Ostrander Point Vascular Plants Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE
Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE LILIACEAE de Jussieu 1789 (Lily Family) (also see AGAVACEAE, ALLIACEAE, ALSTROEMERIACEAE, AMARYLLIDACEAE, ASPARAGACEAE, COLCHICACEAE, HEMEROCALLIDACEAE, HOSTACEAE, HYACINTHACEAE, HYPOXIDACEAE, MELANTHIACEAE, NARTHECIACEAE, RUSCACEAE, SMILACACEAE, THEMIDACEAE, TOFIELDIACEAE) As here interpreted narrowly, the Liliaceae constitutes about 11 genera and 550 species, of the Northern Hemisphere. There has been much recent investigation and re-interpretation of evidence regarding the upper-level taxonomy of the Liliales, with strong suggestions that the broad Liliaceae recognized by Cronquist (1981) is artificial and polyphyletic. Cronquist (1993) himself concurs, at least to a degree: "we still await a comprehensive reorganization of the lilies into several families more comparable to other recognized families of angiosperms." Dahlgren & Clifford (1982) and Dahlgren, Clifford, & Yeo (1985) synthesized an early phase in the modern revolution of monocot taxonomy. Since then, additional research, especially molecular (Duvall et al. 1993, Chase et al. 1993, Bogler & Simpson 1995, and many others), has strongly validated the general lines (and many details) of Dahlgren's arrangement. The most recent synthesis (Kubitzki 1998a) is followed as the basis for familial and generic taxonomy of the lilies and their relatives (see summary below). References: Angiosperm Phylogeny Group (1998, 2003); Tamura in Kubitzki (1998a). Our “liliaceous” genera (members of orders placed in the Lilianae) are therefore divided as shown below, largely following Kubitzki (1998a) and some more recent molecular analyses. ALISMATALES TOFIELDIACEAE: Pleea, Tofieldia. LILIALES ALSTROEMERIACEAE: Alstroemeria COLCHICACEAE: Colchicum, Uvularia. LILIACEAE: Clintonia, Erythronium, Lilium, Medeola, Prosartes, Streptopus, Tricyrtis, Tulipa. MELANTHIACEAE: Amianthium, Anticlea, Chamaelirium, Helonias, Melanthium, Schoenocaulon, Stenanthium, Veratrum, Toxicoscordion, Trillium, Xerophyllum, Zigadenus. -
Soopolallie (Shepherdia Canadensis) Other Names: Soapberry, Canada Buffaloberry, Russet Buffaloberry
Soopolallie (Shepherdia canadensis) Other names: Soapberry, Canada buffaloberry, Russet buffaloberry. Background Soopolallie is a shrub in the Oleaster family (Elaeagnaceae). Other BC plants in this family include the wolf-willow and the naturalized Russian olive. The name ‘soopolallie’ is from the Chinook language for soap (soop) and berry (olallie) (Parish et al 1996). Plant Morphology Soopolallie is a deciduous shrub 1-2 metres tall with brownish branches that are covered with small brownish-orange scabs. The young branches are covered with many rusty spots, as are the undersides of the leaves. The leaves (sparsely distributed along the branches) are opposite and oval with dark green upper surfaces and silvery-whitish hairs on the under surfaces. The yellowish-brown inconspicuous flowers are borne in clusters on stems, before the leaves open. Male and female flowers are produced on separate plants. The fruits are small, soft, bright red berries that are oval and somewhat translucent. They are juicy and edible but extremely bitter and soapy to touch (Parish et al 1996). Ecology In British Columbia, the soopolallie is widespread and very common at low to subalpine elevations in dry to moist open forests, openings and clearings (Parish et al 1996). It is a transcontinental shrub that occurs sporadically in the pacific region (not at all on the Queen Charlotte Islands) with its occurrence increasing with increasing continentality. It is commonly associated with pinegrass (Calamagrostis rubescens), twinflower (Linnaea borealis), and falsebox (Paxistima myrsinites). Soopolallie has a symbiotic relationship with nitrogen- fixing organisms (Klinka et al 1989). Often, the soopolallie is found on gravelly, shallow soils (Hebda 1995). -
CBA/ABC Bulletin 35(1)
THE CANADIAN BOTANICAL ASSOCIATION BULLETIN DE LASSOCIATION BOTANIQUE DU CANADA February / février 2002 35(1) Montréal Patron / Président d'honneur Her Excellency the Right Honourable / Son excellence la très honorable Adrienne Clarkson, C.C., C.M.M., C.D. Governor General of Canada / Gouverneure générale du Canada On the inside / À l'intérieur I Presidents Message I This issue of the bulletin is the last one to be produced by Denis Lauzer. I am sure you will all agree that Denis has done a wonderful job bringing us all up to date on the current happenings in our Association. Thank you, Denis, for all the 2 Page time you have invested producing such an excellent publication. Editors / La rédaction CBA Section and Committee Chairs The next issue of the Bulletin will be produced in Edmundston, NB, under the direction of our new Editor, Martin Dubé. We look forward to the continued production of an informative and interesting Bulletin under his editorship. Page 3 Plans are being finalized for our next Annual Meeting (August 4-7), to be President's Message (continued) held at the Pyle Conference Center on the campus of the University of Wisconsin Macoun Travel Boursary in Madison, Wisconsin. The deadline for submission of abstracts is now estab- 2002 CBA Annual Meeting / lished (April 1, 2002) and we now have a list of planned Symposia. The subject Congrès annuel de l'ABC 2002 of the Plenary Symposium is Evolution: Highlighting Plants, organized by Patricia Gensel. Sectional Symposia of the Botanical Socie ty of America (with input from Page 4 CBA Sections) include the following: Poorly Known Economic Plants of Canada - 32. -
Draft Plant Propagation Protocol
Plant Propagation Protocol for Zigadenus elegans ESRM 412 – Native Plant Production TAXONOMY Family Names Family Scientific Name: Liliaceae Family Common Name: Lily family Scientific Names Genus: Zigadenus Michx. Species: Zigadenus elegans Species Authority: Pursh Variety: Sub-species: Zigadenus elegans ssp. elegans Zigadenus elegans ssp. glaucus Cultivar: Authority for Variety/Sub-species: Common Synonym(s) Anticlea coloradensis (Rydb.) Rydb. Anticlea elegans (Pursh) Rydb. Zigadenus alpinus Blank. Zigadenus elegans Pursh ssp. elegans 2 Common Name(s): Glaucous death camas, Mountain death camas, White camas 2 Species Code : ZIEL2 GENERAL INFORMATION Geographical range See above 1 Ecological distribution : Occurs in meadows, open forests and rocky slopes, at middle to high elevations in the mountains 2 Other sources indicate it can also be found in moist grasslands, river and lake shores, and bogs in coniferous forests. 6 9 It has also been listed as an indicator species for areas that have been former savanna's/woodlands. Climate and elevation range Subalpine meadows and moist screes at high elevations in the Rockies and Pacific Coast states. 12 Local habitat and abundance; may Occurs in sandy, moist soils. It can tolerate partial include commonly associated shade but also needs sunlight. 5 species It and other indicator species tend to be strongly limited to partial canopy conditions. In more heavily-wooded sites, these species are usually in a state of decline due to the increasing canopy closure above. They are therefore dependent on canopy gaps, edges, roadsides etc. in densely-wooded areas. 9 In Missouri it cam be found on the crevices and ledges of north-facing dolomite bluffs. -
Phylogenetic Relationships in Korean Elaeagnus L. Based on Nrdna ITS Sequences
Korean J. Plant Res. 27(6):671-679(2014) Print ISSN 1226-3591 http://dx.doi.org/10.7732/kjpr.2014.27.6.671 Online ISSN 2287-8203 Original Research Article Phylogenetic Relationships in Korean Elaeagnus L. Based on nrDNA ITS Sequences OGyeong Son1, Chang Young Yoon2 and SeonJoo Park1* 1Department of Life Science, Yeungnam University, Gyeongsan 712-749, Korea 2Department of Biotechnology, Shingyeong University, Hwaseon 445-741, Korea Abstract - Molecular phylogenetic analyses of Korean Elaeagnus L. were conducted using seven species, one variety, one forma and four outgroups to evaluate their relationships and phylogeny. The sequences of internal transcribed spacer regions in nuclear ribosomal DNA were employed to construct phylogenetic relationships using maximum parsimony (MP) and Bayesian analysis. Molecular phylogenetic analysis revealed that Korean Elaeagnus was a polyphyly. E. umbellata var. coreana formed a subclade with E. umbellata. Additionally, the genetic difference between E. submacrophylla and E. macrophylla was very low. Moreover, E. submacrophylla formed a branch from E. macrophylla, indicating that E. submacrophylla can be regarded as a variety. However, several populations of this species were not clustered as a single clade; therefore, further study should be conducted using other molecular markers. Although E. glabra f. oxyphylla was distinct in morphological characters of leaf shape with E. glabra. But E. glabra f. oxyphylla was formed one clade by molecular phylogenetic with E. glabra. Additionally, this study clearly demonstrated that E. pungens occurs in Korea, although it was previously reported near South Korea in Japan and China. According to the results of ITS regions analyses, it showed a resolution and to verify the relationship between interspecies of Korean Elaeagnus. -
Native Nebraska Woody Plants
THE NEBRASKA STATEWIDE ARBORETUM PRESENTS NATIVE NEBRASKA WOODY PLANTS Trees (Genus/Species – Common Name) 62. Atriplex canescens - four-wing saltbrush 1. Acer glabrum - Rocky Mountain maple 63. Atriplex nuttallii - moundscale 2. Acer negundo - boxelder maple 64. Ceanothus americanus - New Jersey tea 3. Acer saccharinum - silver maple 65. Ceanothus herbaceous - inland ceanothus 4. Aesculus glabra - Ohio buckeye 66. Cephalanthus occidentalis - buttonbush 5. Asimina triloba - pawpaw 67. Cercocarpus montanus - mountain mahogany 6. Betula occidentalis - water birch 68. Chrysothamnus nauseosus - rabbitbrush 7. Betula papyrifera - paper birch 69. Chrysothamnus parryi - parry rabbitbrush 8. Carya cordiformis - bitternut hickory 70. Cornus amomum - silky (pale) dogwood 9. Carya ovata - shagbark hickory 71. Cornus drummondii - roughleaf dogwood 10. Celtis occidentalis - hackberry 72. Cornus racemosa - gray dogwood 11. Cercis canadensis - eastern redbud 73. Cornus sericea - red-stem (redosier) dogwood 12. Crataegus mollis - downy hawthorn 74. Corylus americana - American hazelnut 13. Crataegus succulenta - succulent hawthorn 75. Euonymus atropurpureus - eastern wahoo 14. Fraxinus americana - white ash 76. Juniperus communis - common juniper 15. Fraxinus pennsylvanica - green ash 77. Juniperus horizontalis - creeping juniper 16. Gleditsia triacanthos - honeylocust 78. Mahonia repens - creeping mahonia 17. Gymnocladus dioicus - Kentucky coffeetree 79. Physocarpus opulifolius - ninebark 18. Juglans nigra - black walnut 80. Prunus besseyi - western sandcherry 19. Juniperus scopulorum - Rocky Mountain juniper 81. Rhamnus lanceolata - lanceleaf buckthorn 20. Juniperus virginiana - eastern redcedar 82. Rhus aromatica - fragrant sumac 21. Malus ioensis - wild crabapple 83. Rhus copallina - flameleaf (shining) sumac 22. Morus rubra - red mulberry 84. Rhus glabra - smooth sumac 23. Ostrya virginiana - hophornbeam (ironwood) 85. Rhus trilobata - skunkbush sumac 24. Pinus flexilis - limber pine 86. Ribes americanum - wild black currant 25. -
Swing Through
Swing Through 20m Swing Through is an interactive agility garden that connects the user to Canada’s diverse landscape, as well as its major economic industry. The garden is a series of thirteen finished lumber posts that dangle from a large steel structure, creating “tree swings”. On the swings are climbing holds where visitors can use the holds to climb up and across the tree swings. Directly under the tree swings are thirteen colour-coordinated stumps that give the user an extra boost, if needed. The thirteen timber tree swings represent Canada’s ten provinces and three territories by using wood from the official provincial and territorial trees. Surrounding this structure of Canadian trees is a garden divided into thirteen sections displaying the native plants of each province and territory. This representative regional plantings encompassing the swings, creating a soft edge. 10m Swing Through allows visitors to touch, smell, and play with the various YT NT NU BC AB SK MB ON QC NL NB PE NS natural elements that make our country so green, prosperous and beautiful. PLAN | 1:75 Yukon Nunavut Alberta Manitoba Quebec New Brunswick Nova Scotia Tree: Subapline fir, Abies lasiocarpa Tree: Balsam Poplar, Populus balsamifera Tree: Lodgepole pine, Pinus contorta Tree: Balsam fir, Abies balsamea Tree: Yellow birch, Betula alleghaniensis Tree: Balsam fir, Abies balsamea Tree: Red spruce, Picea rubens Plants: Epilobium angustifolium, Plants: Saxifraga oppositifolia, Rubus Plants: Rosa acicularis Prunus virginiana, Plants: Pulsatilla ludoviciana, -
Biological Resources Assessment the Ranch ±530- Acre Study Area City of Rancho Cordova, California
Biological Resources Assessment The Ranch ±530- Acre Study Area City of Rancho Cordova, California Prepared for: K. Hovnanian Homes October 13, 2017 Prepared by: © 2017 TABLE OF CONTENTS 1.0 Introduction ......................................................................................................................... 1 1.1. Project Description ........................................................................................................... 1 2.0 Regulatory Framework ........................................................................................................ 2 2.1. Federal Regulations .......................................................................................................... 2 2.1.1. Federal Endangered Species Act ............................................................................... 2 2.1.2. Migratory Bird Treaty Act ......................................................................................... 2 2.1.3. The Bald and Golden Eagle Protection Act ............................................................... 2 2.2. State Jurisdiction .............................................................................................................. 3 2.2.1. California Endangered Species Act ........................................................................... 3 2.2.2. California Department of Fish and Game Codes ...................................................... 3 2.2.3. Native Plant Protection Act ..................................................................................... -
Towards Resolving Lamiales Relationships
Schäferhoff et al. BMC Evolutionary Biology 2010, 10:352 http://www.biomedcentral.com/1471-2148/10/352 RESEARCH ARTICLE Open Access Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences Bastian Schäferhoff1*, Andreas Fleischmann2, Eberhard Fischer3, Dirk C Albach4, Thomas Borsch5, Günther Heubl2, Kai F Müller1 Abstract Background: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales. -
Alpine Flora
ALPINE FLORA -- PLACER GULCH Scientific and common names mostly conform to those given by John Kartesz at bonap.net/TDC FERNS & FERN ALLIES CYSTOPTERIDACEAE -- Bladder Fern Family Cystopteris fragilis Brittle Bladder Fern delicate feathery fronds hiding next to rocks and cliffs PTERIDACEAE -- Maidenhair Fern Family Cryptogramma acrostichoides American Rockbrake two different types of fronds; talus & rocky areas GYMNOSPERMS PINACEAE -- Pine Family Picea englemannii Englemann's Spruce ANGIOSPERMS -- MONOCOTS CYPERACEAE -- Sedge Family Carex haydeniana Hayden's Sedge very common alpine sedge; compact, dark, almost triangular inflorescence Eriophorum chamissonis Chamisso's Cotton-Grass Cottony head; no leaves on culm ALLIACEAE -- Onion Family Allium geyeri Geyer's Onion pinkish; onion smell LILIACEAE -- Lily Family Llyodia serotina Alp Lily white; small plant in alpine turf MELANTHIACEAE -- False Hellebore Family Anticlea elegans False Deathcamas greenish white; showy raceme above basal grass-like leaves Veratrum californicum Cornhusk Lily; CA False Hellebore greenish; huge lvs; huge plant; mostly subalpine ORCHIDACEAE -- Orchid Family Plantanthera aquilonis Green Bog Orchid greenish, in bracteate spike, spur about as long as or a bit shorter than lip POACEAE -- Grass Family Deschampsia caespitosa Tufted Hair Grass open inflorescence; thin, wiry leaves; 2 florets/spikelet; glumes longer than low floret Festuca brachyphylla ssp. coloradoensis Short-leaf Fescue dark; narrow inflorescence; thin, wiry leaves Phleum alpinum Mountain Timothy dark; -
Rebecca K. Swadek Tony L. Burgess
THE VASCULAR FLORA OF THE NORTH CENTRAL TEXAS WALNUT FORMATION Rebecca K. Swadek Tony L. Burgess Texas Christian University Texas Christian University Department of Environmental Science Department of Environmental Science Botanical Research Institute of Texas TCU Box 298830 1700 University Drive Fort Worth, Texas 76129, U.S.A. Fort Worth, Texas 76107-3400, U.S.A. [email protected] [email protected] ABSTRACT Political boundaries frequently define local floras. This floristic project takes a geological approach inspired by Dalea reverchonii (Comanche Peak prairie clover), which is primarily endemic to glades of the Walnut Formation. The Cretaceous Walnut Formation (Comanchean) lies on the drier western edge of the Fort Worth Prairie in North Central Texas. Its shallow limestone soils, formed from alternating layers of hard limestone and clayey marl, support a variety of habitats. Glades of barren limestone typically appear on ridgetops, grassland savannas form on eroding hillslopes, and seeps support diverse hyperseasonal vegetation. Vouchers were collected from January 2010 to June 2012 resulting in 469 infraspecific taxa, 453 species in 286 genera and 79 families. The richest five plant families are Asteraceae (74 taxa), Poa- ceae (73), Fabaceae (34), Euphorbiaceae (18), and Cyperaceae (17). There are 61 introduced species. Results indicate floristic affinities to limestone cedar glades of the Southeastern United States, the Edwards Plateau of Central Texas, and calcareous Apacherian Savannas of Southwestern North America. RESUMEN Las fronteras políticas definen frecuentemente las floras locales. Este proyecto florístico toma una aproximación geológica inspirada en Dalea reverchonii (trébol de la paradera de Comanche Peak), que es primariamente endémico de los claros de la formación Walnut. -
Species List For: Valley View Glades NA 418 Species
Species List for: Valley View Glades NA 418 Species Jefferson County Date Participants Location NA List NA Nomination and subsequent visits Jefferson County Glade Complex NA List from Gass, Wallace, Priddy, Chmielniak, T. Smith, Ladd & Glore, Bogler, MPF Hikes 9/24/80, 10/2/80, 7/10/85, 8/8/86, 6/2/87, 1986, and 5/92 WGNSS Lists Webster Groves Nature Study Society Fieldtrip Jefferson County Glade Complex Participants WGNSS Vascular Plant List maintained by Steve Turner Species Name (Synonym) Common Name Family COFC COFW Acalypha virginica Virginia copperleaf Euphorbiaceae 2 3 Acer rubrum var. undetermined red maple Sapindaceae 5 0 Acer saccharinum silver maple Sapindaceae 2 -3 Acer saccharum var. undetermined sugar maple Sapindaceae 5 3 Achillea millefolium yarrow Asteraceae/Anthemideae 1 3 Aesculus glabra var. undetermined Ohio buckeye Sapindaceae 5 -1 Agalinis skinneriana (Gerardia) midwestern gerardia Orobanchaceae 7 5 Agalinis tenuifolia (Gerardia, A. tenuifolia var. common gerardia Orobanchaceae 4 -3 macrophylla) Ageratina altissima var. altissima (Eupatorium rugosum) white snakeroot Asteraceae/Eupatorieae 2 3 Agrimonia pubescens downy agrimony Rosaceae 4 5 Agrimonia rostellata woodland agrimony Rosaceae 4 3 Allium canadense var. mobilense wild garlic Liliaceae 7 5 Allium canadense var. undetermined wild garlic Liliaceae 2 3 Allium cernuum wild onion Liliaceae 8 5 Allium stellatum wild onion Liliaceae 6 5 * Allium vineale field garlic Liliaceae 0 3 Ambrosia artemisiifolia common ragweed Asteraceae/Heliantheae 0 3 Ambrosia bidentata lanceleaf ragweed Asteraceae/Heliantheae 0 4 Ambrosia trifida giant ragweed Asteraceae/Heliantheae 0 -1 Amelanchier arborea var. arborea downy serviceberry Rosaceae 6 3 Amorpha canescens lead plant Fabaceae/Faboideae 8 5 Amphicarpaea bracteata hog peanut Fabaceae/Faboideae 4 0 Andropogon gerardii var.