The Paradox of the Unexpected Hanging

Total Page:16

File Type:pdf, Size:1020Kb

The Paradox of the Unexpected Hanging Cambridge University Press 978-0-521-75613-6 - Knots and Borromean Rings, Rep-Tiles, and Eight Queens: Martin Gardner's Unexpected Hanging Martin Gardner Excerpt More information CHAPTER ONE The Paradox of the Unexpected Hanging “A new and powerful paradox has come to light.” This is the opening sentence of a mind-twisting article by Michael Scriven that appeared in the July 1951 issue of the British philosophical jour- nal Mind. Scriven, who bears the title of “professor of the logic of science” at the University of Indiana, is a man whose opinions on such matters are not to be taken lightly. That the paradox is indeed powerful has been amply confirmed by the fact that more than 20 articles about it have appeared in learned journals. The authors, many of whom are distinguished philosophers, disagree sharply in their attempts to resolve the paradox. Since no consensus has been reached, the paradox is still very much a controversial topic. No one knows who first thought of it. According to the Harvard University logician W. V. Quine, who wrote one of the articles (and who discussed paradoxes in Scientific American for April 1962), the paradox was first circulated by word of mouth in the early 1940s. It often took the form of a puzzle about a man condemned to be hanged. The man was sentenced on Saturday. “The hanging will take place at noon,” said the judge to the prisoner, “on one of the seven days of next week. But you will not know which day it is until you are so informed on the morning of the day of the hanging.” The judge was known to be a man who always kept his word. The prisoner, accompanied by his lawyer, went back to his cell. As soon as the two men were alone the lawyer broke into a grin. “Don’t you see?” he exclaimed. “The judge’s sentence cannot possibly be car- ried out.” “I don’t see,” said the prisoner. “Let me explain. They obviously can’t hang you next Saturday. Saturday is the last day of the week. On Friday afternoon you would 1 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75613-6 - Knots and Borromean Rings, Rep-Tiles, and Eight Queens: Martin Gardner's Unexpected Hanging Martin Gardner Excerpt More information 2 Knots and Borromean Rings, Rep-Tiles, and Eight Queens Figure 1. The prisoner eliminates all possible days. still be alive and you would know with absolute certainty that the hanging would be on Saturday. You would know this before you were told so on Saturday morning. That would violate the judge’s decree.” “True,” said the prisoner. “Saturday, then is positively ruled out,” continued the lawyer. “This leaves Friday as the last day they can hang you. But they can’t hang you on Friday because by Thursday afternoon only two days would remain: Friday and Saturday. Since Saturday is not a possi- ble day, the hanging would have to be on Friday. Your knowledge of that fact would violate the judge’s decree again. So Friday is out. This leaves Thursday as the last possible day. But Thursday is out because if you’re alive Wednesday afternoon, you’ll know that Thursday is to be the day.” “I get it,” said the prisoner, who was beginning to feel much bet- ter. “In exactly the same way I can rule out Wednesday, Tuesday and Monday. That leaves only tomorrow. But they can’t hang me tomor- row because I know it today!” In brief, the judge’s decree seems to be self-refuting. There is nothing logically contradictory in the two statements that make up his decree; nevertheless, it cannot be carried out in practice. That is how the paradox appeared to Donald John O’Connor, a philosopher at the University of Exeter, who was the first to discuss the para- dox in print (Mind, July 1948). O’Connor’s version of the paradox concerned a military commander who announced that there would be a Class A blackout during the following week. He then defined a © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75613-6 - Knots and Borromean Rings, Rep-Tiles, and Eight Queens: Martin Gardner's Unexpected Hanging Martin Gardner Excerpt More information The Paradox of the Unexpected Hanging 3 Class A blackout as one that the participants could not know would take place until after 6 p.m. on the day it was to occur. “It is easy to see,” wrote O’Connor, “that it follows from the announcement of this definition that the exercise cannot take place at all.” That is to say, it cannot take place without violating the def- inition. Similar views were expressed by the authors of the next two articles (L. Jonathan Cohen in Mind for January 1950, and Peter Alexander in Mind for October 1950), and even by George Gamow and Marvin Stern when they later included the paradox (in a man- to-be-hanged form) in their book Puzzle Math (Viking, 1958). Now, if this were all there was to the paradox, one could agree with O’Connor that it is “rather frivolous.” But, as Scriven was the first to point out, it is by no means frivolous, and for a reason that completely escaped the first three authors. To make this clear, let us return to the man in the cell. He is convinced, by what appears to be unimpeachable logic, that he cannot be hanged without contra- dicting the conditions specified in his sentence. Then on Thursday morning, to his great surprise, the hangman arrives. Clearly he did not expect him. What is more surprising, the judge’s decree is now seen to be perfectly correct. The sentence can be carried out exactly as stated. “I think this flavour of logic refuted by the world makes the paradox rather fascinating,” writes Scriven. “The logician goes pathetically through the motions that have always worked the spell before, but somehow the monster, Reality, has missed the point and advances still.” In order to grasp more clearly the very real and profound linguis- tic difficulties involved here, it would be wise to restate the paradox in two other equivalent forms. By doing this we can eliminate vari- ous irrelevant factors that are often raised and that cloud the issue, such as the possibility of the judge’s changing his mind, of the pris- oner’s dying before the hanging can take place, and so on. The first variation of the paradox, taken from Scriven’sarticle, can be called the paradox of the unexpected egg. Imagine that you have before you ten boxes labeled from 1 to 10. While your back is turned, a friend conceals an egg in one of the boxes. You turn around. “I want you to open these boxes one at a time,” your friend tells you, “in serial order. Inside one of them I guarantee that you will find an unexpected egg. By ‘unexpected’ I mean that you will not be able to deduce which box it is in before you open the box and see it.” © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75613-6 - Knots and Borromean Rings, Rep-Tiles, and Eight Queens: Martin Gardner's Unexpected Hanging Martin Gardner Excerpt More information 4 Knots and Borromean Rings, Rep-Tiles, and Eight Queens Figure 2. The paradox of the unexpected egg. Assuming that your friend is absolutely trustworthy in all state- ments, can this prediction be fulfilled? Apparently not. Your friend obviously will not put the egg in box 10, because after you have found the first nine boxes empty you will be able to deduce with certainty that the egg is in the only remaining box. This would con- tradict your friend’s statement. Box 10 is out. Now consider the situ- ation that would arise if your friend were so foolish as to put the egg in box 9. You find the first eight boxes empty. Only 9 and 10 remain. The egg cannot be in box 10. Ergo it must be in 9. You open 9. Sure enough, there it is. Clearly it is an expected egg, and so your friend is again proved wrong. Box 9 is out. But now you have started on your inexorable slide into unreality. Box 8 can be ruled out by precisely the same logical argument, and similarly boxes 7, 6, 5, 4, 3, 2 and 1. Confident that all ten boxes are empty, you start to open them. What have we here in box 5? A totally unexpected egg! Your friend’s predic- tion is fulfilled after all. Where did your reasoning go wrong? To sharpen the paradox still more, we can consider it in a third form, one that can be called the paradox of the unexpected spade. Imagine that you are sitting at a card table opposite a friend who is holding all the 13 spades. After shuffling them, fanning them so you can’t see the faces and dealing a single card face down on the table, your friend asks you to name slowly the 13 spades, starting with the ace and ending with the king. Each time you fail to name the card on the table your friend will say “No,” and when you name the card correctly, “Yes.” “I’ll wager a thousand dollars against a dime,” your friend says, “that you will not be able to deduce the name of this card before I respond with ‘Yes.’” © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-75613-6 - Knots and Borromean Rings, Rep-Tiles, and Eight Queens: Martin Gardner's Unexpected Hanging Martin Gardner Excerpt More information The Paradox of the Unexpected Hanging 5 2 3 4 5 6 A 7 8 9 J10 Q K Figure 3.
Recommended publications
  • Intransitivity and Future Generations: Debunking Parfit's Mere Addition Paradox
    Journal of Applied Philosophy, Vol. 20, No. 2,Intransitivity 2003 and Future Generations 187 Intransitivity and Future Generations: Debunking Parfit’s Mere Addition Paradox KAI M. A. CHAN Duties to future persons contribute critically to many important contemporaneous ethical dilemmas, such as environmental protection, contraception, abortion, and population policy. Yet this area of ethics is mired in paradoxes. It appeared that any principle for dealing with future persons encountered Kavka’s paradox of future individuals, Parfit’s repugnant conclusion, or an indefensible asymmetry. In 1976, Singer proposed a utilitarian solution that seemed to avoid the above trio of obstacles, but Parfit so successfully demonstrated the unacceptability of this position that Singer abandoned it. Indeed, the apparently intransitivity of Singer’s solution contributed to Temkin’s argument that the notion of “all things considered better than” may be intransitive. In this paper, I demonstrate that a time-extended view of Singer’s solution avoids the intransitivity that allows Parfit’s mere addition paradox to lead to the repugnant conclusion. However, the heart of the mere addition paradox remains: the time-extended view still yields intransitive judgments. I discuss a general theory for dealing with intransitivity (Tran- sitivity by Transformation) that was inspired by Temkin’s sports analogy, and demonstrate that such a solution is more palatable than Temkin suspected. When a pair-wise comparison also requires consideration of a small number of relevant external alternatives, we can avoid intransitivity and the mere addition paradox without infinite comparisons or rejecting the Independence of Irrelevant Alternatives Principle. Disagreement regarding the nature and substance of our duties to future persons is widespread.
    [Show full text]
  • A Set of Solutions to Parfit's Problems
    NOÛS 35:2 ~2001! 214–238 A Set of Solutions to Parfit’s Problems Stuart Rachels University of Alabama In Part Four of Reasons and Persons Derek Parfit searches for “Theory X,” a satisfactory account of well-being.1 Theories of well-being cover the utilitarian part of ethics but don’t claim to cover everything. They say nothing, for exam- ple, about rights or justice. Most of the theories Parfit considers remain neutral on what well-being consists in; his ingenious problems concern form rather than content. In the end, Parfit cannot find a theory that solves each of his problems. In this essay I propose a theory of well-being that may provide viable solu- tions. This theory is hedonic—couched in terms of pleasure—but solutions of the same form are available even if hedonic welfare is but one aspect of well-being. In Section 1, I lay out the “Quasi-Maximizing Theory” of hedonic well-being. I motivate the least intuitive part of the theory in Section 2. Then I consider Jes- per Ryberg’s objection to a similar theory. In Sections 4–6 I show how the theory purports to solve Parfit’s problems. If my arguments succeed, then the Quasi- Maximizing Theory is one of the few viable candidates for Theory X. 1. The Quasi-Maximizing Theory The Quasi-Maximizing Theory incorporates four principles. 1. The Conflation Principle: One state of affairs is hedonically better than an- other if and only if one person’s having all the experiences in the first would be hedonically better than one person’s having all the experiences in the second.2 The Conflation Principle sanctions translating multiperson comparisons into single person comparisons.
    [Show full text]
  • Unexpected Hanging Paradox - Wikip… Unexpected Hanging Paradox from Wikipedia, the Free Encyclopedia
    2-12-2010 Unexpected hanging paradox - Wikip… Unexpected hanging paradox From Wikipedia, the free encyclopedia The unexpected hanging paradox, hangman paradox, unexpected exam paradox, surprise test paradox or prediction paradox is a paradox about a person's expectations about the timing of a future event (e.g. a prisoner's hanging, or a school test) which he is told will occur at an unexpected time. Despite significant academic interest, no consensus on its correct resolution has yet been established.[1] One approach, offered by the logical school of thought, suggests that the problem arises in a self-contradictory self- referencing statement at the heart of the judge's sentence. Another approach, offered by the epistemological school of thought, suggests the unexpected hanging paradox is an example of an epistemic paradox because it turns on our concept of knowledge.[2] Even though it is apparently simple, the paradox's underlying complexities have even led to it being called a "significant problem" for philosophy.[3] Contents 1 Description of the paradox 2 The logical school 2.1 Objections 2.2 Leaky inductive argument 2.3 Additivity of surprise 3 The epistemological school 4 See also 5 References 6 External links Description of the paradox The paradox has been described as follows:[4] A judge tells a condemned prisoner that he will be hanged at noon on one weekday in the following week but that the execution will be a surprise to the prisoner. He will not know the day of the hanging until the executioner knocks on his cell door at noon that day.
    [Show full text]
  • Russell's Paradox in Appendix B of the Principles of Mathematics
    HISTORY AND PHILOSOPHY OF LOGIC, 22 (2001), 13± 28 Russell’s Paradox in Appendix B of the Principles of Mathematics: Was Frege’s response adequate? Ke v i n C. Kl e m e n t Department of Philosophy, University of Massachusetts, Amherst, MA 01003, USA Received March 2000 In their correspondence in 1902 and 1903, after discussing the Russell paradox, Russell and Frege discussed the paradox of propositions considered informally in Appendix B of Russell’s Principles of Mathematics. It seems that the proposition, p, stating the logical product of the class w, namely, the class of all propositions stating the logical product of a class they are not in, is in w if and only if it is not. Frege believed that this paradox was avoided within his philosophy due to his distinction between sense (Sinn) and reference (Bedeutung). However, I show that while the paradox as Russell formulates it is ill-formed with Frege’s extant logical system, if Frege’s system is expanded to contain the commitments of his philosophy of language, an analogue of this paradox is formulable. This and other concerns in Fregean intensional logic are discussed, and it is discovered that Frege’s logical system, even without its naive class theory embodied in its infamous Basic Law V, leads to inconsistencies when the theory of sense and reference is axiomatized therein. 1. Introduction Russell’s letter to Frege from June of 1902 in which he related his discovery of the Russell paradox was a monumental event in the history of logic. However, in the ensuing correspondence between Russell and Frege, the Russell paradox was not the only antinomy discussed.
    [Show full text]
  • Lecture 5. Zeno's Four Paradoxes of Motion
    Lecture 5. Zeno's Four Paradoxes of Motion Science of infinity In Lecture 4, we mentioned that a conflict arose from the discovery of irrationals. The Greeks' rejection of irrational numbers was essentially part of a general rejection of the infinite process. In fact, until the late 19th century most mathematicians were reluctant to accept infinity. In his last observations on mathematics1, Hermann Weyl wrote: \Mathematics has been called the science of the infinite. Indeed, the mathematician invents finite constructions by which questions are decided that by their very nature refer to the infinite. That is his glory." Besides the conflict of irrational numbers, there were other conflicts about the infinite process, namely, Zeno's famous paradoxes of motion from around 450 B.C. Figure 5.1 Zeno of Citium Zeno's Paradoxes of motion Zeno (490 B.C. - 430 B.C.) was a Greek philosopher of southern Italy and a member of the Eleatic School founded by Parmenides2. We know little 1Axiomatic versus constructive procedures in mathematics, The Mathematical Intelligencer 7 (4) (1985), 10-17. 2Parmenides of Elea, early 5th century B.C., was an ancient Greek philosopher born in Elea, a Greek city on the southern coast of Italy. He was the founder of the Eleatic school of philosophy. For his picture, see Figure 2.3. 32 about Zeno other than Plato's assertion that he went to Athens to meet with Socrates when he was nearly 40 years old. Zeno was a Pythegorean. By a legend, he was killed by a tyrant of Elea whom he had plotted to depose.
    [Show full text]
  • The Surprise Examination Or Unexpected Hanging Paradox Timothy Y
    The Surprise Examination or Unexpected Hanging Paradox Timothy Y. Chow [As published in Amer. Math. Monthly 105 (1998), 41–51; ArXived with permission.] Many mathematicians have a dismissive attitude towards paradoxes. This is un­ fortunate, because many paradoxes are rich in content, having connections with serious mathematical ideas as well as having pedagogical value in teaching elementary logical reasoning. An excellent example is the so­called “surprise examination paradox” (de­ scribed below), which is an argument that seems at first to be too silly to deserve much attention. However, it has inspired an amazing variety of philosophical and mathemati­ cal investigations that have in turn uncovered links to Godel's¨ incompleteness theorems, game theory, and several other logical paradoxes (e.g., the liar paradox and the sorites paradox). Unfortunately, most mathematicians are unaware of this because most of the literature has been published in philosophy journals. In this article, I describe some of this work, emphasizing the ideas that are particularly interesting mathematically. I also try to dispel some of the confusion that surrounds the paradox and plagues even the published literature. However, I do not try to correct every error or explain every idea that has ever appeared in print. Readers who want more comprehensive surveys should see [30, chapters 7 and 8], [20], and [16]. At times I assume some knowledge of mathematical logic (such as may be found in Enderton [10]), but the reader who lacks this background may safely skim these sections. 1. The paradox and the meta­paradox Let us begin by recalling the paradox.
    [Show full text]
  • The Sorites Paradox
    The sorites paradox phil 20229 Jeff Speaks April 17, 2008 1 Some examples of sorites-style arguments . 1 2 What words can be used in sorites-style arguments? . 3 3 Ways of solving the paradox . 3 1 Some examples of sorites-style arguments The paradox we're discussing today and next time is not a single argument, but a family of arguments. Here are some examples of this sort of argument: 1. Someone who is 7 feet in height is tall. 2. If someone who is 7 feet in height is tall, then someone 6'11.9" in height is tall. 3. If someone who is 6'11.9" in height is tall, then someone 6'11.8" in height is tall. ...... C. Someone who is 3' in height is tall. The `. ' stands for a long list of premises that we are not writing down; but the pattern makes it pretty clear what they would be. We could also, rather than giving a long list of premises `sum them up' with the following sorites premise: For any height h, if someone's height is h and he is tall, then someone whose height is h − 0:100 is also tall. This is a universal claim about all heights. Each of the premises 2, 3, . is an instance of this universal claim. Since universal claims imply their instances, each of premises 2, 3, . follows from the sorites premise. This is a paradox, since it looks like each of the premises is true, but the con- clusion is clearly false. Nonetheless, the reasoning certainly appears to be valid.
    [Show full text]
  • Lecture 2.9: Russell's Paradox and the Halting Problem
    Lecture 2.9: Russell's paradox and the halting problem Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4190, Discrete Mathematical Structures M. Macauley (Clemson) Lecture 2.9: Russell's paradox & the halting problem Discrete Mathematical Structures 1 / 8 Russell's paradox Recall Russell's paradox: Suppose a town's barber shaves every man who doesn't shave himself. Who shaves the barber? This was due to British philosopher, logician, and mathematician Bertrand Russell (1872{1970), as an informal way to describe the paradox behind the set of all sets that don't contain themselves: S = fA j A is a set, and A 62 Ag: If such a set exists, then S 2 S −! S 62 S; S 62 S −! S 2 S; which is a contradiction. M. Macauley (Clemson) Lecture 2.9: Russell's paradox & the halting problem Discrete Mathematical Structures 2 / 8 A “fix” for Russell's paradox Let U be a universal set, and let S = fA j A ⊆ U and A 62 Ag: Now, suppose that S 2 S. Then by definition, S ⊆ U and S 62 S. If S 62 S, then :S ⊆ U ^ S 62 S =) S 6⊆ U _ S 2 S =) S 6⊆ U: In other words, there cannot exist a \set of all sets", but we can define a \class of all sets". One may ask whether we can always get rid of contradictions in this manner. In 1931, Kurt G¨odelsaid \no." G¨odel'sincompleteness theorem (informally) Every axiomatic system that is sufficient to develop the basic laws of arithmetic cannot be both consistent and complete.
    [Show full text]
  • The Liar Paradox: Tangles and Chains Author(S): Tyler Burge Source: Philosophical Studies: an International Journal for Philosophy in the Analytic Tradition, Vol
    The Liar Paradox: Tangles and Chains Author(s): Tyler Burge Source: Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition, Vol. 41, No. 3 (May, 1982), pp. 353-366 Published by: Springer Stable URL: http://www.jstor.org/stable/4319529 Accessed: 11-04-2017 02:26 UTC JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms Springer is collaborating with JSTOR to digitize, preserve and extend access to Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition This content downloaded from 128.97.244.236 on Tue, 11 Apr 2017 02:26:37 UTC All use subject to http://about.jstor.org/terms TYLER BURGE THE LIAR PARADOX: TANGLES AND CHAINS (Received 20 March, 1981) In this paper I want to use the theory that I applied in 'Semantical paradox' to the Liar and Grelling paradoxes to handle some subtler versions of the Liar.! These new applications will serve as tools for sharpening some of the pragmatic principles and part of the underlying motivation of the theory. They also illustrate the superiority of our theory to previous ones in the hier- archical tradition. The heart of the theory is that 'true' is an indexical-schematic predicate.
    [Show full text]
  • Does the Paradox of Fiction Exist?
    Erkenn (2014) 79:779–796 DOI 10.1007/s10670-013-9563-z ORIGINAL ARTICLE Does the Paradox of Fiction Exist? Katherine Tullmann • Wesley Buckwalter Received: 19 March 2013 / Accepted: 11 October 2013 / Published online: 23 October 2013 Ó Springer Science+Business Media Dordrecht 2013 Abstract Many philosophers have attempted to provide a solution to the paradox of fiction, a triad of sentences that lead to the conclusion that genuine emotional responses to fiction are irrational. We suggest that disagreement over the best response to this paradox stems directly from the formulation of the paradox itself. Our main goal is to show that there is an ambiguity regarding the word ‘exist’ throughout the premises of the paradox. To reveal this ambiguity, we display the diverse existential commitments of several leading theories of emotion, and argue that none of the theories we consider are committed to notions of ‘exist’ employed by the paradox. We conclude that it is unclear whether or not there remains a paradox of fiction to be solved—rather than to be argued for—once this ambiguity is addressed. 1 An Emotional Introduction Suppose you are watching a film and are moved to tears by a protagonist’s horrible plight. Imagine sitting around a campfire, shaking in fear from a scary ghost story, or laughing uproariously at the jokes of a Saturday morning cartoon. It seems as though we frequently have genuine emotional responses to fictions in precisely these ways. But now examine your beliefs about the very same protagonist whose situation you previously found so heartrending, or the ghost whose aura you found K.
    [Show full text]
  • List of Paradoxes 1 List of Paradoxes
    List of paradoxes 1 List of paradoxes This is a list of paradoxes, grouped thematically. The grouping is approximate: Paradoxes may fit into more than one category. Because of varying definitions of the term paradox, some of the following are not considered to be paradoxes by everyone. This list collects only those instances that have been termed paradox by at least one source and which have their own article. Although considered paradoxes, some of these are based on fallacious reasoning, or incomplete/faulty analysis. Logic • Barbershop paradox: The supposition that if one of two simultaneous assumptions leads to a contradiction, the other assumption is also disproved leads to paradoxical consequences. • What the Tortoise Said to Achilles "Whatever Logic is good enough to tell me is worth writing down...," also known as Carroll's paradox, not to be confused with the physical paradox of the same name. • Crocodile Dilemma: If a crocodile steals a child and promises its return if the father can correctly guess what the crocodile will do, how should the crocodile respond in the case that the father guesses that the child will not be returned? • Catch-22 (logic): In need of something which can only be had by not being in need of it. • Drinker paradox: In any pub there is a customer such that, if he or she drinks, everybody in the pub drinks. • Paradox of entailment: Inconsistent premises always make an argument valid. • Horse paradox: All horses are the same color. • Lottery paradox: There is one winning ticket in a large lottery. It is reasonable to believe of a particular lottery ticket that it is not the winning ticket, since the probability that it is the winner is so very small, but it is not reasonable to believe that no lottery ticket will win.
    [Show full text]
  • The Paradoxes of Quantum Mechanics1
    The Paradoxes of Quantum Mechanics1 The early successes of physics, starting with the work of Galileo, Kepler and Newton, and continuing up to the beginning of the twentieth century, dealt primarily with things that were at least large enough to see and handle. This is the world of our intuition and common sense. Everyone who has learned to play billiards, for example, knows instinctively the Newtonian concepts of force, impulse, momentum, and energy. He or she may not be able to express these ideas mathematically, but in fact the equations only express in a quantitative mathematical way those things that every billiard player knows intuitively and physiologically. The physics of things that are very small, on the other hand, such as atoms, molecules and elementary particles, was developed more recently starting with the work of Niels Bohr, Erwin Schrodinger, Werner Heisenberg and others during the 1920’s. We call this body of theory quantum mechanics; and by now it has been verified in so many ways that its validity is virtually beyond question. At least as a paradigm for doing precise numerical calculations that can be tested experimentally, quantum mechanics is as accurate and unambiguous as any man made theory is ever likely to be. There is no controversy about this; but when we ask just what this theory is telling us about the ultimate nature of reality, the answers are so strange and counterintuitive that physicists have been arguing about them without any consensus ever since the first principles were formulated almost eighty years ago. Part of the difficulty is that, almost by definition, quantum mechanics deals with things that we cannot see and handle.
    [Show full text]