Pharmacological Potential of Ulva Species: a Valuable Resource

Total Page:16

File Type:pdf, Size:1020Kb

Pharmacological Potential of Ulva Species: a Valuable Resource Journal of Analytical & Pharmaceutical Research Pharmacological Potential of Ulva Species: A Valuable Resource Abstract Mini Review With the emergence of new diseases, the increase of pathogenic strains resistance Volume 6 Issue 1 - 2017 and the apprehensiveness of synthetic compounds side effects, there is a constant need to find natural and low toxicity drug candidates. Seaweeds are rich source of original and bioactive natural substances. In particular, species of the genus National Institute of Marine Sciences and Tecnologies Ulva have been demonstrated to metabolize biomolecules with pharmacological (INSTM), Tunisia potential. This mini review present some of the biological properties reported for Ulva spp. *Corresponding author: Leila Ktari, National Institute of Marine Sciences and Technologies - INSTM, 28, Rue du 2 Keywords: Green seaweed; Ulva; Antibacterial; Anti-inflammatory; Cytotoxic; mars, Salammbô 1934-2025, Tunisia, Tel: +216071276121; Antiviral; Antiprotozoal; Antioxidant Fax: +216071276121; Email: Received: August 28, 2017 | Published: September 06, 2017 Introduction As for example, two guaiane sesquiterpenes derivatives from Ulva Ulva Linnaeus genus (Ulvaceae, Ulvales) is an ubiquitous genus fasciatastudies, the actives compounds have been isolated and identified. widely distributed in oceans and estuaries. Currently, 128 species against Vibrio parahaemolyticus [12]. (accepted taxonomically) have been listed all around the world have been described with significant antibacterial activity [1]. Individuals of this genus are characterized by a broad range Recently [15] demonstrated that time of harvesting of the of environmental tolerance, high growth rate and photosynthetic activity leading to a relatively abundant natural biomass. reported that U. lactuca methanolic extracts inhibit a range of Aditionnaly, in a rich nutrient environment, these species can clinicallyalgae can influencerelevant theStaphylococcus antibacterial strains. activity. Moreover,In fact, these the authors study proliferate into green tides, making available important amounts of biomass [2]. On the other hand, the successful results obtained impacts antimicrobial activity, suggesting that antimicrobial for Ulva spp. cultivation in integrated multitrophic aquaculture propertiesshowed that can lunar be maximizedphase of macrolagae by manipulating harvest time significantly of algal (IMTA) systems [3] or in land based aquaculture coupled with harvest. waste water bioremediation [4] allows promising development It’s worth to mention the use of Ulva extracts to synthesize nanoparticules [16,17]. This technique, is a novel and innovative interest for this taxonomic genus has increased [5]. The area of research for biomedical applications. As for example, the cosmopolitanfor sustainable nature raw material of spp.,supply. its Thisdevelopment last decade, patterns scientific and Ulva study of antifungal potency of silver (Ag-NP) synthesized by Ulva plasticity, among other reasons make it a good model organism rigida aqueous extract tested on different human pathogens and to study algal growth, development and morphogenesis [6]. From Aspergilus fumigates [18]. an economic perspective, the use of Ulva species for different applications has been largely described: bioremediation [7], Anti-Inflammatorywith significant activity obtained on industrial exploitation of Ulva constituents have been proposed Ulva genus have [10].bioenergy To realize [8], foodan economically and feed [9]. feasible A biorefinery value chain, approach cascading for been reported in different studies. Ulva rigida collected from Anti-inflammatory activity of species from valorization of both protein and non-protein seaweed constituents 2 is required. We here present a mini review of pharmacological activity (PLA2 of Apis melifera). The bioassay guided fractionation Tunisian coasts showed a significant inhibition of phospholipase A perspectives for species of the genus Ulva. of dichloromethane/methanol extract led to the isolation and Antibacterial and Antifungal active molecule with an IC50 of 125µM [19]. identification of sulfoquinovosyldipalmitoyl glyceride as the The constant increase of pathogenic microbes resistance isolated from Ulva lactuca antibacterial candidates. Marine algae derivatives seem to be activityA steroid, when testedthe 3-O-β-D on the mouse glucopyranosyl-stigmasta-5,25-dien ear oedema assay [20]. Organic goodto existing candidates antibiotics in novel, led toantibacterial the continual drug need discovery to find [11].new extracts of Ulva conglobata ,displayed showed neuroprotectivetopical antiinflammatory and anti- Antimicrobial properties of Ulva species have been widely studied. Crude extracts of Ulva spp. samples often displayed cells [21]. U. reticulata presented potent analgesic and anti- positive antibacterial and/or antifungal activities for samples inflammatory effects on murine hippocampal and microglial collected from different parts of the world [12-14]. In some inflammatory effects in both acetic acid-induced writhing and hot plate-induced pain models, without significant toxic effect at Submit Manuscript | http://medcraveonline.com J Anal Pharm Res 2017, 6(1): 00165 Copyright: Pharmacological Potential of Ulva Species: A Valuable Resource ©2017 Ktari 2/4 highest possible doses [22]. More recently, sulfated polysaccharide reported [33] highlighting the antiprotozoal potential of Ulva fraction from Ulva lactuca (collected from atlantic coasts from lactuca extract. In fact, U. lactuca displayed the most potent activity against axenic amastigotes of Leshmania donovani with action [23]. The authors demonstrated that the antinoceptive and IC50 Brazil) displayed significant analgesic and anti-inflammatory antiprotozoal activity of four green marine algae collected from the bradykinin pathway. british=5.9ml/ml coasts, andamong efficiently which twoinhibited Ulva thespecies FabI ( U.enzyme. intestinalis The anti-inflammatory action occurs through a peripheral mechanism: and U. lactuca) have been prospected [34]. All crude extracts Cytotoxic showed positive antiprotozoal activity against Trypanosoma There are several studies that demonstrate the cytotoxic brucei rhodesiense while a moderate trypanocidal activity against potential of Ulva species. Methanol extract of Ulva fasciata Trypanosoma cruzi rupestris have been obtained for U. lactuta extract. on hepatocyte carcinoma cells lines (Hep-G2) with optimum inhibitioncollected from obtained Indian atcoasts 170µg/ml exhibited [24]. significant Additionnaly, cytotoxic ethanolic activity Other extract of Ulva rigida collected from Marmara Sea shores possess Last but not least, the antioxidant property of species of the a strong antigenotoxic, chemo- protective effects on mutagenic genus Ulva has to be described since this make them candidates for agent MMC in vitro [25]. These authors conclude that the obtained several pathologies in which the oxidative stress is incriminated results for U. rigida extract (antigenotoxic and anti-clastogenic) (neurological disorders, atherosclerosis, hypertension, acute useful in human pathological conditions. More recently, cytotoxic cancer, etc.). The antioxidant properties of Ulva spp. have been activityare of greatagainst significance three human in cancerradioprotection cell lines (HepG2,and thus MCF7, may and be studiedrespiratory form distress, species collectedidiopathic from pulmonary different partfibrosis, of the asthma, world Hela) have been attributed to ulvan fraction extracted from Ulva [10,35,36]. As for example, the antioxidant activity, contents of lactuca collected from Vietnam coasts [26]. extracts of four Ulva species [37]. Ulva clathrata demonstrated total phenolics and flavonoids were quantified in the methanolic Antiviral the greater antioxidant potential with a low IC50 of 0.881mg/ml, First mention of antiviral properties of Ulva spp. have been made in early nineties [27] with a bioactive sphingosine from Ulva (5.080mg GAE/g and 33.094mg RE/g respectively). In addition, corresponding also to the highest phenolic and flavonoid content fasciata collected from West coast of India. The extract showed the free radical scavenging effects of hot water extract of Ulva antiviral activity against Semeliki Forest Virus (SFV) at 20mg/ reticulata obtained on animal model studies highlighted the mouse/7 days. possible use of this specie to reduce hepatic oxidative stress [38]. Ulva rigida Conclusion This mini review just sketches the potential of Ulva species eggs [28]. The study water pointed extracts that inhibited extractsignificantly reduced the Ulva rigida for pharmacological use. This report reinforce the claims that reproduction of influenza virus (A/Aichi (H3N2)) also in fertile seaweeds, and in particular species of the genus Ulva, can be used when applied orally and extended the time of survival. Extracts of in heath industry. Additionally, Ulva species, with their wide range Ulvamortality fasciata rate, collected of white from mice Brazilian in experimental coasts have influenza been evaluated infection on the replication of human metapneumovirus (HMPV) [29]. The that can also be cultivated in a sustainable way, constitute good results demonstrated that the majority of the extracts possess candidatesof application for Bluefields, Biotechnology their relatively development. abundant natural biomass, virucidal activity and therefore have the ability to interact with the extracellular viral particles and prevent the infection. Ulvan, Conflict of
Recommended publications
  • Comparison of Ulva Lactuca and Ulva Clathrata As Ingredients In
    International Journal of Fisheries and Aquatic Studies 2021; 9(1): 192-194 E-ISSN: 2347-5129 P-ISSN: 2394-0506 (ICV-Poland) Impact Value: 5.62 Comparison of Ulva lactuca and Ulva clathrata as (GIF) Impact Factor: 0.549 IJFAS 2021; 9(1): 192-194 ingredients in Litopenaeus vannamei feeds © 2021 IJFAS www.fisheriesjournal.com Received: 23-10-2020 Dian Yuni Pratiwi and Fittrie Meyllianawaty Pratiwy Accepted: 02-12-2020 DOI: https://doi.org/10.22271/fish.2021.v9.i1c.2401 Dian Yuni Pratiwi Faculty of Fisheries and Marine Abstract Science, Universitas Ulva lactuca and Ulva clathrata are marine green algae belonging to genera Ulva. These algae have a lot Padjadjaran, Indonesia of nutrient such as protein, carbohydrates, lipids, pigments and others. These nutrient can be used to Fittrie Meyllianawaty Pratiwy improve the growth performance and health of Shrimps. Several studies have shown that U. lactuca and Faculty of Fisheries and Marine U. clathrata have antifungal, antibacterial, antiviral activities. One of popular shrimp among people of Science, Universitas the world is Litopenaeus vannamei. So that, this review article aims to comparing the effect of U. lactuca Padjadjaran, Indonesia and U. clathrata as ingredients in L. vannamei juvenile feeds. This review also summarizes a literature survey of the nutritional content and antimicrobial activity of U. lactuca and U. clathrata. Keywords: Ulva lactuca, Ulva clathrata, Litopenaeus vannamei, growth, health 1. Introduction Shrimps is one of popular seafood commodity among people of the world. The global trade of [1] [2] shrimp achieve 5.10 million tons in 2019 and estimate at USD 28 billion per year .
    [Show full text]
  • Common Benthic Algae and Cyanobacteria in Southern California Tidal Wetlands
    Scripps Institution of Oceanography Technical Report Common benthic algae and cyanobacteria in southern California tidal wetlands Christopher N. Janousek Scripps Institution of Oceanography, University of California, San Diego 11 July 2011 Janousek 2011: Algae and cyanobacteria of southern California marine wetlands. 1 Abstract Benthic algae and photosynthetic bacteria are important components of coastal wetlands, contributing to primary productivity, nutrient cycling, and other ecosystem functions. Despite their key roles in mudflat and salt marsh food webs, the extent and patterns of diversity of these organisms is poorly known. Sediments from intertidal marshes in San Diego County, California host a variety of cyanobacteria, diatoms, and multi-cellular algae. This flora describes approximately 40 taxa of common and notable cyanobacteria, microalgae and macroalgae observed in wetland sediments, principally from a small tidal marsh in Mission Bay. Cyanobacteria included coccoid and heterocyte and non-heterocyte bearing filamentous genera. A phylogenetically-diverse assemblage of pennate and centric diatoms, euglenoids, green algae, red algae, tribophytes and brown seaweeds was also observed. Most taxa are illustrated with photographs. Key words alpha diversity • cyanobacteria • diatoms • euglenoids • Kendall-Frost Mission Bay Marsh Reserve • macroalgae • microphytobenthos • salt marsh • Tijuana Estuary • Vaucheria Introduction The sediments of coastal marine wetlands in California are inhabited by a variety of algal and bacterial primary producers in addition to the more conspicuous vascular plants that provide most of the physical structure of coastal salt marshes and seagrass meadows. The non-vascular plant flora includes microscopic cyanobacteria, anoxygenic phototrophic bacteria, diatoms, and euglenoids, often collectively known as “microphytobenthos” (Sullivan and Currin 2000). Larger green algae, red and brown seaweeds, and the macroscopic tribophyte, Vaucheria are also residents of these ecosystems (Barnhardt et al.
    [Show full text]
  • Plate. Acetabularia Schenckii
    Training in Tropical Taxonomy 9-23 July, 2008 Tropical Field Phycology Workshop Field Guide to Common Marine Algae of the Bocas del Toro Area Margarita Rosa Albis Salas David Wilson Freshwater Jesse Alden Anna Fricke Olga Maria Camacho Hadad Kevin Miklasz Rachel Collin Andrea Eugenia Planas Orellana Martha Cecilia Díaz Ruiz Jimena Samper Villareal Amy Driskell Liz Sargent Cindy Fernández García Thomas Sauvage Ryan Fikes Samantha Schmitt Suzanne Fredericq Brian Wysor From July 9th-23rd, 2008, 11 graduate and 2 undergraduate students representing 6 countries (Colombia, Costa Rica, El Salvador, Germany, France and the US) participated in a 15-day Marine Science Network-sponsored workshop on Tropical Field Phycology. The students and instructors (Drs. Brian Wysor, Roger Williams University; Wilson Freshwater, University of North Carolina at Wilmington; Suzanne Fredericq, University of Louisiana at Lafayette) worked synergistically with the Smithsonian Institution's DNA Barcode initiative. As part of the Bocas Research Station's Training in Tropical Taxonomy program, lecture material included discussions of the current taxonomy of marine macroalgae; an overview and recent assessment of the diagnostic vegetative and reproductive morphological characters that differentiate orders, families, genera and species; and applications of molecular tools to pertinent questions in systematics. Instructors and students collected multiple samples of over 200 algal species by SCUBA diving, snorkeling and intertidal surveys. As part of the training in tropical taxonomy, many of these samples were used by the students to create a guide to the common seaweeds of the Bocas del Toro region. Herbarium specimens will be contributed to the Bocas station's reference collection and the University of Panama Herbarium.
    [Show full text]
  • 2004 University of Connecticut Storrs, CT
    Welcome Note and Information from the Co-Conveners We hope you will enjoy the NEAS 2004 meeting at the scenic Avery Point Campus of the University of Connecticut in Groton, CT. The last time that we assembled at The University of Connecticut was during the formative years of NEAS (12th Northeast Algal Symposium in 1973). Both NEAS and The University have come along way. These meetings will offer oral and poster presentations by students and faculty on a wide variety of phycological topics, as well as student poster and paper awards. We extend a warm welcome to all of our student members. The Executive Committee of NEAS has extended dormitory lodging at Project Oceanology gratis to all student members of the Society. We believe this shows NEAS members’ pride in and our commitment to our student members. This year we will be honoring Professor Arthur C. Mathieson as the Honorary Chair of the 43rd Northeast Algal Symposium. Art arrived with his wife, Myla, at the University of New Hampshire in 1965 from California. Art is a Professor of Botany and a Faculty in Residence at the Jackson Estuarine Laboratory of the University of New Hampshire. He received his Bachelor of Science and Master’s Degrees at the University of California, Los Angeles. In 1965 he received his doctoral degree from the University of British Columbia, Vancouver, Canada. Over a 43-year career Art has supervised many undergraduate and graduate students studying the ecology, systematics and mariculture of benthic marine algae. He has been an aquanaut-scientist for the Tektite II and also for the FLARE submersible programs.
    [Show full text]
  • Occurrence of Ulva Lactuca L. 1753 (Ulvaceae, Chlorophyta) at the Murman Сoast of the Barents Sea
    POLAR RESEARCH 2018, VOL. 37, 1503912 https://doi.org/10.1080/17518369.2018.1503912 RESEARCH NOTE Occurrence of Ulva lactuca L. 1753 (Ulvaceae, Chlorophyta) at the Murman Сoast of the Barents Sea Svetlana Malavenda a, Mikhail Makarov a, Inna Ryzhik a, Maxim Mityaeva & Sergey Malavendab aLaboratory of Algology, Murmansk Marine Biological Institute, Murmansk, Russia; bDepartment of Biology, Murmansk State Technical University, Murmansk, Russia ABSTRACT KEYWORDS Findings of Ulva lactuca L. on the Murman Сoast of the Barents Sea are described for the Sea lettuce; seaweed; period 2009–2017. This species has not been found in this area for more than 50 years. The climate change; global occurrence of U. lactuca on the Murman Coast appears to be related to the recent warming of warming; Arctic; waters in the region. berealization Introduction Averintseva 1994; Šošina 2003; Zavalko & Šošina 2008) and even question the presence of this species The present study aims to give an overview on the in the Barents Sea. Analysis of these data indicates the distribution of Ulva lactuca Linnaeus 1753: 1163 instability of the presence of U. lactuca on the (Chlorophyta, Ulvaceae) in the Barents Sea. In the Murmansk coast. World Ocean, this species is very widespread In recent decades, temperatures in the Barents Sea (Guiry & Guiry 2018), found almost everywhere have risen following the increased inflow of Atlantic in shallow waters, including estuaries. The tem- water masses during spring (Matishov et al. 2009; perature and light tolerance of the species are well Matishov et al. 2014; MMBI 2017). It is possible studied. Photosynthesis has been observed at tem- that these water masses also brought spores, gametes peratures ranging from 0°C to 28°C (Lüning or zygotes of U.
    [Show full text]
  • Print This Article
    Mediterranean Marine Science Vol. 15, 2014 Seaweeds of the Greek coasts. II. Ulvophyceae TSIAMIS K. Hellenic Centre for Marine Research PANAYOTIDIS P. Hellenic Centre for Marine Research ECONOMOU-AMILLI A. Faculty of Biology, Department of Ecology and Taxonomy, Athens University KATSAROS C. of Biology, Department of Botany, Athens University https://doi.org/10.12681/mms.574 Copyright © 2014 To cite this article: TSIAMIS, K., PANAYOTIDIS, P., ECONOMOU-AMILLI, A., & KATSAROS, C. (2014). Seaweeds of the Greek coasts. II. Ulvophyceae. Mediterranean Marine Science, 15(2), 449-461. doi:https://doi.org/10.12681/mms.574 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 25/09/2021 06:44:40 | Review Article Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available on line at http://www.medit-mar-sc.net Doi: http://dx.doi.org/ 10.12681/mms.574 Seaweeds of the Greek coasts. II. Ulvophyceae K. TSIAMIS1, P. PANAYOTIDIS1, A. ECONOMOU-AMILLI2 and C. KATSAROS3 1 Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, Anavyssos 19013, Attica, Greece 2 Faculty of Biology, Department of Ecology and Taxonomy, Athens University, Panepistimiopolis 15784, Athens, Greece 3 Faculty of Biology, Department of Botany, Athens University, Panepistimiopolis 15784, Athens, Greece Corresponding author: [email protected] Handling Editor: Sotiris Orfanidis Received: 5 August 2013 ; Accepted: 5 February 2014; Published on line: 14 March 2014 Abstract An updated checklist of the green seaweeds (Ulvophyceae) of the Greek coasts is provided, based on both literature records and new collections. The total number of species and infraspecific taxa currently accepted is 96.
    [Show full text]
  • Production and Identification of Ulva Sp. in Multitrophic Aquaculture in Earth Ponds
    Glauco Favot Production and identification of Ulva sp. in multitrophic aquaculture in earth ponds 2017 Glauco Favot Production and identification of Ulva sp. in multitrophic aquaculture in earth ponds Tese de Mestrado em Biologia Marinha Trabalho efetuado sob a orientação de: Doutora Maria Emília Cunha (Investigadora Auxiliar do Instituto Português do Mar e Atmosfera) Prof. Doutora Ester Serrão (Professora Associada , Universidade do Algarve) 2017 ii Título: Production and identification of Ulva sp. in multitrophic aquaculture in earth ponds Declaração de Autoria de Trabalho Declaro ser o autor deste trabalho, que é original e inédito. Autores e trabalhos consultados estão devidamente citados no texto e constam da listagem de referências incluída. Glauco Favot iii Copyright A Universidade do Algarve reserva para si o direito, em conformidade com o disposto no Código do Direito de Autor e dos Direitos Conexos, de arquivar, reproduzir e publicar a obra, independentemente do meio utilizado, bem como de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição para fins meramente educacionais ou de investigação e não comerciais, conquanto seja dado o devido crédito ao autor e editor respetivos iv Agradecimentos Começo por dizer que não sou um bom orador e nem sequer um bom escritor, pelo que vou tentar agradecer a todos o melhor que puder. Espero que ninguém me leve a mal se eu começar pela minha família, que sempre me apoiou e teve a capacidade de aguentar os meus momentos menos conseguidos, motivando-me e dando-me força. Depois, os profissionais com quem trabalhei desde a minha chegada a Portugal e com quem tanto aprendi — peço desculpa se não estive sempre à altura das vossas expectativas.
    [Show full text]
  • A Review of the Varied Uses of Macroalgae As Dietary Supplements in Selected Poultry with Special Reference to Laying Hen and Broiler Chickens
    Journal of Marine Science and Engineering Review A Review of the Varied Uses of Macroalgae as Dietary Supplements in Selected Poultry with Special Reference to Laying Hen and Broiler Chickens Garima Kulshreshtha 1,*, Maxwell T. Hincke 1,2, Balakrishnan Prithiviraj 3 and Alan Critchley 4 1 Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; [email protected] 2 Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada 3 Department of Plant, Food, and Environmental Sciences, Agricultural Campus, Dalhousie University, PO Box 550, Truro, NS B2N 5E3, Canada; [email protected] 4 Verschuren Centre for Sustainability in Energy and Environment, Cape Breton University, Sydney, Cape Breton, NS B1P 6L2, Canada; [email protected] * Correspondence: [email protected] Received: 27 June 2020; Accepted: 15 July 2020; Published: 19 July 2020 Abstract: Seaweeds comprise ca. 12,000 species. Global annual harvest is ca. 30.13 million metric tonnes, (valued ca. $11.7 billion USD in 2016) for various commercial applications. The growing scope of seaweed-based applications in food, agricultural fertilizers, animal feed additives, pharmaceuticals, cosmetics and personal care is expected to boost market demand. Agriculture and animal feed applications held the second largest seaweed market share in 2017, and the combined market is anticipated to reach much higher values by 2024 due to the impacts of current research and development targeting enhanced animal health and productivity. In general, seaweeds have been utilized in animal feed as a rich source of carbohydrates, protein, minerals, vitamins and dietary fibers with relatively well-balanced amino acid profiles and a unique blend of bioactive compounds.
    [Show full text]
  • Seaweeds of California Green Algae
    PDF version Remove references Seaweeds of California (draft: Sun Nov 24 15:32:39 2019) This page provides current names for California seaweed species, including those whose names have changed since the publication of Marine Algae of California (Abbott & Hollenberg 1976). Both former names (1976) and current names are provided. This list is organized by group (green, brown, red algae); within each group are genera and species in alphabetical order. California seaweeds discovered or described since 1976 are indicated by an asterisk. This is a draft of an on-going project. If you have questions or comments, please contact Kathy Ann Miller, University Herbarium, University of California at Berkeley. [email protected] Green Algae Blidingia minima (Nägeli ex Kützing) Kylin Blidingia minima var. vexata (Setchell & N.L. Gardner) J.N. Norris Former name: Blidingia minima var. subsalsa (Kjellman) R.F. Scagel Current name: Blidingia subsalsa (Kjellman) R.F. Scagel et al. Kornmann, P. & Sahling, P.H. 1978. Die Blidingia-Arten von Helgoland (Ulvales, Chlorophyta). Helgoländer Wissenschaftliche Meeresuntersuchungen 31: 391-413. Scagel, R.F., Gabrielson, P.W., Garbary, D.J., Golden, L., Hawkes, M.W., Lindstrom, S.C., Oliveira, J.C. & Widdowson, T.B. 1989. A synopsis of the benthic marine algae of British Columbia, southeast Alaska, Washington and Oregon. Phycological Contributions, University of British Columbia 3: vi + 532. Bolbocoleon piliferum Pringsheim Bryopsis corticulans Setchell Bryopsis hypnoides Lamouroux Former name: Bryopsis pennatula J. Agardh Current name: Bryopsis pennata var. minor J. Agardh Silva, P.C., Basson, P.W. & Moe, R.L. 1996. Catalogue of the benthic marine algae of the Indian Ocean.
    [Show full text]
  • Ulva L. (Ulvales, Chlorophyta) from Manawatāwhi/ Three Kings Islands, New Zealand: Ulva Piritoka Ngāti Kuri, Heesch & W.A.Nelson, Sp
    cryptogamie Algologie 2021 ● 42 ● 9 DIRECTEUR DE LA PUBLICATION / PUBLICATION DIRECTOR : Bruno DAVID Président du Muséum national d’Histoire naturelle RÉDACTRICE EN CHEF / EDITOR-IN-CHIEF : Line LE GALL Muséum national d’Histoire naturelle ASSISTANTE DE RÉDACTION / ASSISTANT EDITOR : Marianne SALAÜN ([email protected]) MISE EN PAGE / PAGE LAYOUT : Marianne SALAÜN RÉDACTEURS ASSOCIÉS / ASSOCIATE EDITORS Ecoevolutionary dynamics of algae in a changing world Stacy KRUEGER-HADFIELD Department of Biology, University of Alabama, 1300 University Blvd, Birmingham, AL 35294 (United States) Jana KULICHOVA Department of Botany, Charles University, Prague (Czech Republic) Cecilia TOTTI Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy) Phylogenetic systematics, species delimitation & genetics of speciation Sylvain FAUGERON UMI3614 Evolutionary Biology and Ecology of Algae, Departamento de Ecología, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Av. Bernardo O’Higgins 340, Santiago (Chile) Marie-Laure GUILLEMIN Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia (Chile) Diana SARNO Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli (Italy) Comparative evolutionary genomics of algae Nicolas BLOUIN Department of Molecular Biology, University of Wyoming, Dept. 3944, 1000 E University Ave, Laramie, WY 82071 (United States) Heroen VERBRUGGEN School of BioSciences,
    [Show full text]
  • From a Subtidal Habitat of Jeju Island, Korea
    Note Algae 2020, 35(4): 349-359 https://doi.org/10.4490/algae.2020.35.12.3 Open Access Umbraulva yunseulla sp. nov. (Ulvaceae, Chlorophyta) from a subtidal habitat of Jeju Island, Korea Hyung Woo Lee1, Eun Hee Bae2 and Myung Sook Kim1,3,* 1Research Institute for Basic Sciences, Jeju National University, Jeju 63243, Korea 2Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Korea 3Department of Biology, Jeju National University, Jeju 63243, Korea Specimens of Umbraulva with greenish iridescent were collected in the subtidal zone of Jeju Island, Korea. To in- vestigate these collections, plastid rbcL and tufA sequencing of six greenish iridescent specimens, including four Um- braulva japonica, were analyzed. Phylogenetic analysis of a concatenated multigene alignment found that the greenish iridescent specimens belonged to a yet undescribed taxon in the genus Umbraulva. We herein propose the name Um. yunseulla sp. nov. for this specimens. Juveniles of Um. yunseulla sp. nov. resemble the generitype Um. japonica in ap- pearance, showing globular to subglobular and funnel-shaped habits, but the blades of this new species are not split longitudinally like those of Um. japonica. Although the multigene phylogenetic tree showed the polyphyletic clade of Umbraulva with respect to the genus Ryuguphycus, Um. yunseulla sp. nov. formed a clade with Um. japonica and Um. amamiensis by weak bootstrap support. These findings,Um. yunseulla sp. nov., highlight the importance of studying the biodiversity of subtidal habitats from Jeju Island, Korea and further emphasize the need for investigations of macroalgae in the mesophotic zone around the Korean peninsula. Key Words: biodiversity; greenish iridescent; phylogeny; rbcL; taxonomy; tufA; Umbraulva yunseulla sp.
    [Show full text]
  • Cryptic, Alien and Lost Species: Molecular Diversity of Ulva Sensu Lato Along the German Coasts of the North and Baltic Seas
    European Journal of Phycology ISSN: 0967-0262 (Print) 1469-4433 (Online) Journal homepage: https://www.tandfonline.com/loi/tejp20 Cryptic, alien and lost species: molecular diversity of Ulva sensu lato along the German coasts of the North and Baltic Seas S. Steinhagen, R. Karez & F. Weinberger To cite this article: S. Steinhagen, R. Karez & F. Weinberger (2019) Cryptic, alien and lost species: molecular diversity of Ulvasensulato along the German coasts of the North and Baltic Seas, European Journal of Phycology, 54:3, 466-483, DOI: 10.1080/09670262.2019.1597925 To link to this article: https://doi.org/10.1080/09670262.2019.1597925 © 2019 The Author(s). Published by Informa View supplementary material UK Limited, trading as Taylor & Francis Group. Published online: 14 Jun 2019. Submit your article to this journal Article views: 165 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tejp20 British Phycological EUROPEAN JOURNAL OF PHYCOLOGY 2019, VOL. 54, NO. 3, 466–483 Society https://doi.org/10.1080/09670262.2019.1597925 Understanding and using algae Cryptic, alien and lost species: molecular diversity of Ulva sensu lato along the German coasts of the North and Baltic Seas S. Steinhagena, R. Karezb and F. Weinbergera aGEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Ecology Department, Düsternbrooker Weg 20, 24105 Kiel, Germany; bState Agency for Agriculture, Environment and Rural Areas, Schleswig-Holstein, Hamburger Chaussee 25, 24220 Flintbek, Germany ABSTRACT DNA barcoding analysis, using tufA, revealed considerable differences between the expected and observed species inventory of Ulva sensu lato in the Baltic and North Sea areas of the German state of Schleswig-Holstein.
    [Show full text]