EPSTEIN BARR VIRUS ENCODED Microrna from the BHRF1- CLUSTER IS INVOLVED in VIRAL SUPPRESSION DURING LATENCY
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genetic Analysis of Retinopathy in Type 1 Diabetes
Genetic Analysis of Retinopathy in Type 1 Diabetes by Sayed Mohsen Hosseini A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Institute of Medical Science University of Toronto © Copyright by S. Mohsen Hosseini 2014 Genetic Analysis of Retinopathy in Type 1 Diabetes Sayed Mohsen Hosseini Doctor of Philosophy Institute of Medical Science University of Toronto 2014 Abstract Diabetic retinopathy (DR) is a leading cause of blindness worldwide. Several lines of evidence suggest a genetic contribution to the risk of DR; however, no genetic variant has shown convincing association with DR in genome-wide association studies (GWAS). To identify common polymorphisms associated with DR, meta-GWAS were performed in three type 1 diabetes cohorts of White subjects: Diabetes Complications and Control Trial (DCCT, n=1304), Wisconsin Epidemiologic Study of Diabetic Retinopathy (WESDR, n=603) and Renin-Angiotensin System Study (RASS, n=239). Severe (SDR) and mild (MDR) retinopathy outcomes were defined based on repeated fundus photographs in each study graded for retinopathy severity on the Early Treatment Diabetic Retinopathy Study (ETDRS) scale. Multivariable models accounted for glycemia (measured by A1C), diabetes duration and other relevant covariates in the association analyses of additive genotypes with SDR and MDR. Fixed-effects meta- analysis was used to combine the results of GWAS performed separately in WESDR, ii RASS and subgroups of DCCT, defined by cohort and treatment group. Top association signals were prioritized for replication, based on previous supporting knowledge from the literature, followed by replication in three independent white T1D studies: Genesis-GeneDiab (n=502), Steno (n=936) and FinnDiane (n=2194). -
Genetic Basis of Simple and Complex Traits with Relevance to Avian Evolution
Genetic basis of simple and complex traits with relevance to avian evolution Małgorzata Anna Gazda Doctoral Program in Biodiversity, Genetics and Evolution D Faculdade de Ciências da Universidade do Porto 2019 Supervisor Miguel Jorge Pinto Carneiro, Auxiliary Researcher, CIBIO/InBIO, Laboratório Associado, Universidade do Porto Co-supervisor Ricardo Lopes, CIBIO/InBIO Leif Andersson, Uppsala University FCUP Genetic basis of avian traits Nota Previa Na elaboração desta tese, e nos termos do número 2 do Artigo 4º do Regulamento Geral dos Terceiros Ciclos de Estudos da Universidade do Porto e do Artigo 31º do D.L.74/2006, de 24 de Março, com a nova redação introduzida pelo D.L. 230/2009, de 14 de Setembro, foi efetuado o aproveitamento total de um conjunto coerente de trabalhos de investigação já publicados ou submetidos para publicação em revistas internacionais indexadas e com arbitragem científica, os quais integram alguns dos capítulos da presente tese. Tendo em conta que os referidos trabalhos foram realizados com a colaboração de outros autores, o candidato esclarece que, em todos eles, participou ativamente na sua conceção, na obtenção, análise e discussão de resultados, bem como na elaboração da sua forma publicada. Este trabalho foi apoiado pela Fundação para a Ciência e Tecnologia (FCT) através da atribuição de uma bolsa de doutoramento (PD/BD/114042/2015) no âmbito do programa doutoral em Biodiversidade, Genética e Evolução (BIODIV). 2 FCUP Genetic basis of avian traits Acknowledgements Firstly, I would like to thank to my all supervisors Miguel Carneiro, Ricardo Lopes and Leif Andersson, for the demanding task of supervising myself last four years. -
Contents Production
Contents WAR STORIES IN THE MAIL ..................... 2 uring the mid-summer months, Israelis not Donly had the sweltering heat on their minds NUPTIALS ..........................5 — June marked the fortieth anniversary of the PEOPLE .............................6 Six Day War; July, the first anniversary of the 7 Second Lebanese War. With our soldiers in STUDENT AFFAIRS ...........15 captivity, the Nation felt it was a time to reflect COVER STORY ..................21 rather than to celebrate. FOCUS ON TELFED ..........28 But are we not a little hard on ourselves? NOTICE BOARD ................32 Do we aspire to such high ideals that we fail to recognize success? Both conflicts are recalled NEW ArrivALS .................34 in this Telfed as we record the recollections and 15 SPORT .............................38 insights of former Southern Africans caught up in war as volunteers, civilians or in uniform. KEREN TELFED ................40 “I was in Cape Town during the Six Day BUSINESS ........................44 War,” said Muriel Chesler today a resident at IN MEMORIAM..................46 Beth Protea. “We thought the end of the world had come.” She was hardly alone with those CLAssifiEds ....................47 38 apocalyptic thoughts. And yet today, forty years on, the nation is strong. Israel is a vibrant Production democracy in a neighbourhood of autocracies. Editor and Chief Correspondent: David Kaplan Its economy is booming and our universities Design and Layout: Becky Rowe are churning out graduates that will spearhead Editorial Committee Chairman: Dave Bloom our small country into a big future. Media Committee: Dave Bloom (Chair), Sharon And if immigration is down, it should not Bernstein, Gershon Gan, Pearl Feldman, David get us down. -
November 2001
m TELFED NOVEMBER i001 VOL. 27 NO. 3 A SOUTH AFRICAN ZIONIST FEDERATION (ISRAEL) PUBLICATION THE U.N. CONFERENCE ON R A C I S M I N D U R B A N D m \ m ( a ® M ^ M [ n r i f ^Dr.Ya'akov Kat/.. new face at the Minisuy of Education: Ariann Waliach, deer to ine: Impressions ofllie Durban NUPTIALS, ARRIVALS.... Bnoih Zioii CciUenar>'.... CoiiCcrencc AND MORE THE PRiNTINC AND DISTRIBUTION IN SOUTH AFRICA OF THIS ISSUE OF TELFED MAGAZINE IS SPONSORED BY THE IMMIGRATION AND ABSORPTION DEPARTMENT OF THE JEWISH AGENCY FOR ISRAEL. Because quality of life on a five-star level was always a prime consideration for us, we decided to turn it into a way of life This was the guideline that led us to Protea Village, where Itzak & Renate Unna everything is on a five-star level: tlie spacious homes, private gardens, 19 dunams of private park, central location in the heart of the Sharon, building standard, meticulous craftsmanship, Apartments for variety of activities, and most important of all, personal and immediate Occupation medical security for life. >^"'■"$159,000 To tell the truth, this is the only place where we found quality of life on a par with what we have seen throughout the world. B n e i D r o r J u n c t i o n Proteal^^Village * ' M R * h a n i n ^ u n c i i o n FIVE STAR RETIREMENT VILLAGE K , B o a D n r / t n r a c B - You're invited to join! 9 Ri&um Kft^Soba For further details, please phone: 1-800-374-888 or 09-796-7173 CONTENTS O F F T H E W A L L INTHEMAIL 1 in exasperation, wailing - we are all alone. -
Integrative Genomics Discoveries and Development at the Center for Applied Genomics at CHOP
The Children’s Hospital of Philadelphia Integrative Genomics Discoveries and Development at The Center for Applied Genomics at CHOP Novel Genome-based Therapeutic Approaches Hakon Hakonarson, MD, PhD, Professor of Pediatrics CHOP’s Endowed Chair in Genetic Research Director, Center for Applied Genomics The Children’s Hospital of Philadelphia University of Pennsylvania, School of Medicine Duke Center for Applied Genomics and Precision Medicine 2019 Genomic and Precision Medicine Forum Nov 07, 2019 Genomics in the 21st Century Disclosures Dr. Hakonarson and CHOP own stock in Aevi Genomic Medicine Inc. developing anti-LIGHT therapy for IBD. Dr. Hakonarson is an inventor of technology involving therapeutic development of ADHD, GLA and HCCAA Novel Therapeutic Stem Cell/Gene Editing Approaches § iPS and stem cell therapy shows early promise § Gene therapy for LCA (RPE65) at CHOP via AAV § Targeted T cell therapy for cancer (UPENN/CHOP) § CRISPR-cas9 gene editing § Single cell sequencing The Center for Applied Genomics (CAG) at CHOP u Founded in June 2006 u Staff of 70 u Over 100 active disease projects with CHOP/Penn collaborators u TARGET: Genotype 100,000 children u ~450k GWAS samples >130k kids u IC - participation in future studies >85% u Database u Electronic Health Records u extensive information on each child u >1.2 million visits per year to Population Genomics Research CHOP Recruitment of CHOP/PENN HealthCare Network Patients u High-level of automation ADHD, Autism, Diabetes, IBD, Autoimmunity, Asthma/Atopy, Cancer, RDs - all high priority -
Identification of Potential Key Genes and Pathway Linked with Sporadic Creutzfeldt-Jakob Disease Based on Integrated Bioinformatics Analyses
medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened. -
Israeli Settler-Colonialism and Apartheid Over Palestine
Metula Majdal Shams Abil al-Qamh ! Neve Ativ Misgav Am Yuval Nimrod ! Al-Sanbariyya Kfar Gil'adi ZZ Ma'ayan Baruch ! MM Ein Qiniyye ! Dan Sanir Israeli Settler-Colonialism and Apartheid over Palestine Al-Sanbariyya DD Al-Manshiyya ! Dafna ! Mas'ada ! Al-Khisas Khan Al-Duwayr ¥ Huneen Al-Zuq Al-tahtani ! ! ! HaGoshrim Al Mansoura Margaliot Kiryat !Shmona al-Madahel G GLazGzaGza!G G G ! Al Khalsa Buq'ata Ethnic Cleansing and Population Transfer (1948 – present) G GBeGit GHil!GlelG Gal-'A!bisiyya Menara G G G G G G G Odem Qaytiyya Kfar Szold In order to establish exclusive Jewish-Israeli control, Israel has carried out a policy of population transfer. By fostering Jewish G G G!G SG dGe NG ehemia G AGl-NGa'iGmaG G G immigration and settlements, and forcibly displacing indigenous Palestinians, Israel has changed the demographic composition of the ¥ G G G G G G G !Al-Dawwara El-Rom G G G G G GAmG ir country. Today, 70% of Palestinians are refugees and internally displaced persons and approximately one half of the people are in exile G G GKfGar GB!lGumG G G G G G G SGalihiya abroad. None of them are allowed to return. L e b a n o n Shamir U N D ii s e n g a g e m e n tt O b s e rr v a tt ii o n F o rr c e s Al Buwayziyya! NeoG t MG oGrdGecGhaGi G ! G G G!G G G G Al-Hamra G GAl-GZawG iyGa G G ! Khiyam Al Walid Forcible transfer of Palestinians continues until today, mainly in the Southern District (Beersheba Region), the historical, coastal G G G G GAl-GMuGftskhara ! G G G G G G G Lehavot HaBashan Palestinian towns ("mixed towns") and in the occupied West Bank, in particular in the Israeli-prolaimed “greater Jerusalem”, the Jordan G G G G G G G Merom Golan Yiftah G G G G G G G Valley and the southern Hebron District. -
Expanding the Phenotypic Spectrum in RDH12-Associated Retinal Disease
COLD SPRING HARBOR Molecular Case Studies | RESEARCH REPORT Expanding the phenotypic spectrum in RDH12-associated retinal disease Hilary A. Scott,1 Emily M. Place,1 Kevin Ferenchak,1 Erin Zampaglione,1 Naomi E. Wagner,1 Katherine R. Chao,2 Stephanie P. DiTroia,2 Daniel Navarro-Gomez,1 Shizuo Mukai,3 Rachel M. Huckfeldt,1 Eric A. Pierce,1 and Kinga M. Bujakowska1 1Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts 02114, USA; 2Center for Mendelian Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA; 3Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts 02114, USA Abstract Retinol dehydrogenase 12, RDH12, plays a pivotal role in the visual cycle to ensure the maintenance of normal vision. Alterations in activity of this protein result in photorecep- tor death and decreased vision beginning at an early age and progressing to substantial vi- sion loss later in life. Here we describe 11 patients with retinal degeneration that underwent next-generation sequencing (NGS) with a targeted panel of all currently known inherited retinal degeneration (IRD) genes and whole-exome sequencing to identify the genetic causality of their retinal disease. These patients display a range of phenotypic severity prompting clinical diagnoses of macular dystrophy, cone-rod dystrophy, retinitis pigmento- sa, and early-onset severe retinal dystrophy all attributed to biallelic recessive mutations in RDH12. We report 15 causal alleles and expand the repertoire of known RDH12 mutations with four novel variants: c.215A > G (p.Asp72Gly); c.362T > C (p.Ile121Thr); c.440A > C Correspondence: (p.Asn147Thr); and c.697G > A (p.Val233Ille). -
Transcription-Mediated Organization of the Replication Initiation Program Across Large Genes Sets Common Fragile Sites Genome-Wide
ARTICLE https://doi.org/10.1038/s41467-019-13674-5 OPEN Transcription-mediated organization of the replication initiation program across large genes sets common fragile sites genome-wide Olivier Brison1,2,3,10, Sami El-Hilali 2,3,4,10, Dana Azar 2,3,7, Stéphane Koundrioukoff1,2,3, Mélanie Schmidt1, Viola Nähse2,3,8, Yan Jaszczyszyn4,5, Anne-Marie Lachages2,3,9, Bernard Dutrillaux6, Claude Thermes 4,5, Michelle Debatisse 1,2,3* & Chun-Long Chen 2,3* 1234567890():,; Common fragile sites (CFSs) are chromosome regions prone to breakage upon replication stress known to drive chromosome rearrangements during oncogenesis. Most CFSs nest in large expressed genes, suggesting that transcription could elicit their instability; however, the underlying mechanisms remain elusive. Genome-wide replication timing analyses here show that stress-induced delayed/under-replication is the hallmark of CFSs. Extensive genome- wide analyses of nascent transcripts, replication origin positioning and fork directionality reveal that 80% of CFSs nest in large transcribed domains poor in initiation events, replicated by long-travelling forks. Forks that travel long in late S phase explains CFS replication fea- tures, whereas formation of sequence-dependent fork barriers or head-on transcription– replication conflicts do not. We further show that transcription inhibition during S phase, which suppresses transcription–replication encounters and prevents origin resetting, could not rescue CFS stability. Altogether, our results show that transcription-dependent sup- pression of initiation events delays replication of large gene bodies, committing them to instability. 1 CNRS UMR 8200, Gustave Roussy Institute, F-94805 Villejuif, France. 2 Curie Institute, PSL Research University, CNRS UMR 3244, F-75005 Paris, France. -
Supplementary Figure 1 Study Design for X Chromosome Analyses The
Supplementary Figures: Supplementary Figure 1 Study design for X chromosome analyses The discovery stage (stage 1) included 14 studies and 33,009 individuals. One variant was followed up in stage 2 in 3 studies and 52,359 individuals. 1 Supplementary Figure 2 Association test statistics for FEV1, FEV1/FVC and FVC a) Quantile-quantile plots. QQplots show –log10(P) of observed genome-wide association results against expected results in case of no association for autosomal chromosomes for FEV1, FEV1/FVC and FVC. Only variants with effective sample size (product of sample size and imputation quality summed up across studies) ≥70% are included. 2 FEV1 3 FEV1/FVC 4 5 FVC b) Regional association plots for 16 new lung function signals. –log10(P) in stage 1 meta- analysis for the trait with strongest association are plotted against chromosomal position (NCBI 37) for 1Mb regions. Sentinel variants in each plot and represented in purple. Other variants are coloured according to their correlation with the sentinel variant (see legend in each plot). Annotation for each variant is presented as default in locuszoom (http://csg.sph.umich.edu/locuszoom/): framestop and splice, triangle; non synonymous, inverted triangle; synonymous and UTR, square; TFBScons , star; MCS44 Placental, square with diagonal lines and None-of-the-above, filled circle. 6 7 8 9 10 11 12 c) Forest plots for the 16 loci associated with lung function for stage 1 and stage 2 separately. Each of the SNPs included in the figure showed genome-wide significant −8 association (P<5×10 ) with either FEV1, FEV1/FVC or FVC after meta-analysing stages 1 and 2. -
A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family
Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2018 A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family Linda Molla Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Linda Molla June 2018 © Copyright by Linda Molla 2018 A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY Linda Molla, Ph.D. The Rockefeller University 2018 APOBEC2 is a member of the AID/APOBEC cytidine deaminase family of proteins. Unlike most of AID/APOBEC, however, APOBEC2’s function remains elusive. Previous research has implicated APOBEC2 in diverse organisms and cellular processes such as muscle biology (in Mus musculus), regeneration (in Danio rerio), and development (in Xenopus laevis). APOBEC2 has also been implicated in cancer. However the enzymatic activity, substrate or physiological target(s) of APOBEC2 are unknown. For this thesis, I have combined Next Generation Sequencing (NGS) techniques with state-of-the-art molecular biology to determine the physiological targets of APOBEC2. Using a cell culture muscle differentiation system, and RNA sequencing (RNA-Seq) by polyA capture, I demonstrated that unlike the AID/APOBEC family member APOBEC1, APOBEC2 is not an RNA editor. Using the same system combined with enhanced Reduced Representation Bisulfite Sequencing (eRRBS) analyses I showed that, unlike the AID/APOBEC family member AID, APOBEC2 does not act as a 5-methyl-C deaminase. -
Gene Expression in the Mouse Eye: an Online Resource for Genetics Using 103 Strains of Mice
Molecular Vision 2009; 15:1730-1763 <http://www.molvis.org/molvis/v15/a185> © 2009 Molecular Vision Received 3 September 2008 | Accepted 25 August 2009 | Published 31 August 2009 Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice Eldon E. Geisert,1 Lu Lu,2 Natalie E. Freeman-Anderson,1 Justin P. Templeton,1 Mohamed Nassr,1 Xusheng Wang,2 Weikuan Gu,3 Yan Jiao,3 Robert W. Williams2 (First two authors contributed equally to this work) 1Department of Ophthalmology and Center for Vision Research, Memphis, TN; 2Department of Anatomy and Neurobiology and Center for Integrative and Translational Genomics, Memphis, TN; 3Department of Orthopedics, University of Tennessee Health Science Center, Memphis, TN Purpose: Individual differences in patterns of gene expression account for much of the diversity of ocular phenotypes and variation in disease risk. We examined the causes of expression differences, and in their linkage to sequence variants, functional differences, and ocular pathophysiology. Methods: mRNAs from young adult eyes were hybridized to oligomer microarrays (Affymetrix M430v2). Data were embedded in GeneNetwork with millions of single nucleotide polymorphisms, custom array annotation, and information on complementary cellular, functional, and behavioral traits. The data include male and female samples from 28 common strains, 68 BXD recombinant inbred lines, as well as several mutants and knockouts. Results: We provide a fully integrated resource to map, graph, analyze, and test causes and correlations of differences in gene expression in the eye. Covariance in mRNA expression can be used to infer gene function, extract signatures for different cells or tissues, to define molecular networks, and to map quantitative trait loci that produce expression differences.