International Journal of Universal Pharmacy and Bio

Total Page:16

File Type:pdf, Size:1020Kb

International Journal of Universal Pharmacy and Bio 325 | P a g e International Standard Serial Number (ISSN): 2319-8141 International Journal of Universal Pharmacy and Bio Sciences 4(6): November-December 2015 INTERNATIONAL JOURNAL OF UNIVERSAL PHARMACY AND BIO SCIENCES IMPACT FACTOR 2.093*** ICV 5.13*** Pharmaceutical Sciences REVIEW ARTICLE …………!!! “SHEPHERDIAARGENTEA: A COMPREHENSIVE REVIEW” Gill N.S*,Kaur Manpreet, Kaushar Anmol Rayat Institute of Pharmacy,Railmajra, SBS Nagar, Punjab, India. KEYWORDS: ABSTRACT Shepherdiaargentea,Anti- Shepherdia argentea commonly known as silver buffaloberry other inflammatory, names are bull berry, thorny buffaloberry, soapberry and silver leaf, is Antiviral,Antimicrobial, a species of Shepherdia, family elaeagnaceae. It is generally grows in Antioxidant, lipid metabolism, North America, Canada, California, but most commonly found in east Antidiabetic. of the Cascade Mountain Range. Traditionally, the fruits have been For Correspondence: used in soup, puddings, juice, dyes and wine. It contains bioactive Gill N.S * Address: substance such as Carotenoids, flavanoids, Squalene, fatty acid, ester, Rayat Institute of and high in vitamin C. It shows anti inflammatory, antiviral, Pharmacy,Railmajra, antioxidant, gastro protective and antimicrobial activities. Silver SBS Nagar, Punjab, India. buffalo berry is capable of fixing nitrogen in root nodules. The study about S. argentea reveals uptodate information about phytochemistry and pharmacological activity about plant. Full Text Available On www.ijupbs.com 326 | P a g e International Standard Serial Number (ISSN): 2319-8141 INTRODUCTION: Silver buffaloberry is a fugacious thorny, thick shrub to small tree belonging to family Elaeagnaceae. It has opposite branching. The leaves are silver gray in colour on both top and bottom. They are about 1 to 2 inches long and about 3/8 inches wide. The female and male flowers are grown on separate tree. This species is pollinated by insects, usually by honey bees and bumble bees.The fruit is drupe-shaped, ovoid, ¼ inches long and contain one seed. The seed of S.argentea is a small, shiny-brown and very rigid. The fruit grows in late may and ripen by late summer. Most of the fruit are reddish-orange in colour. But some ofthem are yellow in colour[1].Silver buffaloberry grows near the streams bank, mostly upon limestone areaand sandy soils[2-4].Silver buffaloberry fix nitrogen in root nodules. This nitrogen produce by plant is important to other species and help in the establishment of their shrubs [5]. Many species of berries are present along with S. argentea which possess anti inflammatory, antiviral, anti diabetic, anti microbial, antioxidant activities. Active constituent in berries scavenges the oxygen free radicals. Therefore, this plant is used in future for medicinal purpose to treat many diseases. The fruit contain low concentration of saponins. Soit advisable not to eat large quantity of fruit. Plants possess β-carotene/lycopene, β-cryptoxanthinand zeaxanthin, which give yellow- orange pigment in berries. Chlorogenic acid was present in small quantities, vitaminC, tannins, catechols, and flavonols are also present [6,3]. SYNONYMS: Shepherdiaargentea is commonly known as silver buffaloberry .other synonyms are:Hippophaeargentea Pursh 1813 Lepargyreaargentea (Pursh) TAXONOMICAL CLASSIFICATION: Kingdom PLANTAE Order ROSALES Family ELAEAGNACEAE Genus SHEPHERDIA Species ARGENTEA GEOGRAPHICAL AREA: The shrubs of S. argentea grow near the stream of river and moist hillsides. It is adapted to saline soil pH-5.5-8.0. It is mostly found in the prairies and southern parklands of the Prairie Full Text Available On www.ijupbs.com 327 | P a g e International Standard Serial Number (ISSN): 2319-8141 Territories of Canada and south to California, Arizona, New Mexico, and Oklahoma, some of the species in western Minnesota and northwestern Iowa. It is mostly found in the northern Great Plains. PHYTOCHEMISTRY: The phytochemistryof Shepherdiaargentea has revealed the presence of various active constituents which are listed below: Fruit of this plant contain carotenoidsand few phenolic acids. Berries also consist of β- carotene/lycopene, β-cryptoxanthin , and zeaxanthin, which is responsible for the yellow- orange pigment in the berries. Chlorogenic acid was present in low quantity. Leaves extract of Shepherdiaargentea. Nutt consist of n-hexadecanoic acid which plays role in antioxidant and anti inflammatory effects. Pentacosane, heptacosane, nonacosane, tricosane, and pentadecane exhibited antibacterial activity[8,7,6,1].Squalene has antioxidant and immunostimulant effect and acts as anticancer and antibacterial agents [9].Two Hydrolysable tannins,shephagenins A and B were isolated along with hippophaenin A from the leaf extract[10]. The fruit is considered to be a good source of vitamin C. Phytol is the precursor for vitamins E and K1 and prevent breast cancer.Linalool is a principal constituent of many essential oils known to have therapeutic activity.Suchas antibacterial, sedative, anti-inflammatory[11-14]. α- terpineol possesses pharmacological activities, such as anticonvulsant,sedative, antinociceptive, anticancer, hipotensive, gastro protective and antifungal [15-21]. Sr. no Chemical Pharmacological activity compound 1 Carotenids Yellow-orange pigmentOf berries 2 n-hexadecanoic acid Antioxidant and anti inflammatory effect 3 Heptacosane Antibacterial 4 Squalene Antioxidant , anti tumour and immunostimulant 5 Phytol Anticancer, anti oxidant 6 Linalool Antibacterial ,sedative ,anti inflammatory 7 α- terpineol Anticonvulsant,sedative,anticancer,gastro protective and antifungal 8 Tannins Antiviral 9 Fatty acid Antibacterial 10 Lyopeneand other Antioxidant phenolic compounds Table 1: phytochemistryof Shepherdiaargentea along with their therapeutical uses. Full Text Available On www.ijupbs.com 328 | P a g e International Standard Serial Number (ISSN): 2319-8141 LITERATURE SURVAY: The study was illustrate the presence of two hydrolysable tannins, , shephagenins A and B, were isolated along with hippophaenin A and strictinin from the leaf extract of the Buffalo berries, which posses antiviral activity by inhibiting human immunodeficiency virus (HIV)-1 reverse transcriptase. Berries were traditionally used by Native Americans to treat stomach pain[23,22,10].Squalene has properties of an antioxidant and immunostimulant it acts as antibacterial, antitumor and cancer preventive agent. Other species of Shepherdiaargentea are: Russet Buffaloberry (Shepherdiacanadensis) Russian-olive (Elaeagnusangustifolia) Sea-buckthorn (Hippophaerhamnoides) Roundleafbuffaloberry(Shepherdiarotundifolia) PHARMACOLOGICAL ACTIVITYOF SHEPHERDIA ARGENTEA Fig-1:- Berries of Shepherdiaargentea ANTI INFLAMMATORY ACTIVITY: Berries of Shepherdiaargentea posses anti inflammatory activity. It acts by inhibiting Interleukin-1 beta (IL-1β) and Cyclooxygenase-2 (COX-2) expression. IL-1β is a cytokine produce within a body which causes inflammatory response. It has been target for type 2 diabetes because it is association with the death of beta cells, which is responsible for the storage and release of insulin[24,14,9]. IL-1β involve in pain, inflammation and autoimmune response. Silver buffaloberry strongly reduce IL-1β action. COX-2 is an enzyme involved in inflammation and is a target site for NSAIDS [Non steroidal anti-inflammatory drug] action like aspirin and ibuprofen. Silver buffaloberry (S. argentea), reduce IL-1β, also reduced the action of COX-2 enzyme [25]. The berries also eliminate the unpleasant side effects that NSAIDS may create (increased chance of heart attack, stroke, and Full Text Available On www.ijupbs.com 329 | P a g e International Standard Serial Number (ISSN): 2319-8141 liver damage). Other species such as Shepherdia Canadensis, Shepherdiarotundifolia, Hippophaerotundifolia also shows anti-inflammatory activity. Membrane phospholipids Arachidonic acid DRUG ACTION COX-1 COX-2 Prostaglandins function: Prostaglandins function: GI mucosal integrity Fever Platelet function Inflammation Fig 2.Anti inflammatory action of S. argentea by inhibiting COX-2 enzyme. ANTIOXIDANT PROPERTY: Lycopene shows very strong antioxidant activity[26]. The lycopene content in berries tends to be high as compared to tomatoes and other fruits[27,28].The addition of these fruits to the human diet provides protection from many diseases[29].Phenolic compounds also act as antioxidants in the berries and also reduce chronic inflammation which leads to cellular damage and plaque formation[30-33]. ANTI VIRAL ACTIVITY: Shepherdiaargentea inhibit virus metabolism inside the human body, reverse transcription and breakdown of protein interfere. Shephagenins A and B, from Shepherdiaargentea inhibit HIV-1 reverse transcriptase. ANTI DIABETIC ACTIVITY:S. argentea inhibit aldose reductase, reduce the expression of IL-1 and COX-2, and alter energy expenditure. The crude extract of berries strongly inhibit expression of IL-1 (76% inhibition) but reduced expression of COX-2 (45% inhibition). This indicates that compounds of S. argentea can provide protection from diabetic complications and canalso reduce inflammation by acting on COX-2 enzyme. Full Text Available On www.ijupbs.com 330 | P a g e International Standard Serial Number (ISSN): 2319-8141 LIPID METABOLISM: Lipid metabolism and energy expenditure are other important activity associated with metabolic syndrome and related disorders. Fatty acid oxidation was carried out by berries in regard to lipid metabolism. The water-soluble fractions of V. trilobum and S.
Recommended publications
  • P L a N T L I S T Water-Wise Trees and Shrubs for the High Plains
    P L A N T L I S T Water-Wise Trees and Shrubs for the High Plains By Steve Scott, Cheyenne Botanic Gardens Horticulturist 03302004 © Cheyenne Botanic Gardens 2003 710 S. Lions Park Dr., Cheyenne WY, 82001 www.botanic.org The following is a list of suitable water-wise trees and shrubs that are suitable for water- wise landscaping also known as xeriscapes. Many of these plants may suffer if they are placed in areas receiving more than ¾ of an inch of water per week in summer. Even drought tolerant trees and shrubs are doomed to failure if grasses or weeds are growing directly under and around the plant, especially during the first few years. It is best to practice tillage, hoeing, hand pulling or an approved herbicide to kill all competing vegetation for the first five to eight years of establishment. Avoid sweetening the planting hole with manure or compost. If the soil is needs improvement, improve the whole area, not just the planting hole. Trees and shrubs generally do best well with no amendments. Many of the plants listed here are not available in department type stores. Your best bets for finding these plants will be in local nurseries- shop your hometown first! Take this list with you. Encourage nurseries and landscapers to carry these plants! For more information on any of these plants please contact the Cheyenne Botanic Gardens (307-637-6458), the Cheyenne Forestry Department (307-637-6428) or your favorite local nursery. CODE KEY- The code key below will assist you in selecting for appropriate characteristics.
    [Show full text]
  • Soopolallie (Shepherdia Canadensis) Other Names: Soapberry, Canada Buffaloberry, Russet Buffaloberry
    Soopolallie (Shepherdia canadensis) Other names: Soapberry, Canada buffaloberry, Russet buffaloberry. Background Soopolallie is a shrub in the Oleaster family (Elaeagnaceae). Other BC plants in this family include the wolf-willow and the naturalized Russian olive. The name ‘soopolallie’ is from the Chinook language for soap (soop) and berry (olallie) (Parish et al 1996). Plant Morphology Soopolallie is a deciduous shrub 1-2 metres tall with brownish branches that are covered with small brownish-orange scabs. The young branches are covered with many rusty spots, as are the undersides of the leaves. The leaves (sparsely distributed along the branches) are opposite and oval with dark green upper surfaces and silvery-whitish hairs on the under surfaces. The yellowish-brown inconspicuous flowers are borne in clusters on stems, before the leaves open. Male and female flowers are produced on separate plants. The fruits are small, soft, bright red berries that are oval and somewhat translucent. They are juicy and edible but extremely bitter and soapy to touch (Parish et al 1996). Ecology In British Columbia, the soopolallie is widespread and very common at low to subalpine elevations in dry to moist open forests, openings and clearings (Parish et al 1996). It is a transcontinental shrub that occurs sporadically in the pacific region (not at all on the Queen Charlotte Islands) with its occurrence increasing with increasing continentality. It is commonly associated with pinegrass (Calamagrostis rubescens), twinflower (Linnaea borealis), and falsebox (Paxistima myrsinites). Soopolallie has a symbiotic relationship with nitrogen- fixing organisms (Klinka et al 1989). Often, the soopolallie is found on gravelly, shallow soils (Hebda 1995).
    [Show full text]
  • CBA/ABC Bulletin 35(1)
    THE CANADIAN BOTANICAL ASSOCIATION BULLETIN DE LASSOCIATION BOTANIQUE DU CANADA February / février 2002 35(1) Montréal Patron / Président d'honneur Her Excellency the Right Honourable / Son excellence la très honorable Adrienne Clarkson, C.C., C.M.M., C.D. Governor General of Canada / Gouverneure générale du Canada On the inside / À l'intérieur I Presidents Message I This issue of the bulletin is the last one to be produced by Denis Lauzer. I am sure you will all agree that Denis has done a wonderful job bringing us all up to date on the current happenings in our Association. Thank you, Denis, for all the 2 Page time you have invested producing such an excellent publication. Editors / La rédaction CBA Section and Committee Chairs The next issue of the Bulletin will be produced in Edmundston, NB, under the direction of our new Editor, Martin Dubé. We look forward to the continued production of an informative and interesting Bulletin under his editorship. Page 3 Plans are being finalized for our next Annual Meeting (August 4-7), to be President's Message (continued) held at the Pyle Conference Center on the campus of the University of Wisconsin Macoun Travel Boursary in Madison, Wisconsin. The deadline for submission of abstracts is now estab- 2002 CBA Annual Meeting / lished (April 1, 2002) and we now have a list of planned Symposia. The subject Congrès annuel de l'ABC 2002 of the Plenary Symposium is Evolution: Highlighting Plants, organized by Patricia Gensel. Sectional Symposia of the Botanical Socie ty of America (with input from Page 4 CBA Sections) include the following: Poorly Known Economic Plants of Canada - 32.
    [Show full text]
  • Evaluation of Antioxidant Properties of Native Utah Berries and Their Potential for Use in Meats
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 12-2018 Evaluation of Antioxidant Properties of Native Utah Berries and Their Potential for Use in Meats Xiaoxi Wang Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Nutrition Commons Recommended Citation Wang, Xiaoxi, "Evaluation of Antioxidant Properties of Native Utah Berries and Their Potential for Use in Meats" (2018). All Graduate Theses and Dissertations. 7331. https://digitalcommons.usu.edu/etd/7331 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. i EVALUATION OF ANTIOXIDANT PROPERTIES OF NATIVE UTAH BERRIES AND THEIR POTENTIAL FOR USE IN MEATS by Xiaoxi Wang A Dissertation submitted in partial fulfillment of the requirement for the degree of DOCTOR OF PHILOSOPHY in Nutrition and Food Sciences Approved: ____________________________ ____________________________ Karin Allen, Ph.D. Brain Nummer, Ph.D. Major Professor Committee Member ___________________________ ____________________________ Silvana Martini, Ph.D. Marie Walsh, Ph.D. Committee Member Committee Member ____________________________ ____________________________ Sean Johnson, Ph.D. Laurens H. Smith, Ph.D. Committee Member Interim Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2018 ii Copyright © Xiaoxi Wang 2018 All Rights Reserved iii ABSTRACT Evaluation of Antioxidant Properties of Native Utah Berries and Their Potential for use in Meats by Xiaoxi Wang, Doctor of Philosophy Utah State University, 2017 Major Professor: Dr.
    [Show full text]
  • Phylogenetic Relationships in Korean Elaeagnus L. Based on Nrdna ITS Sequences
    Korean J. Plant Res. 27(6):671-679(2014) Print ISSN 1226-3591 http://dx.doi.org/10.7732/kjpr.2014.27.6.671 Online ISSN 2287-8203 Original Research Article Phylogenetic Relationships in Korean Elaeagnus L. Based on nrDNA ITS Sequences OGyeong Son1, Chang Young Yoon2 and SeonJoo Park1* 1Department of Life Science, Yeungnam University, Gyeongsan 712-749, Korea 2Department of Biotechnology, Shingyeong University, Hwaseon 445-741, Korea Abstract - Molecular phylogenetic analyses of Korean Elaeagnus L. were conducted using seven species, one variety, one forma and four outgroups to evaluate their relationships and phylogeny. The sequences of internal transcribed spacer regions in nuclear ribosomal DNA were employed to construct phylogenetic relationships using maximum parsimony (MP) and Bayesian analysis. Molecular phylogenetic analysis revealed that Korean Elaeagnus was a polyphyly. E. umbellata var. coreana formed a subclade with E. umbellata. Additionally, the genetic difference between E. submacrophylla and E. macrophylla was very low. Moreover, E. submacrophylla formed a branch from E. macrophylla, indicating that E. submacrophylla can be regarded as a variety. However, several populations of this species were not clustered as a single clade; therefore, further study should be conducted using other molecular markers. Although E. glabra f. oxyphylla was distinct in morphological characters of leaf shape with E. glabra. But E. glabra f. oxyphylla was formed one clade by molecular phylogenetic with E. glabra. Additionally, this study clearly demonstrated that E. pungens occurs in Korea, although it was previously reported near South Korea in Japan and China. According to the results of ITS regions analyses, it showed a resolution and to verify the relationship between interspecies of Korean Elaeagnus.
    [Show full text]
  • Nodulation and Growth of Shepherdia × Utahensis ‘Torrey’
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 12-2020 Nodulation and Growth of Shepherdia × utahensis ‘Torrey’ Ji-Jhong Chen Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Plant Sciences Commons Recommended Citation Chen, Ji-Jhong, "Nodulation and Growth of Shepherdia × utahensis ‘Torrey’" (2020). All Graduate Theses and Dissertations. 7946. https://digitalcommons.usu.edu/etd/7946 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. NODULATION AND GROWTH OF SHEPHERDIA ×UTAHENSIS ‘TORREY’ By Ji-Jhong Chen A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Plant Science Approved: ______________________ ____________________ Youping Sun, Ph.D. Larry Rupp, Ph.D. Major Professor Committee Member ______________________ ____________________ Jeanette Norton, Ph.D. Heidi Kratsch, Ph.D. Committee Member Committee Member _______________________________________ Richard Cutler, Ph.D. Interim Vice Provost of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2020 ii Copyright © Ji-Jhong Chen 2020 All Rights Reserved iii ABSTRACT Nodulation and Growth of Shepherdia × utahensis ‘Torrey’ by Ji-Jhong Chen, Master of Science Utah State University, 2020 Major Professor: Dr. Youping Sun Department: Plants, Soils, and Climate Shepherdia × utahensis ‘Torrey’ (hybrid buffaloberry) (Elaegnaceae) is presumable an actinorhizal plant that can form nodules with actinobacteria, Frankia (a genus of nitrogen-fixing bacteria), to fix atmospheric nitrogen. However, high environmental nitrogen content inhibits nodule development and growth.
    [Show full text]
  • Silver Buffaloberry
    Silver Buffaloberry slide 4a 400% slide 4b 360% slide 4c slide 4d 360% 360% III-5 Silver Buffaloberry Environmental Requirements (Shepherdia argentea) Soils Soil Texture - Grows well in most soils. Soil pH - 5.5 to 8.0. Adapted to moderately alkaline and General Description saline soils. A tall, thorny, thicket-forming native shrub. Well adapted Windbreak Suitability Group - 1, 1K, 3, 4, 4C, 5, 6D, 6G, 8, to dry, moderately alkaline and saline soils. Tolerates 9C, 9L. infertile soils, in part because of its ability to fix and assimilate atmospheric nitrogen. Berries used for jellies. Cold Hardiness USDA Zone - 2. Leaves and Buds Bud Arrangement - Opposite. Water Drought tolerant. Not adapted to wet, poorly-drained Bud Color - Silvery. sites. Bud Size - Small, solitary or multiple, stalked, oblong. Leaf Type and Shape - Simple, oblong-elliptical. Light Leaf Margins - Entire. Full sun. Leaf Surface - Finely-scaled, pubescent. Uses Leaf Length - 1 to 2 inches. Leaf Width - 1/4 to 5/8 inch. Conservation/Windbreaks Leaf Color - Silvery-gray on both surfaces. Medium to tall shrub for farmstead and field windbreaks, riparian plantings, and highway beautification. Flowers and Fruits Flower Type - Dioecious. Wildlife Highly important for mule deer browse. Ideal cover and Flower Color - Yellowish. nesting site for many birds. Preferred food source of many Fruit Type - Drupe-like, insipid, ovoid. songbirds and sharptail grouse. Good late winter food Fruit Color - Predominately red, however, some female source for birds. plants can produce yellow fruits. Agroforestry Products Form Food - Fruit processed as jams and jellies. Growth Habit - Loosely branched shrub of rounded outline. Urban/Recreational Ornamental foliage and fruit, but limited in use because of Texture - Medium-fine, summer; fine, winter.
    [Show full text]
  • Wildland Fire in Ecosystems: Effects of Fire on Fauna
    United States Department of Agriculture Wildland Fire in Forest Service Rocky Mountain Ecosystems Research Station General Technical Report RMRS-GTR-42- volume 1 Effects of Fire on Fauna January 2000 Abstract _____________________________________ Smith, Jane Kapler, ed. 2000. Wildland fire in ecosystems: effects of fire on fauna. Gen. Tech. Rep. RMRS-GTR-42-vol. 1. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 83 p. Fires affect animals mainly through effects on their habitat. Fires often cause short-term increases in wildlife foods that contribute to increases in populations of some animals. These increases are moderated by the animals’ ability to thrive in the altered, often simplified, structure of the postfire environment. The extent of fire effects on animal communities generally depends on the extent of change in habitat structure and species composition caused by fire. Stand-replacement fires usually cause greater changes in the faunal communities of forests than in those of grasslands. Within forests, stand- replacement fires usually alter the animal community more dramatically than understory fires. Animal species are adapted to survive the pattern of fire frequency, season, size, severity, and uniformity that characterized their habitat in presettlement times. When fire frequency increases or decreases substantially or fire severity changes from presettlement patterns, habitat for many animal species declines. Keywords: fire effects, fire management, fire regime, habitat, succession, wildlife The volumes in “The Rainbow Series” will be published during the year 2000. To order, check the box or boxes below, fill in the address form, and send to the mailing address listed below.
    [Show full text]
  • DAVIDSONIA VOLUME 12 NUMBER 1 Spring 1981 Cover: Fritillaria Camschatcensis Var
    DAVIDSONIA VOLUME 12 NUMBER 1 Spring 1981 Cover: Fritillaria camschatcensis var. camschatcensis, Riceroot Fritillary, in flower. Vaccinium ovatum, Evergreen Huckleberry, is common in coastal British Columbia. DAVIDSONIA VOLUME 12 NUMBER 1 Spring 1981 Davidsonia is published quarterly by The Botanical Garden of The University of British Col­ umbia, Vancouver, British Columbia, Canada V6T 1W5. Annual subscription, ten dollars Single numbers, two dollars and fifty cents, except for special issues. All information con­ cerning subscriptions should be addressed to the Director of The Botanical Garden. Poten­ tial contributors are invited to submit articles and/or illustrative material for review by the Editorial Board. © 1981 by The Botanical Garden, The University of British Columbia. Acknowledgements The pen and ink illustrations are by Mrs. Lesley Bohm. The photographs for Figures 1 to 3 were taken by Mr. Robert D. Turner, and that for Figure 4 by Ms. Dorothy I.D Kennedy of the B.C. Indian Project, from the collections of the Smithsonian Institution, Washington, D.C. The photographs on page 26 were provided by Mr. Joseph A. Witt, Curator of Plant Collections, University of Washington Arboretum, Seattle, and those on pages 27 and 28 were taken by Raeff Miles, Photographer, Vancouver. The map on page 16 was prepared by Mr. Pierre Caritey, a draughtsman in the Faculty of Education at UBC. Mrs. Sylvia Taylor researched the sections on propagation, culture and ethnobotany for the Fritillaria article. ISSN 0045-9739 Second Class Mail Registration Number 3313 Indian Use of Shepherdia canadensis, Soapberry, in Western North America NANCY J. TURNER' Introduction Shepherdia canadensis (L.) Nutt., a member of the Elaeagnaceae or Oleaster Family, is well known to Indian peoples in northwestern North America as the source of a popular confection, called "Indian ice cream", which is made from the fruits of this plant whipped with water into a light foam.
    [Show full text]
  • Russian Olive Vs. Silverleaf Buffaloberry (Elaeagnus Angustifolia Vs
    Russian Olive vs. Silverleaf Buffaloberry (Elaeagnus angustifolia vs. Shepherdia argentea) Russian olive is closely related to silveleaf buffaloberry. At first glance these two relatives appear very similar. They grow in common places, have thorns, and can take on shrub-like forms. However, upon closer inspection you will find several differences between these species. Silverleaf Russian olive (invasive) Buffaloberry VS (native) Leaves Leaves Arranged in alternate pairs; Arranged in opposite pairs; useful memory trick: invasive useful memory trick: nave has UNBALANCED arrangement has BALANCED arrangement 0.8‐4” long and 0.4‐1.6” wide 1‐2” long and about 3/8” wide Upper surface green‐gray; lower Silvery on both top and boom surface silvery‐gray Leaves emerge 1‐2 weeks aer flowering Chris Evans, Illinois Wildlife Acon Plan, Bugwood.org Flowers Flowers hp://prairieform.com/ Yellow, bell shaped flower clus‐ Small yellow flower clusters; ters; appear between May and appear April to mid‐late summer June Insect pollinated; esp. aracve Insect pollinated to honey bees and bumble bees Male and female flowers on Male and female flowers on separate plants separate plants Flowers lack petals and have 4 Male flowers are longer (2‐3 petal‐like sepals and 4 stamens mm) and have 8 stamens John M. Randall, The Nature Conservancy; Bugword.org Photo ©Al Schneider, www.swcoloradowildflowers.com Fruit Fruit Newly‐formed fruits are silver Fruit yellow or light orange in but become tan or brown as early summer; turn red later in they mature season Shaped like small olives; contain Fruit drupe shaped; contain a single seed single seed Eaten by over 50 species of bird Important food source for many or wildlife, 12 of them being birds and animals including mule game birds deer, bears, rodents and several bird species Jan Samanek, State Phytosanitary Administraon, Bug‐ wood.org Photo ©Al Schneider, www.swcoloradowildflowers.com Russian Olive vs.
    [Show full text]
  • List of Plants for Great Sand Dunes National Park and Preserve
    Great Sand Dunes National Park and Preserve Plant Checklist DRAFT as of 29 November 2005 FERNS AND FERN ALLIES Equisetaceae (Horsetail Family) Vascular Plant Equisetales Equisetaceae Equisetum arvense Present in Park Rare Native Field horsetail Vascular Plant Equisetales Equisetaceae Equisetum laevigatum Present in Park Unknown Native Scouring-rush Polypodiaceae (Fern Family) Vascular Plant Polypodiales Dryopteridaceae Cystopteris fragilis Present in Park Uncommon Native Brittle bladderfern Vascular Plant Polypodiales Dryopteridaceae Woodsia oregana Present in Park Uncommon Native Oregon woodsia Pteridaceae (Maidenhair Fern Family) Vascular Plant Polypodiales Pteridaceae Argyrochosma fendleri Present in Park Unknown Native Zigzag fern Vascular Plant Polypodiales Pteridaceae Cheilanthes feei Present in Park Uncommon Native Slender lip fern Vascular Plant Polypodiales Pteridaceae Cryptogramma acrostichoides Present in Park Unknown Native American rockbrake Selaginellaceae (Spikemoss Family) Vascular Plant Selaginellales Selaginellaceae Selaginella densa Present in Park Rare Native Lesser spikemoss Vascular Plant Selaginellales Selaginellaceae Selaginella weatherbiana Present in Park Unknown Native Weatherby's clubmoss CONIFERS Cupressaceae (Cypress family) Vascular Plant Pinales Cupressaceae Juniperus scopulorum Present in Park Unknown Native Rocky Mountain juniper Pinaceae (Pine Family) Vascular Plant Pinales Pinaceae Abies concolor var. concolor Present in Park Rare Native White fir Vascular Plant Pinales Pinaceae Abies lasiocarpa Present
    [Show full text]
  • Ecological Site R058AC619MT Saline Subirrigated (Ssb) RRU 58A-C 11-14" P.Z
    Natural Resources Conservation Service Ecological site R058AC619MT Saline Subirrigated (SSb) RRU 58A-C 11-14" p.z. Accessed: 09/26/2021 General information Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site. Figure 1. Mapped extent Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated. Similar sites R058AC043MT Wet Meadow (WM) RRU 58A-C 11-14" p.z. The Wet Meadow site differs mainly by being wet at or near the surface for most of the growing season. R058AC618MT Saline Overflow (SOv) RRU 58A-C 11-14" p.z. The Saline Overflow site differs mainly by being associated with ephemeral streams and having no permanent water table. R058AC044MT Subirrigated (Sb) RRU 58A-C 11-14" p.z. The Subirrigated site differs mainly by not being salt affected. Table 1. Dominant plant species Tree Not specified Shrub (1) Shepherdia argentea (2) Sarcobatus vermiculatus Herbaceous (1) Spartina gracilis (2) Sporobolus airoides Physiographic features This ecological site occurs on subirrigated lands where salt and/or alkali accumulations are apparent and salt-tolerant species dominate the plant community. This site can also occur around pond margins, particularly if the water recedes (e.g., drawdown zone) but a permanent water table is maintained. Slopes are mainly less than 4 percent, and aspect is not significant.
    [Show full text]