An Ancient Mammalian Gene Evidence That Thymus Leukemia

Total Page:16

File Type:pdf, Size:1020Kb

An Ancient Mammalian Gene Evidence That Thymus Leukemia Hyperconservation of the Putative Antigen Recognition Site of the MHC Class I-b Molecule TL in the Subfamily Murinae: Evidence That Thymus Leukemia Antigen Is This information is current as an Ancient Mammalian Gene of September 24, 2021. Beckley K. Davis, Richard G. Cook, Robert R. Rich and John R. Rodgers J Immunol 2002; 169:6890-6899; ; doi: 10.4049/jimmunol.169.12.6890 Downloaded from http://www.jimmunol.org/content/169/12/6890 References This article cites 57 articles, 20 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/169/12/6890.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 24, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2002 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Hyperconservation of the Putative Antigen Recognition Site of the MHC Class I-b Molecule TL in the Subfamily Murinae: Evidence That Thymus Leukemia Antigen Is an Ancient Mammalian Gene1 Beckley K. Davis, Richard G. Cook, Robert R. Rich,2 and John R. Rodgers3 “Classical” MHC class I (I-a) genes are extraordinarily polymorphic, but “nonclassical” MHC class I (I-b) genes are monomorphic or oligomorphic. Although diversifying (positive) Darwinian selection is thought to explain the origin and maintenance of MHC class I-a polymorphisms, genetic mechanisms underlying MHC class I-b evolution are uncertain. In one extreme model, MHC class I-b loci are derived by gene duplication from MHC class I-a alleles but rapidly drift into functional obsolescence and are eventually deleted. In this model, extant MHC class I-b genes are relatively young, tend to be dysfunctional or pseudogenic, and orthologies are restricted to close taxa. An alternative model proposed that the mouse MHC class I-b gene thymus leukemia Ag (TL) arose Downloaded from ϳ100 million years ago, near the time of the mammalian radiation. To determine the mode of evolution of TL, we cloned TL from genomic DNA of 11 species of subfamily Murinae. Every sample we tested contained TL, suggesting this molecule has been maintained throughout murine evolution. The sequence similarity of TL orthologs ranged from 85–99% and was inversely pro- portional to taxonomic distance. The sequences showed high conservation throughout the entire extracellular domains with exceptional conservation in the putative Ag recognition site. Our results strengthen the hypotheses that TL has evolved a spe- cialized function and represents an ancient MHC class I-b gene. The Journal of Immunology, 2002, 169: 6890–6899. http://www.jimmunol.org/ he origin and function of MHC-linked class I-b genes Obata et al. (7) studied seven alleles of TL from inbred strains remains unresolved. One view suggests they derive from of Mus musculus and reported it is not closely related to other T “classical” class I-a MHC genes (1), the chief presenters mouse class I genes. They suggested TL originated at or before the of Ag peptides to T cells. Class I-a molecules exhibit extraordinary time of the mammalian radiation (ϳ100 million years ago polymorphism, apparently maintained by positive Darwinian se- (MYA)). Moreover, the ratio of nonsynonymous (dN) to synony- 4 Ͻ lection within the Ag recognition site (ARS) for the ability to mous (dS) substitutions in the putative ARS was 1 and not higher present diverse pathogen peptides (2). In contrast, class I-b genes than for non-ARS residues in TL, consistent with negative or neu- are monomorphic or oligomorphic. Hughes and Nei (1) suggest tral selection (7). The possibility of negative (purifying) selection by guest on September 24, 2021 that many mouse class I-b genes, including thymus leukemia Ags operating on TL, coupled with its apparently ancient origin, sug- (TL), do not have human orthologs but rather were more closely gested that TL may have evolved a specialized and highly con- related to mouse class I-a genes. They proposed that mouse class served function early in mammalian evolution. I-b genes were derived by gene duplication from mouse I-a alleles TLs are encoded by certain MHC class I-b genes within the T but then rapidly drifted into pseudogene status. Indeed, many class subregion (8). They are ϳ45-kDa cell surface glycoproteins non- ␤ ␤ I-b genes are poorly expressed in most cell types, either because of covalently associated with 2-microglobulin ( 2m) (3) and are ex- low transcription or protein instability, and some are clearly pseu- pressed on activated T cells (9), developing thymocytes and small dogenes (3). Moreover, some mouse class I-b genes such as Qa-2 intestinal epithelium, and intraepithelial lymphocytes (10, 11) and (4) and H2-B1 (5) still appear to be more closely related to mouse certain leukemias (12). Cell surface expression of TL is TAP-in- class I-a genes than to any rat MHC gene. This process is consis- dependent (13–15). The observations that TL is expressed at a site tent with Ohno’s (6) model of gene duplication, in which one enriched for ␥␦ T cells and is oligomorphic led to the hypothesis duplicated copy is released from selection pressure and usually that TL presents conserved Ags to ␥␦ T cells in the gut (10, 16, degenerates into a pseudogene. 17). However, no peptides or motifs have been characterized (13, 18), leaving open the possibility that TL does not present peptide. Unlike H2-M3 and Qa-1 (19–21), TL orthologs have not been reported in other species (22, 23). Obata et al. (7) suggested TL is Department of Immunology, Baylor College of Medicine, Houston, TX 77030 not closely related to other mouse H2 genes but their phylogenetic Received for publication August 26, 2002. Accepted for publication October 15, 2002. analysis could not rule out the possibility that TL arose relatively The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance recently from another mouse MHC class I gene. The “young TL ” with 18 U.S.C. Section 1734 solely to indicate this fact. model is consistent with the model of Hughes and Nei (1) that 1 This work was supported by the National Institutes of Health Grants RO1 AI30036 monomorphic MHC class I-b genes arise by duplication from and AI18882 (to R.R.R.) and RO1 AI17897 (to R.G.C. and J.R.R.). MHC class I-a alleles. However, to achieve the degree of diver- 2 Emory University School of Medicine, Atlanta, GA 30322. gence noted by Obata (7), the young TL models require that a 3 Address correspondence and reprint requests to Dr. John R. Rodgers, Department of proto-TL gene would undergo rapid diversifying evolution (posi- Immunology, Baylor College of Medicine, One Baylor Plaza Room M929, Houston, tive selection) for some new function, rather than degenerate under TX 77030. E-mail address: [email protected] neutral evolution. In contrast, the “old TL ” model posits that TL is 4 Abbreviations used in this paper: ARS, Ag recognition site; TL, thymus leukemia as old as it appears, that is, that it has evolved like a molecular Ag; MYA, million years ago; dN, rate of nonsynonymous substitution; dS, rate of ␤ ␤ synonymous substitution; 2m, 2-microglobulin; cytb, cytochrome b. clock. This model leaves unspecified the origin of the proto-TL Copyright © 2002 by The American Association of Immunologists, Inc. 0022-1767/02/$02.00 The Journal of Immunology 6891 gene itself, for example, whether it arose from an early mammalian Table I. Revision of nomenclature of TL genes MHC class I-a allele. These two models differ chiefly in the time of divergence from non-TL MHC genes, and thus the rapidity with Old Nomenclature Relative which TL must have diverged from a putative MHC class I-a or- (phenotype) Locus/Strain New Nomenclature Expression igin. To distinguish between these models and obtain direct evi- TLa a1 (TLA) A/J MumuTL0101 High dence for the time of divergence, we collected TL sequences from TLa a2 (TLA) A/J MumuTL0102 High the murine genera Mus and Rattus. TLa a3 (TLA) A/J MumuTL0103 High a4 A The Old World subfamily Murinae within family Muridae in- TLa (TL ) A/J MumuTL0104 High TLa b (TLB) T3b/C3H MumuTL0201 Low cludes several lineages whose relationships are unclear. One lin- TLa c (TLC) T3d/BALB/cJ MumuTL0202 Low eage includes Rattus and its close allies, Tokudaia and Diplothrix TLa d (TLC) T18/BALB/cJ MumuTL0301 Intermediate (24). A second lineage includes Mus and, probably, Hybomys and TLa e (TLE) P/J MumuTL0401 High TLa f (TLF) 129/Boy MumuTL0501 Intermediate Mastomys. These two lineages diverged between 14 and 40 MYA. g G w1 (25, 26). The genus Mus consists of four subgenera, Mus, Nanno- TLa (TL ) TLa /molossinus MumuTL0302 Unknown mys (African pygmy mice), Pyromys (spiny mice), and Coelymys (shrew mice). These subgenera diverged ϳ9 MYA (27). We characterized the extracellular domains of 27 different TL total of 200 ng of genomic DNA was amplified using platinum Pfx (In- sequences from 10 species of Mus, including 2 subspecies from M.
Recommended publications
  • Evolutionary Characterization of a Y Chromosomal Sequence Conserved in the Genus Mus
    Genet. Res., Camb. (1988), 52, pp. 145-150 With 5 text-figures Printed in Great Britain 145 Evolutionary characterization of a Y chromosomal sequence conserved in the genus Mus YUTAKA NISHIOKA Department of Biology, McGill University, Montreal, Quebec, Canada H3A IBI (Received 8 October 1987 and in revised form 26 January 1988) Summary The extent of accumulation of mouse Y chromosomal repetitive sequences generally correlates with the known phylogenetic relationships in the genus Mus. However, we describe here a M. musculus Y chromosomal repetitive sequence, designated as ACClfl, whose accumulation patterns among eight Mus species do not correspond to their phylogenetic relationships. Although male-specific hybridization bands were present in all the species examined, significant accumulation (^ 200 copies) in the Y chromosomes was found in M. minutoides (subgenus Nannomys), M. pahari (subgenus Coelomys) and M. saxicola (subgenus Pyromys) as well as in the three closely related species M. hortulanus, M. musculus and M. spretus that belong to the subgenus Mus. Unexpectedly, the Y chromosomes of M. caroli and M. cookii (both subgenus Mus) had considerably reduced amounts of ACClfl-related sequences. Furthermore, in rats {Rattus norvegicus) the major accumulation sites appear to be autosomal. These observations suggest that caution must be taken in the interpretation of data obtained with repetitive sequences that have evolved quickly. 1. Introduction over 50 mouse (M. musculus) Y chromosomal sequences (Nishioka & Lamothe, 1987a). To date, 32 Recently several groups have isolated mouse DNA fragments were generated from 11 original (Mus musculus) Y chromosomal repetitive sequences isolates and their conservation in the genus Mus has (Bishop et al.
    [Show full text]
  • Quaternary Murid Rodents of Timor Part I: New Material of Coryphomys Buehleri Schaub, 1937, and Description of a Second Species of the Genus
    QUATERNARY MURID RODENTS OF TIMOR PART I: NEW MATERIAL OF CORYPHOMYS BUEHLERI SCHAUB, 1937, AND DESCRIPTION OF A SECOND SPECIES OF THE GENUS K. P. APLIN Australian National Wildlife Collection, CSIRO Division of Sustainable Ecosystems, Canberra and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) K. M. HELGEN Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution, Washington and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 341, 80 pp., 21 figures, 4 tables Issued July 21, 2010 Copyright E American Museum of Natural History 2010 ISSN 0003-0090 CONTENTS Abstract.......................................................... 3 Introduction . ...................................................... 3 The environmental context ........................................... 5 Materialsandmethods.............................................. 7 Systematics....................................................... 11 Coryphomys Schaub, 1937 ........................................... 11 Coryphomys buehleri Schaub, 1937 . ................................... 12 Extended description of Coryphomys buehleri............................ 12 Coryphomys musseri, sp.nov.......................................... 25 Description.................................................... 26 Coryphomys, sp.indet.............................................. 34 Discussion . ....................................................
    [Show full text]
  • Nansei Islands Biological Diversity Evaluation Project Report 1 Chapter 1
    Introduction WWF Japan’s involvement with the Nansei Islands can be traced back to a request in 1982 by Prince Phillip, Duke of Edinburgh. The “World Conservation Strategy”, which was drafted at the time through a collaborative effort by the WWF’s network, the International Union for Conservation of Nature (IUCN), and the United Nations Environment Programme (UNEP), posed the notion that the problems affecting environments were problems that had global implications. Furthermore, the findings presented offered information on precious environments extant throughout the globe and where they were distributed, thereby providing an impetus for people to think about issues relevant to humankind’s harmonious existence with the rest of nature. One of the precious natural environments for Japan given in the “World Conservation Strategy” was the Nansei Islands. The Duke of Edinburgh, who was the President of the WWF at the time (now President Emeritus), naturally sought to promote acts of conservation by those who could see them through most effectively, i.e. pertinent conservation parties in the area, a mandate which naturally fell on the shoulders of WWF Japan with regard to nature conservation activities concerning the Nansei Islands. This marked the beginning of the Nansei Islands initiative of WWF Japan, and ever since, WWF Japan has not only consistently performed globally-relevant environmental studies of particular areas within the Nansei Islands during the 1980’s and 1990’s, but has put pressure on the national and local governments to use the findings of those studies in public policy. Unfortunately, like many other places throughout the world, the deterioration of the natural environments in the Nansei Islands has yet to stop.
    [Show full text]
  • Genus/Species Skull Ht Lt Wt Stage Range Abalosia U.Pliocene S America Abelmoschomys U.Miocene E USA A
    Genus/Species Skull Ht Lt Wt Stage Range Abalosia U.Pliocene S America Abelmoschomys U.Miocene E USA A. simpsoni U.Miocene Florida(US) Abra see Ochotona Abrana see Ochotona Abrocoma U.Miocene-Recent Peru A. oblativa 60 cm? U.Holocene Peru Abromys see Perognathus Abrosomys L.Eocene Asia Abrothrix U.Pleistocene-Recent Argentina A. illuteus living Mouse Lujanian-Recent Tucuman(ARG) Abudhabia U.Miocene Asia Acanthion see Hystrix A. brachyura see Hystrix brachyura Acanthomys see Acomys or Tokudaia or Rattus Acarechimys L-M.Miocene Argentina A. minutissimus Miocene Argentina Acaremys U.Oligocene-L.Miocene Argentina A. cf. Murinus Colhuehuapian Chubut(ARG) A. karaikensis Miocene? Argentina A. messor Miocene? Argentina A. minutissimus see Acarechimys minutissimus Argentina A. minutus Miocene? Argentina A. murinus Miocene? Argentina A. sp. L.Miocene Argentina A. tricarinatus Miocene? Argentina Acodon see Akodon A. angustidens see Akodon angustidens Pleistocene Brazil A. clivigenis see Akodon clivigenis Pleistocene Brazil A. internus see Akodon internus Pleistocene Argentina Acomys L.Pliocene-Recent Africa,Europe,W Asia,Crete A. cahirinus living Spiny Mouse U.Pleistocene-Recent Israel A. gaudryi U.Miocene? Greece Aconaemys see Pithanotomys A. fuscus Pliocene-Recent Argentina A. f. fossilis see Aconaemys fuscus Pliocene Argentina Acondemys see Pithanotomys Acritoparamys U.Paleocene-M.Eocene W USA,Asia A. atavus see Paramys atavus A. atwateri Wasatchian W USA A. cf. Francesi Clarkforkian Wyoming(US) A. francesi(francesci) Wasatchian-Bridgerian Wyoming(US) A. wyomingensis Bridgerian Wyoming(US) Acrorhizomys see Clethrionomys Actenomys L.Pliocene-L.Pleistocene Argentina A. maximus Pliocene Argentina Adelomyarion U.Oligocene France A. vireti U.Oligocene France Adelomys U.Eocene France A.
    [Show full text]
  • Diversification of Muroid Rodents Driven by the Late Miocene Global Cooling Nelish Pradhan University of Vermont
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2018 Diversification Of Muroid Rodents Driven By The Late Miocene Global Cooling Nelish Pradhan University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Biochemistry, Biophysics, and Structural Biology Commons, Evolution Commons, and the Zoology Commons Recommended Citation Pradhan, Nelish, "Diversification Of Muroid Rodents Driven By The Late Miocene Global Cooling" (2018). Graduate College Dissertations and Theses. 907. https://scholarworks.uvm.edu/graddis/907 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. DIVERSIFICATION OF MUROID RODENTS DRIVEN BY THE LATE MIOCENE GLOBAL COOLING A Dissertation Presented by Nelish Pradhan to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Biology May, 2018 Defense Date: January 8, 2018 Dissertation Examination Committee: C. William Kilpatrick, Ph.D., Advisor David S. Barrington, Ph.D., Chairperson Ingi Agnarsson, Ph.D. Lori Stevens, Ph.D. Sara I. Helms Cahan, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT Late Miocene, 8 to 6 million years ago (Ma), climatic changes brought about dramatic floral and faunal changes. Cooler and drier climates that prevailed in the Late Miocene led to expansion of grasslands and retreat of forests at a global scale.
    [Show full text]
  • Pontificia Universidad Católica Del Ecuador
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Repositorio Digital PUCE PONTIFICIA UNIVERSIDAD CATÓLICA DEL ECUADOR FACULTAD DE CIENCIAS EXACTAS Y NATURALES ESCUELA DE BIOLOGÍA Genetic and morphological variability of the páramo Oldfield mouse Thomasomys paramorum Thomas, 1898 (Rodentia: Cricetidae): evidence for a complex of species Tesis previa a la obtención del título de Magister en Biología de la Conservación CARLOS ESTEBAN BOADA TERÁN Quito, 2013 II Certifico que la Tesis de Maestría en Biología de la Conservación del candidato Carlos Esteban Boada Terán ha sido concluida de conformidad con las normas establecidas; por tanto, puede ser presentada para la calificación correspondiente. Dr. Omar Lenin Torres Carvajal Director de Tesis Mayo de 2013 III Dedicado a mi hijo Joaquín IV ACKNOWLEDGMENTS This manuscript was presented as a requirement for graduation at Pontificia Universidad Católica del Ecuador, Master´s program in Conservation Biology. I thank O. Torres- Carvajal for his mentorship, J. Patton for reviewing the first draft of the manuscript and provide valuable suggestions and comments, and S. Burneo for allowing the examination of specimens deposited at Museo de Zoología (QCAZ), sección Mastozoología. For field support I thank Viviana Narváez, Daniel Chávez, Roberto Carrillo, Simón Lobos, Julia Salvador, Adriana Argoti and Amy Scott. Finally I am grateful to Mary Eugenia Ordóñez, Gaby Nichols, Andrea Manzano and Diana Flores for their help in the laboratory. I thank to SENESCYT because most laboratory equipment was purchased with the project "Inventory and Morphological Characterization and Genetic Diversity of Amphibians, Reptiles and Birds of the Andes of Ecuador", code PIC-08-0000470.
    [Show full text]
  • Evolutionary History of the Subgenus Mus in Eurasia with Special Emphasis on the House Mouse Mus Musculus
    Papers in Honour of Ken Aplin edited by Julien Louys, Sue O’Connor and Kristofer M. Helgen Helgen, Kristofer M., Julien Louys, and Sue O’Connor. 2020. The lives of creatures obscure, misunderstood, and wonderful: a volume in honour of Ken Aplin 1958–2019 ..........................149 Armstrong, Kyle N., Ken Aplin, and Masaharu Motokawa. 2020. A new species of extinct False Vampire Bat (Megadermatidae: Macroderma) from the Kimberley Region of Western Australia ........................................................................................................... 161 Cramb, Jonathan, Scott A. Hocknull, and Gilbert J. Price. 2020. Fossil Uromys (Rodentia: Murinae) from central Queensland, with a description of a new Middle Pleistocene species ............................................................................................................. 175 Price, Gilbert J., Jonathan Cramb, Julien Louys, Kenny J. Travouillon, Eleanor M. A. Pease, Yue-xing Feng, Jian-xin Zhao, and Douglas Irvin. 2020. Late Quaternary fossil vertebrates of the Broken River karst area, northern Queensland, Australia ........................ 193 Theden-Ringl, Fenja, Geoffrey S. Hope, Kathleen P. Hislop, and Benedict J. Keaney. 2020. Characterizing environmental change and species’ histories from stratified faunal records in southeastern Australia: a regional review and a case study for the early to middle Holocene ........................................................................................... 207 Brockwell, Sally, and Ken Aplin. 2020. Fauna on
    [Show full text]
  • Evolutionary Characterization of a Y Chromosomal Sequence Conserved in the Genus Mus
    Genet. Res., Camb. (1988), 52, pp. 145-150 With 5 text-figures Printed in Great Britain 145 Evolutionary characterization of a Y chromosomal sequence conserved in the genus Mus YUTAKA NISHIOKA Department of Biology, McGill University, Montreal, Quebec, Canada H3A IBI (Received 8 October 1987 and in revised form 26 January 1988) Summary The extent of accumulation of mouse Y chromosomal repetitive sequences generally correlates with the known phylogenetic relationships in the genus Mus. However, we describe here a M. musculus Y chromosomal repetitive sequence, designated as ACClfl, whose accumulation patterns among eight Mus species do not correspond to their phylogenetic relationships. Although male-specific hybridization bands were present in all the species examined, significant accumulation (^ 200 copies) in the Y chromosomes was found in M. minutoides (subgenus Nannomys), M. pahari (subgenus Coelomys) and M. saxicola (subgenus Pyromys) as well as in the three closely related species M. hortulanus, M. musculus and M. spretus that belong to the subgenus Mus. Unexpectedly, the Y chromosomes of M. caroli and M. cookii (both subgenus Mus) had considerably reduced amounts of ACClfl-related sequences. Furthermore, in rats {Rattus norvegicus) the major accumulation sites appear to be autosomal. These observations suggest that caution must be taken in the interpretation of data obtained with repetitive sequences that have evolved quickly. 1. Introduction over 50 mouse (M. musculus) Y chromosomal sequences (Nishioka & Lamothe, 1987a). To date, 32 Recently several groups have isolated mouse DNA fragments were generated from 11 original (Mus musculus) Y chromosomal repetitive sequences isolates and their conservation in the genus Mus has (Bishop et al.
    [Show full text]
  • Phylogenetic Relationships and Divergence Times in Rodents Based on Both Genes and Fossils Ryan Norris University of Vermont
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2009 Phylogenetic Relationships and Divergence Times in Rodents Based on Both Genes and Fossils Ryan Norris University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Recommended Citation Norris, Ryan, "Phylogenetic Relationships and Divergence Times in Rodents Based on Both Genes and Fossils" (2009). Graduate College Dissertations and Theses. 164. https://scholarworks.uvm.edu/graddis/164 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. PHYLOGENETIC RELATIONSHIPS AND DIVERGENCE TIMES IN RODENTS BASED ON BOTH GENES AND FOSSILS A Dissertation Presented by Ryan W. Norris to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Biology February, 2009 Accepted by the Faculty of the Graduate College, The University of Vermont, in partial fulfillment of the requirements for the degree of Doctor of Philosophy, specializing in Biology. Dissertation ~xaminationCommittee: w %amB( Advisor 6.William ~il~atrickph.~. Duane A. Schlitter, Ph.D. Chairperson Vice President for Research and Dean of Graduate Studies Date: October 24, 2008 Abstract Molecular and paleontological approaches have produced extremely different estimates for divergence times among orders of placental mammals and within rodents with molecular studies suggesting a much older date than fossils. We evaluated the conflict between the fossil record and molecular data and find a significant correlation between dates estimated by fossils and relative branch lengths, suggesting that molecular data agree with the fossil record regarding divergence times in rodents.
    [Show full text]
  • Evolutionary and Functional Studies of the Mouse Retroviral Restriction Gene, Fvl
    Evolutionary and Functional Studies of the Mouse Retroviral Restriction Gene, Fvl Scott Anthony Ellis A thesis submitted in part fulfilment of the requirements of the University of London for the degree of Doctor of Philosophy March 2000 Virology Division National Institute for Medical Research The Ridgeway Mm Hill London NW71AA ProQuest Number: 10015911 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10015911 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract Fvl is a gene of mice known to restrict the replication of Murine Leukaemia virus (MLV) by blocking integration by an unknown mechanism. The gene itself is retroviral in origin, and is located on the distal part of chromosome 4. The sequence of markers known to flank Fvl in the mouse was used to identify sequence from the human homologues of these 2 genes. The construction of primers to these sequences permitted the screening of 2 YAC and a PAC human genomic libraries for clones containing either of these genes. The YAC libraries were negative for both markers.
    [Show full text]
  • Download Article (PDF)
    OCCASION P PER No. 297 Records of the Zoological Survey of ndia Li t of valid Rodent taxa (Class: Ma malia, Order: Rodentia) from Indian Subcontinent includ· g Myanmar M.S. PRAD AN AND S.S. TALMALE ZOOLOGIC L SURVEY OF I ' DIA OCCASIONAL PAPER No. 297 RECORDS OF THE ZOOLOGICAL SURVEY OF INDIA List of valid Rodent taxa (Class: Mammalia, Order: Rodentia) from Indian Subcontinent including Myanmar M.S. PRADHANI AND S.S. TALMALE2 Zoological Survey of India Western Regional Centre, Vidyanagar, Sector 29, Rawet Road PCNTDA Post, Pune, Maharashtra 411 044 Email: [email protected][email protected] Edited by the Director, Zoological Survey of India, Kolkata ~m Zoological Survey of India Kolkata CITATION Pradhan, M.S. and Talmale, S.S. 2009. List of valid Rodent taxa (Class : Mammalia; Order : Rodentia) from Indian Subcontinent including Myanmar, Rec. zool. Surv. India, Gcc. Paper No. 297 : 1-239. (Published by the Director, Zool. Surv. India, Kolkata) Published : October, 2009 ISBN J78-81-8171-224-0 t; Gnv!. of India, 2009 ALL RIGHTS RESERVED • No Part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publisher. • This book is sold subject to the condition that it shall not, by way of trade, be lent, resold, hired out or otherwise disposed off without the publisher's consent, in a form of binding or cover other than that in which, it is published. • The correct price of this publication is the price printed on this page.
    [Show full text]
  • The Testis-Determining Gene, SRY, Exists in Multiple Copies in Old World Rodents
    Genet. Res., Camb. (1994), 64, pp. 151-159 With 6 text-figures Copyright © 1994 Printed in Great Britain 151 The testis-determining gene, SRY, exists in multiple copies in Old World rodents CLAUDE M. NAGAMINE Department of Cell Biology, Vanderbilt University School of Medicine, Medical Center North, Room T2216, Nashville, TN USA 37232-2175 (Received 19 July 1994) Summary SR Y is a unique gene on the Y chromosome in most mammalian species including the laboratory mouse, Mus musculus, and the closely related European wild mouse species M. spicilegus, M. macedonicus, and M. spretus. In contrast, SR Y is present in 2-6 copies in the more distantly related Asian mouse species M. caroli, M. cervicolor, and M. cookii and in 2—13 copies in the related murid species Pyromys saxicola, Coelomys pahari, Nannomys minutoides, Mastomys natalensis, and Rattus norvegicus. Copy numbers do not correlate with known phylogenetic relationships suggesting that SR Y has undergone a rapid and complex evolution in these species. SRY was recently proposed as a molecular probe for phylogenetic inferences. The presence of multiple SR Y genes in a wide range of murid species and genera, and at least one cricetid species, necessitates caution in the use of SR Y for phylogenetic studies in the Rodentia unless it is ascertained that multiple SR Y genes do not exist. family whose signature or characteristic amino acid 1. Introduction pattern is a DNA-binding domain of approximately Mammalian sex determination pivots on the absence 85 amino acids designated the HMG domain. The or presence of a Y chromosome.
    [Show full text]