Dental Care for the Patient with a Cleft Lip and Palate. Part 1: from Birth to the Mixed Dentition Stage

Total Page:16

File Type:pdf, Size:1020Kb

Dental Care for the Patient with a Cleft Lip and Palate. Part 1: from Birth to the Mixed Dentition Stage PRACTICE cleft lip and palate Dental care for the patient with a cleft lip and palate. Part 1: From birth to the mixed dentition stage C. J. Rivkin,1 O. Keith,2 P. J. M. Crawford,3 and I. S. Hathorn,4 This is the first of two articles looking at dental care for the patient with a cleft lip and palate. Part 1 looks at the needs of the child with a cleft lip and palate from birth through to the mixed dentition stage. left lip and palate is one of the com- dren with clefts should be carried out by a Cmonest congenital abnormalities. team whose members are able to provide Around 1 in every 700 live births in the a comprehensive service including: dental UK has a cleft of the lip and/or palate.1,2 care, audiology, specialised counselling The type of cleft can range from a simple and clinical genetics.4 The Clinical Stan- incomplete cleft of the soft palate, which dards Advisory Group Report on Cleft is not clinically obvious and may be undi- Lip and/or Palate stresses the importance agnosed in the early days, to a bilateral of team work between all the specialities.5 complete cleft involving both the soft and While the child with a cleft lip and hard palate, alveolus and lip (Fig. 1). palate should be treated as a ‘normal’ Management of the patient with a cleft patient whenever possible for regular is best carried out by a multi-disciplinary dental care, there are specific needs with team of healthcare professionals who regard to oral health which can be identi- undertake the cleft care from birth fied at different stages of dental develop- Fig. 1 A 2-month-old child with a complete through to adulthood.3 Specialities repre- ment through to the adult years. The bilateral cleft lip and palate sented on the cleft team in the UK vary dentist providing regular dental care from region to region but the core mem- might be a general dental practitioner, role of the dentist in the dental manage- bers of the team are the surgeon, ortho- community dentist or hospital dentist. ment of the patient with a cleft lip and dontist, speech and language therapist, The aim of this article is to discuss the palate. and ENT specialist. The Royal College of Surgeons Steering Group on Cleft Lip and The baby with a cleft lip and palate Palate recommends that the care of chil- In brief and the pre-mixed dentition years • The dentist has an essential role in Within the first few days after the birth, 1*Senior Community Dental Officer, Honorary giving early preventive advice for parents of babies born with a cleft lip and Lecturer in Paediatric Dentistry, Specialist in the young child with a cleft lip and palate will receive advice in hospital from Paediatric Dentistry, Community Unit, Division of palate the surgeon and orthodontist on the Child Dental Health, Bristol Dental Hospital, Lower immediate and long-term management Maudlin Street, Bristol BS1 2LY 2Consultant • The parents are helped to focus on Orthodontist, Maxillofacial Unit, Derbyshire Royal the importance of good oral health of their child. This will often be supple- Infirmary, London Road, Derby DE1 2QY for their child mented by written information on the 3Consultant Senior Lecturer in Paediatric Dentistry, condition itself, and related aspects Division of Child Dental Health, Bristol Dental • Advice on weaning practices and dentally-safe foods and drinks is including oral health and dental care. The Hospital, Lower Maudlin Street, Bristol BS1 2LY orthodontist is usually the first dental 4Consultant Orthodontist, Division of Child Dental important specialist whom the family will Health, Bristol Dental Hospital, Lower Maudlin • Particular attention should be given Street, Bristol BS1 2LY encounter. The cleft and cranio-facial *Correspondence to: Dental Department, Newton to toothbrushing in the cleft region unit may have a cleft co-ordinator or Heath Health Centre, 2 Old Church Street, Newton • Reassurance regarding the other named person, such as a clinical Heath, Manchester M40 2JF variability of dental development in REFEREED PAPER nursing specialist, to give support to the Received 17.03.98; accepted 04.06.99 the cleft area is helpful. family and advice on feeding. The health © British Dental Journal 2000; 188: 78–83 visitor and general medical practitioner 78 BRITISH DENTAL JOURNAL, VOLUME 188, NO. 2, JANUARY 22 2000 PRACTICE cleft lip and palate information, preventive advice and accli- matisation are the important aspects of these early visits. Parents can be particu- larly anxious about teething and what the teeth might look like when they eventu- ally erupt. Understandably, they often focus on the anticipated future appear- ance of their child’s teeth. It is important that the parents understand the value of good dental health from the outset and Fig. 2 High caries are helped to focus instead on this aspect rate in a child with a bilateral cleft lip and of the oral development. Establishing the palate. First dental correct dental habits from an early age visit at the age of will help to ensure the health of the pri- 7 years mary and permanent dentition. Pain, sepsis, or the need for dental extractions as a result of caries are unac- welcome opportunities for discussion ceptable for all children. However, early and support regarding their child’s dental removal of primary teeth in children with development. They do not seem to find a cleft is particularly contraindicated this intrusive, even though they are busy because of possible space loss, especially adjusting to the needs and demands of the in the upper arch, making orthodontic new baby, with possible feeding prob- treatment more difficult (Fig. 4). An lems. They are also mentally preparing for intact dentition will allow for the best the necessary lip surgery at about 3 possible results from later orthodontic months after birth (Fig. 3), and palate intervention if required. repair later in the first year.8 Parents appear to value dental advice even before the first teeth erupt and this is an ideal Considerations for planning time to discuss preventive care. They dental care appreciate the opportunity to ask ques- Medical history tions and to have time to discuss any con- The child with a cleft may have an associ- cerns about their child’s teeth. ated syndrome or sequence, such as Pierre In Bristol, the cleft team policy is for a Robin,9 or have additional medical prob- senior community dentist to see all babies lems. They may be under the care of a born with a cleft by the age of six months. paediatrician or other specialist. An This is arranged by the orthodontic team understanding of the medical condition is Fig. 3 The child in Fig. 1 shown at age 6 months. Bilateral cleft lip and palate involved with cleft care. Reassurance, essential to allow for appropriate dental following lip repair also have their traditional roles to play in post-natal support and ongoing care. There may be a hiatus with regard to dental care between this early stage and the first dental check-up, especially if the family general dental practitioner does not register children below a cer- Fig. 4 An 8-year-old tain age, (sometimes 2–2fi years). By this child with a left unilateral cleft lip time caries may already have developed and palate. Early 6,7 in the primary dentition. In some extraction of the cases there is not a family dentist and the upper right primary child then ‘slips through the net’ for reg- second molar has resulted in space ular dental care (Fig. 2). loss Parents of babies with a cleft appear to BRITISH DENTAL JOURNAL, VOLUME 188, NO. 2, JANUARY 22 2000 79 PRACTICE cleft lip and palate management and treatment planning. In which is sometimes anxious and over- to the parent and points out all the teeth particular, the implications of any med- protective. The dentist needs patience to present. Simple explanations of the vari- ical conditions in relation to dental care establish good communication, especially ability in dental development at the site of or dental disease, for example, a congeni- in the early years. Speech and hearing dif- the cleft may help to alleviate parental tal cardiac anomaly, should be fully dis- ficulties are a common occurrence in concerns. The number of teeth, and their cussed with the relevant specialist. patients with a cleft palate. Speech devel- eruption pattern, morphology and posi- Young patients with a cleft lip and palate opment is monitored from an early age by tion can be worrying for parents. There often have associated middle ear problems a speech and language therapist. Prob- may be missing teeth, commonly the and consequent hearing difficulties. These lems with speech and hearing may pre- upper primary lateral incisor (Fig. 6), or children may have a history of frequent sent a possible barrier to satisfactory there may be supernumerary teeth pre- courses of antibiotics for repeated ear communication with the child. sent in the cleft area. Teeth in the cleft infections. They may be under the care of It is important to get to know the region are often crowded and rotated. an ENT surgeon and require the placement patient as an individual and to allow time They may be of poor quality with of grommets under general anaesthesia. for the necessary behaviour management, hypoplastic enamel (Fig. 6) and can The need for general anaesthesia for surgi- acclimatisation and confidence building. therefore easily become carious.7 cal procedures might present an opportu- However, it is equally important to get to nity for necessary dental treatment to be know the parents, as gaining their trust carried out simultaneously.
Recommended publications
  • Selecting Different Approaches for Palate and Pharynx Surgery
    SPECIAL ISSUE 4: INVITED ARTICLE Selecting Different Approaches for Palate and Pharynx Surgery: Palatopharyngeal Arch Staging System Rodolfo Lugo-Saldaña1 , Karina Saldívar-Ponce2 , Irina González-Sáez3 , Daniela Hernández-Sirit4 , Patricia Mireles-García5 ABSTRACT The examination of the anatomical structures involved in the upper airway collapse in patients with the obstructive sleep apnea-hypopnea syndrome (OSAHS) is a key for integrated evaluation of patients. Our proposal is for a noninvasive classification system that guides us about the presence of anatomical differences between the palatopharyngeal muscle (PFM). The functions of the PFM are narrowing the isthmus, descending the palate, and raising the larynx during swallowing; these characteristics give the PFM a special role in the collapse of the lateral pharyngeal wall. Complete knowledge of the anatomy and classification of different variants can guide us to choose the appropriate surgical procedures for the lateral wall collapse. Until now there is not a consensus about description of the trajectory or anatomical variants of the PFM into oropharynx, the distance between both muscles, and the muscle tone. Here we also present the relationship between the lateral wall surgeries currently available (lateral pharyngoplasty by Cahali, expansion sphincteroplasty by Pang, relocation pharyngoplasty by Li, Roman blinds pharyngoplasty by Mantovani, and barbed sutures pharyngoplasty by Vicini) with the proposed classification of the palatopharyngeal arch staging system (PASS). Keywords:
    [Show full text]
  • Abbreviations - Diagnosis
    Abbreviations - Diagnosis AB abrasion AT attrition CA caries CFL cleft lip CFP cleft palate CLL cervical line lesion - See TR CMO craniomandibular osteopathy DT deciduous (primary) tooth DTC dentigerous cyst E enamel E/D enamel defect E/H enamel hypocalcification or hypoplasia FB foreign body FORL feline odontoclastic resorptive lesion - See TR FX fracture (tooth or jaw) G granuloma G/B buccal granuloma (cheek chewing lesion) G/L sublingual granuloma (tongue chewing lesion) G/E/L eosinophilic granuloma - lip G/E/P eosinophilic granuloma - palate G/E/T eosinophilic granuloma - tongue GH gingival hyperplasia GR gingival recession LAC laceration LAC/B laceration buccal (cheek) LAC/L laceration lip LAC/T laceration tongue MAL malocclusion MAL/1 class 1 malocclusion (neutroclusion - normal jaw relationship, specific teeth are incorrectly positioned) MAL/2 class 2 malocclusion (mandibular distoclusion - mandible shorter than maxilla) MAL/3 class 3 malocclusion (mandibular mesioclusion - maxilla shorter than mandible) BV buccoversion (crown directed towards cheek) CXB caudal crossbite DV distoversion (crown directed away from midline of dental arch) LABV labioversion (crown directed towards lip) LV linguoversion (crown directed towards tongue) MV mesioversion (crown directed towards midline of dental arch) OB open bite RXB rostral crossbite MN mandible or mandibular MN/FX mandibular fracture MX maxilla or maxillary MX/FX maxillary fracture OM oral mass OM/AD adenocarcinoma OM/EPA acanthomatous ameloblastoma (epulis) OM/EPF fibromatous epulis
    [Show full text]
  • Lecture 2 – Bone
    Oral Histology Summary Notes Enoch Ng Lecture 2 – Bone - Protection of brain, lungs, other internal organs - Structural support for heart, lungs, and marrow - Attachment sites for muscles - Mineral reservoir for calcium (99% of body’s) and phosphorous (85% of body’s) - Trap for dangerous minerals (ex:// lead) - Transduction of sound - Endocrine organ (osteocalcin regulates insulin signaling, glucose metabolism, and fat mass) Structure - Compact/Cortical o Diaphysis of long bone, “envelope” of cuboid bones (vertebrae) o 10% porosity, 70-80% calcified (4x mass of trabecular bone) o Protective, subject to bending/torsion/compressive forces o Has Haversian system structure - Trabecular/Cancellous o Metaphysis and epiphysis of long bone, cuboid bone o 3D branching lattice formed along areas of mechanical stress o 50-90% porosity, 15-25% calcified (1/4 mass of compact bone) o High surface area high cellular activity (has marrow) o Metabolic turnover 8x greater than cortical bone o Subject to compressive forces o Trabeculae lined with endosteum (contains osteoprogenitors, osteoblasts, osteoclasts) - Woven Bone o Immature/primitive, rapidly growing . Normally – embryos, newborns, fracture calluses, metaphyseal region of bone . Abnormally – tumors, osteogenesis imperfecta, Pagetic bone o Disorganized, no uniform orientation of collagen fibers, coarse fibers, cells randomly arranged, varying mineral content, isotropic mechanical behavior (behavior the same no matter direction of applied force) - Lamellar Bone o Mature bone, remodeling of woven
    [Show full text]
  • Vestibule Lingual Frenulum Tongue Hyoid Bone Trachea (A) Soft Palate
    Mouth (oral cavity) Parotid gland Tongue Sublingual gland Salivary Submandibular glands gland Esophagus Pharynx Stomach Pancreas (Spleen) Liver Gallbladder Transverse colon Duodenum Descending colon Small Jejunum Ascending colon intestine Ileum Large Cecum intestine Sigmoid colon Rectum Appendix Anus Anal canal © 2018 Pearson Education, Inc. 1 Nasopharynx Hard palate Soft palate Oral cavity Uvula Lips (labia) Palatine tonsil Vestibule Lingual tonsil Oropharynx Lingual frenulum Epiglottis Tongue Laryngopharynx Hyoid bone Esophagus Trachea (a) © 2018 Pearson Education, Inc. 2 Upper lip Gingivae Hard palate (gums) Soft palate Uvula Palatine tonsil Oropharynx Tongue (b) © 2018 Pearson Education, Inc. 3 Nasopharynx Hard palate Soft palate Oral cavity Uvula Lips (labia) Palatine tonsil Vestibule Lingual tonsil Oropharynx Lingual frenulum Epiglottis Tongue Laryngopharynx Hyoid bone Esophagus Trachea (a) © 2018 Pearson Education, Inc. 4 Visceral peritoneum Intrinsic nerve plexuses • Myenteric nerve plexus • Submucosal nerve plexus Submucosal glands Mucosa • Surface epithelium • Lamina propria • Muscle layer Submucosa Muscularis externa • Longitudinal muscle layer • Circular muscle layer Serosa (visceral peritoneum) Nerve Gland in Lumen Artery mucosa Mesentery Vein Duct oF gland Lymphoid tissue outside alimentary canal © 2018 Pearson Education, Inc. 5 Diaphragm Falciform ligament Lesser Liver omentum Spleen Pancreas Gallbladder Stomach Duodenum Visceral peritoneum Transverse colon Greater omentum Mesenteries Parietal peritoneum Small intestine Peritoneal cavity Uterus Large intestine Cecum Rectum Anus Urinary bladder (a) (b) © 2018 Pearson Education, Inc. 6 Cardia Fundus Esophagus Muscularis Serosa externa • Longitudinal layer • Circular layer • Oblique layer Body Lesser Rugae curvature of Pylorus mucosa Greater curvature Duodenum Pyloric Pyloric sphincter antrum (a) (valve) © 2018 Pearson Education, Inc. 7 Fundus Body Rugae of mucosa Pyloric Pyloric (b) sphincter antrum © 2018 Pearson Education, Inc.
    [Show full text]
  • Basic Histology (23 Questions): Oral Histology (16 Questions
    Board Question Breakdown (Anatomic Sciences section) The Anatomic Sciences portion of part I of the Dental Board exams consists of 100 test items. They are broken up into the following distribution: Gross Anatomy (50 questions): Head - 28 questions broken down in this fashion: - Oral cavity - 6 questions - Extraoral structures - 12 questions - Osteology - 6 questions - TMJ and muscles of mastication - 4 questions Neck - 5 questions Upper Limb - 3 questions Thoracic cavity - 5 questions Abdominopelvic cavity - 2 questions Neuroanatomy (CNS, ANS +) - 7 questions Basic Histology (23 questions): Ultrastructure (cell organelles) - 4 questions Basic tissues - 4 questions Bone, cartilage & joints - 3 questions Lymphatic & circulatory systems - 3 questions Endocrine system - 2 questions Respiratory system - 1 question Gastrointestinal system - 3 questions Genitouirinary systems - (reproductive & urinary) 2 questions Integument - 1 question Oral Histology (16 questions): Tooth & supporting structures - 9 questions Soft oral tissues (including dentin) - 5 questions Temporomandibular joint - 2 questions Developmental Biology (11 questions): Osteogenesis (bone formation) - 2 questions Tooth development, eruption & movement - 4 questions General embryology - 2 questions 2 National Board Part 1: Review questions for histology/oral histology (Answers follow at the end) 1. Normally most of the circulating white blood cells are a. basophilic leukocytes b. monocytes c. lymphocytes d. eosinophilic leukocytes e. neutrophilic leukocytes 2. Blood platelets are products of a. osteoclasts b. basophils c. red blood cells d. plasma cells e. megakaryocytes 3. Bacteria are frequently ingested by a. neutrophilic leukocytes b. basophilic leukocytes c. mast cells d. small lymphocytes e. fibrocytes 4. It is believed that worn out red cells are normally destroyed in the spleen by a. neutrophils b.
    [Show full text]
  • Oral-Peripheral Examination
    Oral-Peripheral Examination SCSD 632 Week 2 Phonological Disorders 3. General Cautions Relating to the Oral-Peripheral Examination a. Use your initial impressions of the child’s speech and facial characteristics to guide your examination. b. Remember that one facial or oral abnormality may be associated with others. c. If you suspect an abnormality in structure or function you may want to get a second opinion from a more experienced SLP or an SLP who specializes in craniofacial or motor-speech disorders before initiating referrals to other professionals. d. Remember that in the case of most “special” conditions, it is not your role to diagnose the condition; rather it is your responsibility to make appropriate referrals. e. Remember that in Canada you cannot usually refer directly to a specialist; be sensitive in your approach to the family doctor or referring physician. f. Be sensitive about how you present your results to parents, especially when you are recommending referrals to other professionals. The parents have the right to refuse the referral. g. An oral-peripheral examination is at least as important for your young patients as for your older patients. 1 Oral-Peripheral Examination | Oral and Facial Structure z Face z Lips z Teeth z Hard palate z Soft palate z Tongue When you perform an oral-peripheral examination what are you looking for when you examine each of the following structures? a. Facial Characteristics: overall expression and appearance, size, shape and overall symmetry of the head and facial structures b. Teeth: maxillary central incisors should extend just slightly over the mandibular central incisors; the lower canine tooth should be half-way between the upper lateral incisor and the upper canine tooth c.
    [Show full text]
  • Pharyngeal Flap
    Cincinnati Children’s Hospital Medical Center Craniofacial Center and VPI Clinic Pharyngeal Flap What is Velopharyngeal Insufficiency (VPI)? During normal speech, the soft palate (also called velum) raises and closes against the back wall of the throat (also called pharynx or pharyngeal wall). This closes off the nose from the mouth for speech. If the soft palate is not long enough to firmly close against the back of the throat during speech, sound and air can leak into the nose through the gap. This condition is called velopharyngeal insufficiency (VPI). VPI can affect resonance, which is the quality of the voice. The voice may sound hypernasal because there is too much sound in the nose during speech. (Hyponasality is the opposite problem. It is due to blockage in the nose and occurs when the person has a bad cold.) VPI can also affect speech sound production. The child may not have enough air pressure in the mouth to make certain speech sounds. Also, a leak of air through the nose may be heard during speech. To correct VPI for normal speech, the opening between the nose and mouth must be closed. The Furlow Z-plasty can correct VPI, particularly for children with a history of cleft palate or submucous cleft (where the muscles under the skin of the soft palate have not come together properly). Procedure: The pharyngeal flap is done by taking a flap of tissue from the back of the throat (pharyngeal wall) and attaching it to the soft palate (velum). This flap forms a “bridge” to close the gap between the back of the throat and the soft palate.
    [Show full text]
  • Giant Sialolith at Sublingual Salivary Gland. Biggest? 4
    CASE REPORT Journal of Dentomaxillofacial Science (J Dentomaxillofac Sci ) August 2018, Volume 3, Number 2: 123-125 P-ISSN.2503-0817, E-ISSN.2503-0825 Giant sialolith at sublingual salivary gland. Biggest? Case Report Abul Fauzi,* Irfan Rasul CrossMark http://dx.doi.org/10.15562/jdmfs.v3i2.704 Abstract Objective: Sialoliths or salivary gland duct calculus are the most (sialolithotomy) was planned intraorally with sialodochoplasty under Month: April common pathologies of the salivary gland. The majority of sialoliths general anesthesia. occur in the submandibular gland or its duct and are a common cause Results: CBCT and intra operation obtained the stone in the wharton’s of acute and chronic infections. Sialoliths are deposits obstructing the duct with 26.5 mm in length and 17 mm in diameter. Volume No.: 3 ducts of major or minor salivary glands. Conclusion: The main complaint of sialolithiasis is pain accompanied Methods: Clinical and radiographic examination panoramic and by swelling. The therapy that can be done for this sialolith is divided CBCT was conducted and the diagnosis is sialolithiasis on salivary into conventional techniques without surgery, surgical therapy and Issue: 2 ducts sublingual gland sinistra and removal of salivary glands stone therapy with Extracorporeal Shock Wave Lithotripter (ECSWL) techniques. Keywords: Giant sialolith, Sublingual salivary gland First page No.: 87 Cite this Article: Fauzi A, Rasul I. 2018. Giant sialolith at sublingual salivary gland. Biggest?. Journal of Dentomaxillofacial Science 3(2): 123-125. DOI: 10.15562/jdmfs.v3i2.704 P-ISSN.2503-0817 Department of Oral and Introduction the mouth that has been occured since the pre- Maxilllofacial Surgery, Faculty of vious 3 months.
    [Show full text]
  • Absence of Uvula: an Accidental Or an Incidental Finding. J Human Anat
    Journal of Human Anatomy ISSN: 2578-5079 Is Uvula Important? Absence of Uvula: An Accidental or an Incidental Finding 1 2 3 4 Vivek J *, Safeer K , Sanjib D and Bhargavi Joshi 1Department of Biochemistry & Basic sciences, Kentucky College of Osteopathic Case Report Volume 3 Issue 2 Medicine, USA Received Date: September 12, 2019 2Department of Anatomy & Embryology, Windsor University School of Published Date: October 21, 2019 Medicine, Saint Kitts and Nevis DOI: 10.23880/jhua-16000142 3Department of Pharmacology, Govt Medical College, Ratlam, India 4Research Volunteer, Windsor University School of Medicine, St Kitts and Nevis *Corresponding author: Vivek Joshi, MD, Associate Professor Biochemistry, Department of Basic Science, Kentucky College of Osteopathic Medicine, 147 Sycamore Street, Hambley Blvd, University of Pikeville (UPike), Pikeville, KY, 41501, USA, Tel : 606-218-5552; Email: [email protected] Abstract Introduction: Absence of the uvula is very rare in the general population, which is mostly acquired secondary to surgery or is rarely congenitally absent since birth. Uvula is a small band of connective tissue, gland and small muscle fibers and is documented to be useful in speech, lubrication and central support of the palatopharyngeal arch during swallowing. Cultural practice of uvulectomy is very common in African countries as a treatment or prophylactic measure for chronic cough or frequent respiratory infection. Congenital absence of uvula is a rare condition and is also accompanied by other genetic abnormalities such as cleft lip or cleft palate. Case Report: This case report is based on an accidental finding in a 20-year-old African-American male who was acting as a standardized patient in a clinical course at a medical college.
    [Show full text]
  • Uvula in Snoring and Obstructive Sleep Apnea: Role and Surgical Intervention
    Opinion American Journal of Otolaryngology and Head and Neck Surgery Published: 13 Apr, 2020 Uvula in Snoring and Obstructive Sleep Apnea: Role and Surgical Intervention Elbassiouny AM* Department of Otolaryngology, Cairo University, Egypt Abstract Objective: Currently, the consideration of the enlarged uvula as a cause of snoring and Obstructive Sleep Apnea (OSA) lacks data for objective interpretation. This article focused on some concepts on how we can manage the enlarged uvula in cases of snoring and OSA. The purpose of the present article is to discuss the cost benefits of uvular surgery versus its preservation. Conclusion: The direct correlation between the uvula and OSA needs to be reevaluated to maintain a balance between reserving its anatomical and physiological functions and surgically manipulating it as a part of palatopharyngeal surgery, yet further objective studies are needed to reach optimal results. Keywords: Uvula; Snoring; Obstructive sleep apnea Introduction The palatine uvula, usually referred to as simply the uvula, is that part of the soft palate that has an anatomical structure and serves some functions. Anatomically, the uvula, a conic projection from the back edge of the middle of the soft palate, is composed of connective tissue containing several racemose glands, and some muscular fibers, musculus uvulae muscle; arises from the posterior nasal spine and the palatine aponeurosis and inserts into the mucous membrane of the uvula. It contains many serous glands, which produce thin saliva [1]. Physiologically, the uvula serves several functions. First during swallowing, the soft palate and the uvula move together to close off the nasopharynx OPEN ACCESS and prevent food from entering the nasal cavity.
    [Show full text]
  • Anatomy and Physiology of the Velopharyngeal Mechanism
    Anatomy and Physiology of the Velopharyngeal Mechanism Jamie L. Perry, Ph.D.1 ABSTRACT Understanding the normal anatomy and physiology of the velopharyngeal mechanism is the first step in providing appropriate diagnosis and treatment for children born with cleft lip and palate. The velopharyngeal mechanism consists of a muscular valve that extends from the posterior surface of the hard palate (roof of mouth) to the posterior pharyngeal wall and includes the velum (soft palate), lateral pharyngeal walls (sides of the throat), and the posterior pharyngeal wall (back wall of the throat). The function of the velopharyngeal mechanism is to create a tight seal between the velum and pharyngeal walls to separate the oral and nasal cavities for various purposes, including speech. Velopharyngeal closure is accomplished through the contraction of several velopharyngeal muscles including the levator veli palatini, musculus uvulae, superior pharyngeal con- strictor, palatopharyngeus, palatoglossus, and salpingopharyngeus. The tensor veli palatini is thought to be responsible for eustachian tube function. KEYWORDS: Anatomy, physiology, velopharyngeal muscles, cleft palate anatomy Downloaded by: SASLHA. Copyrighted material. Learning Outcomes: As a result of this activity, the reader will be able to (1) list the major muscles of the velopharyngeal mechanism and discuss their functions; (2) list the sensory and motor innervation patterns for the muscles of the velopharyngeal mechanism; and (3) discuss the variations in velopharyngeal anatomy found in an unrepaired cleft palate. Understanding the normal anatomy and and treatment for children born with cleft lip physiology of the velopharyngeal mechanism is and palate. Most of the diagnostic and therapy the first step in providing appropriate diagnosis approaches are based on a strong foundation of 1Department of Communication Sciences and Disorders, Guest Editor, Ann W.
    [Show full text]
  • PE1706 Early Speech Development in Children with Cleft Palate
    Early Speech Development in Children With a Cleft Palate How do early Children use sounds to communicate as soon as they are born. Infants use speech sounds different kinds of cries to signal different needs (like diaper change, hunger, fatigue and pain). By two months of age, they begin to develop other develop? vocalizations (sounds using their voices). These include cooing with vowel sounds (like “aaaaa”). Next babies begin to babble using consonant sounds in repeated strings of syllables (like “baba,” “mama” and “nana”). By about six months of age, a baby should have 2 to 5 speech sounds that they use during babbling. During these early stages, babies learn they can use sound to get attention. How is sound The palate is important for speech. When we speak, the soft palate rises to development touch the back of the throat to allow us to build up pressure in our mouth for certain sounds. The speech sounds that need the palate to close to the back of different in the throat are called “pressure consonants.” In English, these include p, b, t, d, k, children with a g f, v, s, z, sh, ch, dg, and th. A child who has an unrepaired cleft palate cannot cleft palate? build up the pressure in the mouth to make these sounds. Other sounds do not need pressure build-up. These sounds are called “vowels,” “nasal consonants” and “low pressure consonants.” In English, these include m, n, ng, h, l, w, y, r and all the vowel sounds. A child with an unrepaired cleft palate can produce these sounds.
    [Show full text]