    The sorites paradox phil 20229 Jeff Speaks April 17, 2008 1 Some examples of sorites-style arguments . 1 2 What words can be used in sorites-style arguments? . 3 3 Ways of solving the paradox . 3 1 Some examples of sorites-style arguments The paradox we're discussing today and next time is not a single argument, but a family of arguments. Here are some examples of this sort of argument: 1. Someone who is 7 feet in height is tall. 2. If someone who is 7 feet in height is tall, then someone 6'11.9" in height is tall. 3. If someone who is 6'11.9" in height is tall, then someone 6'11.8" in height is tall. ...... C. Someone who is 3' in height is tall. The `. ' stands for a long list of premises that we are not writing down; but the pattern makes it pretty clear what they would be. We could also, rather than giving a long list of premises `sum them up' with the following sorites premise: For any height h, if someone's height is h and he is tall, then someone whose height is h − 0:100 is also tall. This is a universal claim about all heights. Each of the premises 2, 3, . is an instance of this universal claim. Since universal claims imply their instances, each of premises 2, 3, . follows from the sorites premise. This is a paradox, since it looks like each of the premises is true, but the con- clusion is clearly false. Nonetheless, the reasoning certainly appears to be valid.
    [Show full text]
  • Lecture 2.9: Russell's Paradox and the Halting Problem
    Lecture 2.9: Russell's paradox and the halting problem Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4190, Discrete Mathematical Structures M. Macauley (Clemson) Lecture 2.9: Russell's paradox & the halting problem Discrete Mathematical Structures 1 / 8 Russell's paradox Recall Russell's paradox: Suppose a town's barber shaves every man who doesn't shave himself. Who shaves the barber? This was due to British philosopher, logician, and mathematician Bertrand Russell (1872{1970), as an informal way to describe the paradox behind the set of all sets that don't contain themselves: S = fA j A is a set, and A 62 Ag: If such a set exists, then S 2 S −! S 62 S; S 62 S −! S 2 S; which is a contradiction. M. Macauley (Clemson) Lecture 2.9: Russell's paradox & the halting problem Discrete Mathematical Structures 2 / 8 A “fix” for Russell's paradox Let U be a universal set, and let S = fA j A ⊆ U and A 62 Ag: Now, suppose that S 2 S. Then by definition, S ⊆ U and S 62 S. If S 62 S, then :S ⊆ U ^ S 62 S =) S 6⊆ U _ S 2 S =) S 6⊆ U: In other words, there cannot exist a \set of all sets", but we can define a \class of all sets". One may ask whether we can always get rid of contradictions in this manner. In 1931, Kurt G¨odelsaid \no." G¨odel'sincompleteness theorem (informally) Every axiomatic system that is sufficient to develop the basic laws of arithmetic cannot be both consistent and complete.
    [Show full text]
  • The Paradox of the Unexpected Hanging
    Cambridge University Press 978-0-521-75613-6 - Knots and Borromean Rings, Rep-Tiles, and Eight Queens: Martin Gardner's Unexpected Hanging Martin Gardner Excerpt More information CHAPTER ONE The Paradox of the Unexpected Hanging “A new and powerful paradox has come to light.” This is the opening sentence of a mind-twisting article by Michael Scriven that appeared in the July 1951 issue of the British philosophical jour- nal Mind. Scriven, who bears the title of “professor of the logic of science” at the University of Indiana, is a man whose opinions on such matters are not to be taken lightly. That the paradox is indeed powerful has been amply confirmed by the fact that more than 20 articles about it have appeared in learned journals. The authors, many of whom are distinguished philosophers, disagree sharply in their attempts to resolve the paradox. Since no consensus has been reached, the paradox is still very much a controversial topic. No one knows who first thought of it. According to the Harvard University logician W. V. Quine, who wrote one of the articles (and who discussed paradoxes in Scientific American for April 1962), the paradox was first circulated by word of mouth in the early 1940s. It often took the form of a puzzle about a man condemned to be hanged. The man was sentenced on Saturday. “The hanging will take place at noon,” said the judge to the prisoner, “on one of the seven days of next week. But you will not know which day it is until you are so informed on the morning of the day of the hanging.” The judge was known to be a man who always kept his word.
    [Show full text]
  • The Liar Paradox: Tangles and Chains Author(S): Tyler Burge Source: Philosophical Studies: an International Journal for Philosophy in the Analytic Tradition, Vol
    The Liar Paradox: Tangles and Chains Author(s): Tyler Burge Source: Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition, Vol. 41, No. 3 (May, 1982), pp. 353-366 Published by: Springer Stable URL: http://www.jstor.org/stable/4319529 Accessed: 11-04-2017 02:26 UTC JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms Springer is collaborating with JSTOR to digitize, preserve and extend access to Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition This content downloaded from 128.97.244.236 on Tue, 11 Apr 2017 02:26:37 UTC All use subject to http://about.jstor.org/terms TYLER BURGE THE LIAR PARADOX: TANGLES AND CHAINS (Received 20 March, 1981) In this paper I want to use the theory that I applied in 'Semantical paradox' to the Liar and Grelling paradoxes to handle some subtler versions of the Liar.! These new applications will serve as tools for sharpening some of the pragmatic principles and part of the underlying motivation of the theory. They also illustrate the superiority of our theory to previous ones in the hier- archical tradition. The heart of the theory is that 'true' is an indexical-schematic predicate.
    [Show full text]
  • Does the Paradox of Fiction Exist?
    Erkenn (2014) 79:779–796 DOI 10.1007/s10670-013-9563-z ORIGINAL ARTICLE Does the Paradox of Fiction Exist? Katherine Tullmann • Wesley Buckwalter Received: 19 March 2013 / Accepted: 11 October 2013 / Published online: 23 October 2013 Ó Springer Science+Business Media Dordrecht 2013 Abstract Many philosophers have attempted to provide a solution to the paradox of fiction, a triad of sentences that lead to the conclusion that genuine emotional responses to fiction are irrational. We suggest that disagreement over the best response to this paradox stems directly from the formulation of the paradox itself. Our main goal is to show that there is an ambiguity regarding the word ‘exist’ throughout the premises of the paradox. To reveal this ambiguity, we display the diverse existential commitments of several leading theories of emotion, and argue that none of the theories we consider are committed to notions of ‘exist’ employed by the paradox. We conclude that it is unclear whether or not there remains a paradox of fiction to be solved—rather than to be argued for—once this ambiguity is addressed. 1 An Emotional Introduction Suppose you are watching a film and are moved to tears by a protagonist’s horrible plight. Imagine sitting around a campfire, shaking in fear from a scary ghost story, or laughing uproariously at the jokes of a Saturday morning cartoon. It seems as though we frequently have genuine emotional responses to fictions in precisely these ways. But now examine your beliefs about the very same protagonist whose situation you previously found so heartrending, or the ghost whose aura you found K.
    [Show full text]
  • List of Paradoxes 1 List of Paradoxes
    List of paradoxes 1 List of paradoxes This is a list of paradoxes, grouped thematically. The grouping is approximate: Paradoxes may fit into more than one category. Because of varying definitions of the term paradox, some of the following are not considered to be paradoxes by everyone. This list collects only those instances that have been termed paradox by at least one source and which have their own article. Although considered paradoxes, some of these are based on fallacious reasoning, or incomplete/faulty analysis. Logic • Barbershop paradox: The supposition that if one of two simultaneous assumptions leads to a contradiction, the other assumption is also disproved leads to paradoxical consequences. • What the Tortoise Said to Achilles "Whatever Logic is good enough to tell me is worth writing down...," also known as Carroll's paradox, not to be confused with the physical paradox of the same name. • Crocodile Dilemma: If a crocodile steals a child and promises its return if the father can correctly guess what the crocodile will do, how should the crocodile respond in the case that the father guesses that the child will not be returned? • Catch-22 (logic): In need of something which can only be had by not being in need of it. • Drinker paradox: In any pub there is a customer such that, if he or she drinks, everybody in the pub drinks. • Paradox of entailment: Inconsistent premises always make an argument valid. • Horse paradox: All horses are the same color. • Lottery paradox: There is one winning ticket in a large lottery. It is reasonable to believe of a particular lottery ticket that it is not the winning ticket, since the probability that it is the winner is so very small, but it is not reasonable to believe that no lottery ticket will win.
    [Show full text]