A Comparison of Sepiapterin and Tetrahydrobiopterin Uptake by BRL2H3 Cells

Total Page:16

File Type:pdf, Size:1020Kb

A Comparison of Sepiapterin and Tetrahydrobiopterin Uptake by BRL2H3 Cells Yamamoto et al.: Tetrahydrobiopterin uptake Pteridines Vol. 7, 1996, pp. 154~ 156 A Comparison of Sepiapterin and Tetrahydrobiopterin Uptake by BRL2H3 Cells 2 Kazumasa Yamamoto!, Mutsumi Nagano!, Nobuo Nakanishi , and Hiroyuki Hasegawa! § !Department of Bioscience, Teikyo University of Science, Uenohara, Yamanashi 409-01 2Department of Biochemistry, Meikai University School of Dentistry, Sakato, Saitama 350-02, Japan (Received October 4, 1996) Summary Cellular uptake of sepiapterin and tetrahydrobiopterin was compared quantitatively with RBL2H3 cells in culture. RBL2H3 is a mast cell line and has the ability to synthesize serotonin. Sepiapterin was in­ corporated and converted into tetrahydrobiopterin in the cell. The incorporation of sepiapterin was about 10 times faster than tetrahydrobiopterin. A low concentration of tetrahydrobiopterin was in­ corporated in a saturable manner up to about 10 J..LM, and it was superimposed upon a linearly con­ centration-dependent process. Overnight treatment with DAHP depleted endogenous tetrahy­ drobiopterin. The DAHP treated cells took up tetrahydrobiopterin faster than untreated cells. Introduction In this report, incorporation of sepiapterin and tetrahydrobiopterin was compared using RBL2H3 Tetrahydrobiopterin plays an essential role as cells in culture. The cells can synthesize. tetrahy­ cofactor of variety of hydroxylases or oxygen-linked drobiopterin and utilize it in its biosynthesis of enzymic reactions such as phenylalanine hydroxy­ serotonin as a cofactor of tryptophan hydroxylase. lase (1), tyrosine hydroxylase (2), tryptophan hy­ droxylase (3), glyceryl-ether mono-oxygenase (4), Materials and Methods and NO-synthetase (5). In case of newborn error in tetrahydrobiopterin metabolism which leads to Tetrahydrobiopterin was donated by Suntory Ltd. insufficient supply of this compound, tetrahydro­ (Tokyo, Japan), sepiapterin was purchased from biopterin therapy is unavoidable. It is well known, Schirks Laboratories (Jona, Switzerland). RBL2H3, however, that incorporation of tetrahydrobiopterin a mast cell line derived from rat basophilic leu­ into cells is not efficient when the compound must kemia cells, was obtained from The Japanese Can­ be supplied especially in the brain. cer Research Resources Bank (Tokyo, Japan). Tetrahydrobiopterin is synthesized from GTP via RBL2H3 cells were kept as a monolayer culture in neopterin-triphosphate through tetrahydropterin Dulbecco's Modified Eagle's Medium (DMEM) compounds following of de novo pathway. Sepia­ containing 10% fetal calf serum. All cultures were pterin has been known to be incorporated and be maintained at 37"C under 5% CO2/95% air. For converted to tetrahydrobiopterin, this pathway is biopterin depletion experiments, cells were given 5 now called a salvage pathway (6). mM 2,4-diamino-6-hydroxypyrimidine (DAHP) overnight and through the experiment. Although § Author to whom correspondence should be addressed. tetrahydrobiopterin is rather stable under acid con- Pteridines/ Vol. 7 / No. 4 Yamamoto et at.: Tetrahydrobiopterin uptake 155 ditions, it is labile in neutral pH conditions. In the 6000 culture medium, the half-life was about 2 hours. Hence tetrahydrobiopterin was added in the cul­ ~ Q) ture medium with 1 mM DTI which allowed u 4000 <D tetrahydrobiopterin to be stable for 2 hr at least. 0 Determination of tetrahydrobiopterin in the cell was conducted essentially according to the method "0 E 2000 of Fukushin1a and Nixon (7). For routine work, ..9: Q.. however, acid oxidation was employed for measur­ cc ing total biopterin. In brief, either tetrahydro­ 0 biopterin or sepiapterin was given to the culture 0 50 100 150 200 and after the incubation, the cells were washed Incubation Period (min) three times with Dulbecco's phosphate buffered sa­ Figure 1. Time dependent incorporation of sepiapterin line (PBS), then HCI was added to the cells to and tetrahydrobiopterin by RBL2H3 cells in culture: bring it to 0.1 N, containing 1.2 ~M of pterin (a RBL2H3 cells were given 50 ~M sepiapterin (circles) or far larger amount than endogenous pterin) as an tetrahydrobiopterin (dots). At the indicated times, cells internal standard. I2/KI solution was added and were washed 3 times with PBS then subjected to acid the excessive iodine was reduced with ascorbic acid. oxidation with iodine for measuring biopterin (n=5). In­ For determination of tetrahydrobiopterin, pterin set: the same data for tetrahydrobiopterin were replotted was measured after alkaline oxidation with I2/KI in in expanded scale. (n=5) 0.1 N NaOH without the internal standard. Bio­ pterin and pterin were determined using an HPLC equipped with a fluorescence monitor (JASCO, Tokyo, Japan, FP-920) set 350 nm and 450 nm for excitation and emission, respectively. The solid phase used FineSIL C18-5T and the mobile phase used 7% methanol. "0 Results ~ Q.. In order to compare the incorporation of sepia­ CC pterin with that of tetrahydrobiopterin, 50 /J.M concentrations of these compounds were added o 10 20 30 40 so to RBL2H3 cells in monolayer culture. The initial Tetrahydrobiopterin (J.L M) amount of cellular biopterin was, in a typical case, 108.8± 17.5 pmoljl06 cells. As shown in Fig. 1, Figure 2. Concentration-dependent incorporation of sepiapterin was incorporated and converted to tetrahydrobiopterin with DAHP-treated (dots) or non­ treated (circles) RBL2H3 cells: RBL2H3 cells were treat­ biopterin linearly for at least 1 hours. The cellular ed with or without 5 mM DAHP overnight. Cells were biopterin amount after 1 hr incubation with 50 given tetrahydrobiopterin at concentrations indicated in 6 /J.M sepiapterin reached 4,125±287 pmoljl0 the figure. Two hours later, cells were washed and acid­ cells. A significant amount of biopterin was not oxidized, then the cellular biopterin was measured. (n=5) detected when the samples were subjected to al­ kaline oxidation, indicating that the redox-state of cellular biopterin was mainly (>98%) in the its efflux because the incorporated sepiapterin is tetrahydro- or quinonoid dihydro-form. On the converted to dihydrobiopterin and hence the other hand, the increase in biopterin in the pre­ equilibrium between sepiapterin inside and out­ sence of 50 /J.M tetrahydrobiopterin was only side is continuously advanced by the influx. In 475.3±46.6 pmoljl06 cells; this rise was about contrast, tetrahydrobiopterin uptake may be en­ one tenth that of sepiapterin. countered to the efflux of tetrahydrobiopterin. In Sepiapterin is known to be converted into 7,8- the latter case, intracellular concentration may re­ dihydrobiopterin by the enzymatic action of sepia­ flect downward to the efficiency of the biopterin pterin reductase and then to tetrahydrobiopterin uptake. Thus we established biopterin-depleting by diliydrofolate reductase (salvage pathway). The conditions. Cells were exposed to 5 mM DAHP sepiapterin influx might not be encountered with overnight and the intracellular biopterin con- Pteridines/Vol. 7/No. 4 156 Yamamoto et at.: Tetrahydrobiopterin uptake centration decreased below the detection limit, corporated by diffusion. The fact that DAHP treat­ whereas control cells (not-treated with DAHP) ed cells took up tetrahydrobiopterin to a greater ex­ contained 41.4± 5 pmol of biopterin per 106 cells. tent may suggest an ability of the cell to attenuate When various concentrations of tetrahydrobio­ the incorporation, depending on the intracellular pterin were given to the DAHP-treated cells, the concentration of the pterin. This experiment was incorporation of tetrahydrobiopterin was signi­ performed after overnight exposure of the cells to 5 ficantly more efficient than that observed with the mM DAHP. Although no indication of cellular control cells at concentrations higher than 2-3 damage was observed, this treatment could have im­ ~ (Fig. 2). In both cases, with or without DAHP posed certain modifications upon the cells causing treatment, the concentration dependence seems to increased membrane permeability. be related to the saturable process up to about 10 In conclusion, sepiapterin incorporation by ~M and a process of linear-concentration depen­ RBL2H3 cells was efficient, whereas tetrahy­ dence. drobiopterin uptake was inefficient. Biopterin-de­ ficient cells may take up tetrahydrobiopterin more Discussion efficiently than cells that already have an ordinary level of the pterin. In the early work by Fukushima (8) on biosyn­ thetic pathways of biopterin from GTP, sepiapterin Acknowledgment administered to tadpoles of Rana catesviana was de­ monstrated to dilute the radioactivity of biopterin We are grateful to Emiko Asakawa and Naomi derived from GTP-(U)-14C efficiently. This was in­ Nakazawa for their collaboration in the Student terpreted to indicate that sepiapterin was an in­ Research Program 1996. This research was sup­ termediate in biopterin biosynthesis and suggested ported by the Japan Private School Promotion that sepiapterin was efficiently taken up and merged Foundation. into the metabolic pathway of biopterin. Based on the current knowledge regarding the bio­ References synthesis of tetrahydrobiopterin, the above phe­ nomenon was new evidence that the salvage path­ 1. Kaufinan S. A new cofactor required for the enzy­ way was functioning. Efficient uptake of sepia­ matic conversion of phenylalanine to tyrosine. J. BioI. pterin by primary neuron culture of rat superior Chern. 1958; 234: 931-939. 2 . Nagatsu T ., Levitt M., Vdenfriend S. Tyrosine hy­ cervical ganglion and conversion to tetrahydro­ droxylase. The initial
Recommended publications
  • Diosynrhesis of Neopterin, Sepioprerin, Ond Diopterin in Rar Ond Humon Oculor Tissues
    768 INVESTIGATIVE OPHTHALMOLOGY b VISUAL SCIENCE / May 1985 Vol. 26 before and after the addition of beta-glucuronidase.4 ported by the Juvenile Diabetes Foundation and by the University In circumstances where the actual plasma free fluo- of London, Central Research Fund. The HPLC was purchased with an MRC grant to Dr. Michael J. Neal. Submitted for publi- rescein has not been measured, the term "plasma- cation: April 12, 1984. Reprint requests: Dr. P. S. Chahal, Depart- free fluorescence" should be quoted. It is then better ment of Medicine, Hammersmith Hospital, Du Cane Road, London to measure overall fluorescence (fluorescein and the W12 OHS, England. glucuronide metabolite) in protein-free plasma ultra- filtrate and the fluorescence appearing in the ocular References compartments using the same excitor and emission filters. 1. Araie M, Sawa M, Nagataki S, and Mishima S: Aqueous Fluorescein glucuronide is a potential source of humor dynamics in man as studied by oral fluorescein. Jpn J Ophthalmol 24:346, 1980. variability in studies of blood-ocular dynamics using 2. Zeimer RC, Blair NP, and Cunha-Vaz JG: Pharmacokinetic fluorescein. Its exact role has yet to be established. interpretation of vitreous fluorophotometry. Invest Ophthalmol VisSci 24:1374, 1983. Key words: Blood-ocular barriers, diabetes, plasma ultrafil- 3. Chen SC, Nakamura H, and Tamura Z: Studies on metabolite trate, fluorescein glucuronide, fluorescence, protein-binding of fluorescein in rabbit and human urine. Chem Pharmacol Acknowledgments. Technical assistance was given by Dr. Bull 28:1403, 1980. J. Cunningham, Ian Joy, and Margaret Foster. 4. Chen SC, Nakamura H, and Tamura Z: Determination of fluorescein and fluorescein monoglucuronide excreted in urine.
    [Show full text]
  • Isolation and Expression of Rat Liver Sepiapterin Reductase Cdna
    Proc. Nat!. Acad. Sci. USA Vol. 87, pp. 6436-6440, August 1990 Genetics Isolation and expression of rat liver sepiapterin reductase cDNA (tetrahydrobiopterin/biopterin/pyruvoyltetrahydropterin/aromatic amino acid hydroxylase/molecular cloning) BRUCE A. CITRON*, SHELDON MILSTIEN*, JOANNE C. GUTIERREZt, ROBERT A. LEVINE, BRENDA L. YANAK*§, AND SEYMOUR KAUFMAN*¶ *Laboratory of Neurochemistry, Room 3D30, Building 36, and tLaboratory of Cell Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892; and tLaboratory of Molecular Neurobiology, Lafayette Clinic, 951 East Lafayette, Detroit, MI 48207 Contributed by Seymour Kaufman, June 7, 1990 ABSTRACT Sepiapterin reductase (7,8-dihydrobiopterin: either case, the final carbonyl reduction to form tetrahydro- NADP+ oxidoreductase, EC 1.1.1.153) catalyzes the terminal biopterin must be catalyzed by sepiapterin reductase. step in the biosynthetic pathway for tetrahydrobiopterin, the In the present study, we have screened a rat liver cDNA cofactor necessary for aromatic amino acid hydroxylation. We library with a specific antibody that reacts positively to the report here the isolation of a cDNA clone for rat liver sepia- enzyme band on Western blots (19). These clones were used pterin reductase. The cDNA has been excised from a lambda to further characterize the enzyme and to begin to elucidate vector and the DNA sequence was determined. The insert the functional sites ofthe enzymes in the tetrahydrobiopterin contains the coding sequence for at least 95% of the rat enzyme biosynthetic pathway. 11 and is fused to the Escherichia coli (3-galactosidase N-terminal segment and the lac promoter. The N-terminal region of the clone contains an extraordinarily high G+C content.
    [Show full text]
  • Epithelial Cell Line Derived from Endometriotic Lesion Mimics Macrophage Nervous Mechanism of Pain Generation on Proteome and Metabolome Levels
    biomolecules Article Epithelial Cell Line Derived from Endometriotic Lesion Mimics Macrophage Nervous Mechanism of Pain Generation on Proteome and Metabolome Levels Benjamin Neuditschko 1,2,† , Marlene Leibetseder 1,† , Julia Brunmair 1 , Gerhard Hagn 1 , Lukas Skos 1, Marlene C. Gerner 3 , Samuel M. Meier-Menches 1,2,4 , Iveta Yotova 5 and Christopher Gerner 1,4,* 1 Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria; [email protected] (B.N.); [email protected] (M.L.); [email protected] (J.B.); [email protected] (G.H.); [email protected] (L.S.); [email protected] (S.M.M.-M.) 2 Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria 3 Division of Biomedical Science, University of Applied Sciences, FH Campus Wien, Favoritenstraße 226, 1100 Vienna, Austria; [email protected] 4 Joint Metabolome Facility, Faculty of Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria 5 Department of Obstetrics and Gynaecology, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria; [email protected] Citation: Neuditschko, B.; * Correspondence: [email protected] Leibetseder, M.; Brunmair, J.; Hagn, † Authors contributed equally. G.; Skos, L.; Gerner, M.C.; Meier-Menches, S.M.; Yotova, I.; Abstract: Endometriosis is a benign disease affecting one in ten women of reproductive age world- Gerner, C. Epithelial Cell Line wide. Although the pain level is not correlated to the extent of the disease, it is still one of the Derived from Endometriotic Lesion cardinal symptoms strongly affecting the patients’ quality of life.
    [Show full text]
  • Treatable Inborn Errors of Metabolism Presenting As Cerebral Palsy Mimics
    Leach et al. Orphanet Journal of Rare Diseases 2014, 9:197 http://www.ojrd.com/content/9/1/197 RESEARCH Open Access Treatable inborn errors of metabolism presenting as cerebral palsy mimics: systematic literature review Emma L Leach1,2, Michael Shevell3,4,KristinBowden2, Sylvia Stockler-Ipsiroglu2,5,6 and Clara DM van Karnebeek2,5,6,7,8* Abstract Background: Inborn errors of metabolism (IEMs) have been anecdotally reported in the literature as presenting with features of cerebral palsy (CP) or misdiagnosed as ‘atypical CP’. A significant proportion is amenable to treatment either directly targeting the underlying pathophysiology (often with improvement of symptoms) or with the potential to halt disease progression and prevent/minimize further damage. Methods: We performed a systematic literature review to identify all reports of IEMs presenting with CP-like symptoms before 5 years of age, and selected those for which evidence for effective treatment exists. Results: We identified 54 treatable IEMs reported to mimic CP, belonging to 13 different biochemical categories. A further 13 treatable IEMs were included, which can present with CP-like symptoms according to expert opinion, but for which no reports in the literature were identified. For 26 of these IEMs, a treatment is available that targets the primary underlying pathophysiology (e.g. neurotransmitter supplements), and for the remainder (n = 41) treatment exerts stabilizing/preventative effects (e.g. emergency regimen). The total number of treatments is 50, and evidence varies for the various treatments from Level 1b, c (n = 2); Level 2a, b, c (n = 16); Level 4 (n = 35); to Level 4–5 (n = 6); Level 5 (n = 8).
    [Show full text]
  • GCH1 Gene GTP Cyclohydrolase 1
    GCH1 gene GTP cyclohydrolase 1 Normal Function The GCH1 gene provides instructions for making an enzyme called GTP cyclohydrolase 1. This enzyme is involved in the first of three steps in the production of a molecule called tetrahydrobiopterin (BH4). Other enzymes help carry out the second and third steps in this process. Tetrahydrobiopterin plays a critical role in processing several protein building blocks ( amino acids) in the body. For example, it works with the enzyme phenylalanine hydroxylase to convert an amino acid called phenylalanine into another amino acid, tyrosine. Tetrahydrobiopterin is also involved in reactions that produce chemicals called neurotransmitters, which transmit signals between nerve cells in the brain. Specifically, tetrahydrobiopterin is involved in the production of two neurotransmitters called dopamine and serotonin. Among their many functions, dopamine transmits signals within the brain to produce smooth physical movements, and serotonin regulates mood, emotion, sleep, and appetite. Because it helps enzymes carry out chemical reactions, tetrahydrobiopterin is known as a cofactor. Health Conditions Related to Genetic Changes Dopa-responsive dystonia More than 140 mutations in the GCH1 gene have been found to cause dopa-responsive dystonia. This condition is characterized by a pattern of involuntary muscle contractions ( dystonia), tremors, and other uncontrolled movements and usually responds to treatment with a medication called L-Dopa. Dopa-responsive dystonia results when one copy of the GCH1 gene is mutated in each cell. Most GCH1 gene mutations that cause this condition change single amino acids in the GTP cyclohydrolase 1 enzyme. Researchers believe that the abnormal enzyme may interfere with the activity of the normal version of GTP cyclohydrolase 1 that is produced from the copy of the gene with no mutation.
    [Show full text]
  • Inherited Disorders of Neurotransmitters: Classification and Practical Approaches for Diagnosis and Treatment
    Published online: 2018-10-29 2 Review Article Inherited Disorders of Neurotransmitters: Classification and Practical Approaches for Diagnosis and Treatment Heiko Brennenstuhl1 Sabine Jung-Klawitter1 Birgit Assmann1 Thomas Opladen1 1 Division of Neuropediatrics and Metabolic Medicine, Department of Address for correspondence Prof. Dr. Thomas Opladen, MD, Division General Pediatrics, University Children’s Hospital Heidelberg, of Neuropediatrics and Metabolic Medicine, Department of General Heidelberg, Germany Pediatrics, Im Neuenheimer Feld 430, D-69120 Heidelberg, Germany (e-mail: [email protected]). Neuropediatrics 2019;50:2–14. Abstract Neurotransmitter deficiencies are rare neurological disorders with clinical onset during childhood. The disorders are caused by genetic defects in the enzymes involved in synthesis, degradation, or transport of neurotransmitters or by defects in the cofactor biosynthesis such as tetrahydrobiopterin (BH4). With the newly described DNAJC12 deficiency, a chaperon-associated neurotransmitter disorder, the pathophysiological spectrum has been broadened. All deficiencies result in a lack of monoamine neurotransmitters, especially dopamine and its products, with a subset leading to decreased levels of serotonin. Symptoms can occur already in the neonatal period. Keywords Classical signs are hypotonia, movement disorders, autonomous dysregulations, and ► inherited monoamine impaired development. Diagnosis depends on quantitative detection of neurotrans- neurotransmitter mitters in cerebrospinal
    [Show full text]
  • Optimization of Expression Conditions Enhances Production Of
    J. Microbiol. Biotechnol. (2015), 25(10), 1709–1713 http://dx.doi.org/10.4014/jmb.1506.06034 Research Article Review jmb Optimization of Expression Conditions Enhances Production of Sepiapterin, a Precursor for Tetrahydrobiopterin Biosynthesis, in Recombinant Escherichia coli Eun-Hee Park1, Won-Heong Lee2, Mi-Hee Jang1, and Myoung-Dong Kim1* 1Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea 2Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea Received: June 15, 2015 Revised: July 16, 2015 Sepiapterin is a precursor for the synthesis of tetrahydrobiopterin (BH4), which is a well- Accepted: July 18, 2015 known cofactor for aromatic amino acid hydroxylation and nitric oxide synthesis in higher mammals. In this study, a recombinant Escherichia coli BL21(DE3) strain harboring cyanobacterial guanosine 5’-triphosphate cyclohydrolase 1 (GCH1) and human 6- First published online pyruvoyltetrahydropterin synthase (PTPS) genes was constructed to produce sepiapterin. The July 22, 2015 optimum conditions for T7 promoter–driven expression of GCH1 and PTPS were 30°C and *Corresponding author 0.1 mM isopropyl-β-D-thioglucopyranoside (IPTG). The maximum sepiapterin concentration Phone: +82-33-250-6458; of 88.1 ± 2.4 mg/l was obtained in a batch cultivation of the recombinant E. coli, corresponding Fax: +82-33-259-5565; to an 18-fold increase in sepiapterin production compared with the control condition (37°C E-mail: [email protected] and 1 mM IPTG). pISSN 1017-7825, eISSN 1738-8872 Copyright© 2015 by Keywords: Sepiapterin, GTP cyclohydrolase 1 (GCH1), 6-pyruvoyltetrahydropterin synthase The Korean Society for Microbiology (PTPS), Escherichia coli and Biotechnology Tetrahydrobiopterin (BH4) is a well-known essential ovarian cancer cells.
    [Show full text]
  • 34Th International Winter Workshop Clinical, Chemical and Biochemical
    DOI 10.1515/pterid-2015-0007 Pteridines 2015; 26(3): 113–133 Abstracts*) 34th International Winter Workshop Clinical, Chemical and Biochemical Aspects of Pteridines and Related Topics Society for Exploitation of Education and Research in Immunology and Infectious Diseases, Innsbruck, Austria in collaboration with The International Society of Pteridinology and The Austrian Society of Laboratory Medicine and Clinical Chemistry Held in Innsbruck, Tyrol, Austria, February 24th–27th, 2015 Scientific committee: Dietmar Fuchs (Innsbruck), Andrea Griesmacher (Innsbruck), Bohuslav Melichar (Olomouc), Gilbert Reibnegger (Graz), Barbara Strasser (Hall), Guenter Weiss (Innsbruck) and Ernst R. Werner (Innsbruck) Organization: Dietmar Fuchs, Sektion für Biologische Chemie, Biozentrum, Medizinische Universität Innsbruck, Innrain 80, 6020 Innsbruck, Austria, e-mail: [email protected] *)These abstracts have been reproduced directly from the material supplied by the authors, without editorial alteration by the staff of this Journal. Insufficiencies of preparation, grammar, spelling, style, syntax, and usage are the authors’ responsibility. 114 34th International Winter Workshop Circulating neopterin and citrulline concentrations Influence of carbon nanotubes, ZnO and in patients with germ-cell tumors during gold-doped TiO2 nanoparticles on human PBMC chemotherapy in vitro Bartoušková M, Študentová H, Pejpková I, Zezulová M, Adam T, Becker K, Herlin N, Bouhadoun S, Gostner JM, Ueberall F, Schennach Melichar B H, Fuchs D Palacký University Medical School and Teaching Hospital, Olomouc, Divisions of Biological Chemistry and of Medical Biochemistry, Czech Republic Biocenter, Medical University, and Central Institute of Blood ([email protected]) Transfusion and Immunology, University Hospital, Innsbruck, Austria; Au Service des Photons, Atomes et Molécules - Laboratoire Francis Germ-cell tumors are relatively rare neoplasms that affect mostly Perrin, Gif-sur Yvette, France young adults.
    [Show full text]
  • Ability of RBL2H3 Cells to Lower Environmental Tetrahydrobiopterin Concentration 121
    :-! Hasegawa et a/: Ability of RBL2H3 cells to lower environmental tetrahydrobiopterin concentration 121 Ptendines Vol. 11,2000, pp. 121 - 125 Ability of RBL2H3 Cells to Lower Environmental Tetrahydrobiopterin concen­ tration] 2 2 Hiroyuki Hasegawa ." Kazumasa Yamamoto2J, Yoshie Matsuhashi>, Takahumi Miyazawa , Nobuo Nakanishi., 2 :lnd Kazuya OgUI0 ., :Department of Biosciences and 'Biotechnology Research Center, Teikyo University of Science and Technology. Cenohara, Yamanashi 409-0193, and 'Department of Biochemistry, Meikai University School of Dentistry, Sakado, Saitama 350-0248, Japan This research was supported by the Japan Private School Promotion Foundation, and a Grant-in-Aid for Advanced Scientific Research for Bioscience/Biotechnology areas from the Ministry of Education, Science, Sports and Culture of Japan. Introduction outside the cells. These studies were made by measur­ ing serotonin release with RBL2H3 cells, of a mast Tetrahydrobiopterin works as a redox-cofactor cell-like neoplastic cell origin, and serotorun-loaded inside cells for phenylalanine hydroxylase (1), tyrosine PC-12 cells, of a pheochromocytoma origin, both hav­ hydroxylase (2), tryptophan hydroxylase (3, 4), and ni­ ing ability to release monoamines in response to phys­ tric oxide synthetase (5, 6). Other functions oftetrahy­ iological stimulation. These cells have been employed drobiopterin so far proposed are modulation of more in many studies to explore generic functions of mast complex cellular functions such as mitosis (7, 8), apo­ cells and sympathetic neurons. Between these cells, no ptosis (9··11), and exocytotic release of dopamine (12- essential differences were found with respect to the 14) and serotonin (15). Within them, the suggested BH4-response. Therefore, these observations suggest­ stimulation of monoamine release by BH4, first ed that BH4 might work as a signal mediator to regu­ demonstrated in the rat brain using a microdialysis late cellular functions of a wide variety of cells in tis­ technique by Dr.
    [Show full text]
  • The Nitric Oxide System in Peripheral Artery Disease: Connection with Oxidative Stress and Biopterins
    antioxidants Article The Nitric Oxide System in Peripheral Artery Disease: Connection with Oxidative Stress and Biopterins Ahmed Ismaeel 1, Evlampia Papoutsi 1, Dimitrios Miserlis 2 , Ramon Lavado 3 , Gleb Haynatzki 4, George P. Casale 5, William T. Bohannon 6, Robert S. Smith 6, Jack Leigh Eidson 6, Robert Brumberg 7, Aaron Hayson 7, Jeffrey S. Kirk 8, Carlos Castro 8, Ian Sawicki 6, Charalambos Konstantinou 9 , Luke P. Brewster 10, Iraklis I. Pipinos 5,11 and Panagiotis Koutakis 1,* 1 Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32304, USA; [email protected] (A.I.); [email protected] (E.P.) 2 Department of Surgery, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; [email protected] 3 Department of Environmental Science, Baylor University, Waco, TX 76798, USA; [email protected] 4 Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA; [email protected] 5 Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA; [email protected] (G.P.C.); [email protected] (I.I.P.) 6 Department of Surgery, Baylor Scott & White Medical Center, Temple, TX 76508, USA; [email protected] (W.T.B.); [email protected] (R.S.S.); [email protected] (J.L.E.); [email protected] (I.S.) 7 Vascular Surgery Associates, Tallahassee, FL 32308, USA; rbrumberg@vsafl.com (R.B.); [email protected] (A.H.) 8 Department of Vascular Surgery, Capital Regional Medical Center, Tallahassee, FL 32308,
    [Show full text]
  • Neurological Aspects of Biopterin Metabolism
    Arch Dis Child: first published as 10.1136/adc.61.2.130 on 1 February 1986. Downloaded from Archives of Disease in Childhood, 1986, 61, 130-137 Neurological aspects of biopterin metabolism I SMITH, R J LEEMING, N P C CAVANAGH, AND K HYLAND Hospital for Sick Children and Institute of Child Health, London, and The General Hospital, Birmingham SUMMARY Plasma total biopterin concentration was measured by bioassay in 59 infants with hyperphenylalaninaemia and in 50 children with developmental regression and or movement disorder with normal plasma phenylalanine concentrations. In infants with raised phenylalanine concentrations plasma biopterin concentrations were significantly raised in proportion to the phenylalanine values. Five patients had plasma biopterin concentrations at the extremes of the range, and of these two had defective biopterin metabolism. One with low plasma biopterin concentration apparently had a partial defect of biopterin synthesis but died before investigations were complete. One with high plasma biopterin concentration, even when phenylalanine concentrations had fallen to the normal range, had dihydropteridine reductase deficiency. In this patient concentrations of homovanillic acid and 5-hydroxyindolacetic acid in the cerebrospinal fluid (CSF) were severely reduced. In children without hyperphenylalaninaemia plasma biopterin concentrations were normal. Twenty two patients were subjected to lumbar puncture, of whom six with developmental regression without movement disorder had normal CSF biopterin concentrations, and 11 withcopyright. movement disorder other than torsion dystonia had significantly lower CSF biopterin concentrations. Five patients with torsion dystonia had normal biopterin concentrations. Tetrahydrobiopterin is the essential cofactor for three hydroxylation reactions, the conversion of GTP http://adc.bmj.com/ phenylalanine to tyrosine, tyrosine to L-dopa, and tryptophan to 5-hydroxytryptophan.' These last two B, BH2 j reactions are the rate limiting steps of catecholamine Ne 2P3 --- NeH2 and serotonin synthesis.
    [Show full text]
  • Pharmacological Assessment of Sepiapterin Reductase Inhibition on Tactile Response in the Rat
    JPET Fast Forward. Published on May 20, 2019 as DOI: 10.1124/jpet.119.257105 This article has not been copyedited and formatted. The final version may differ from this version. JPET 257105 Manuscript title Pharmacological assessment of sepiapterin reductase inhibition on tactile response in the rat Authors and affiliations James T. Meyer, Brian A. Sparling, William J. McCarty, Maosheng Zhang, Marcus Soto, Stephen Schneider, Hao Chen, Jonathan Roberts, Helming Tan, Thomas Kornecook, Paul Andrews, Charles G. Knutson. Downloaded from Amgen Research, One Amgen Center Drive, Thousand Oaks, CA 91320, United States (JTM, MZ, MS, HT, TK) jpet.aspetjournals.org Amgen Research, 360 Binney Street, Cambridge, MA 02142, United States. (BAS, WJM, SS, HC, JR, PA, CGK) at ASPET Journals on September 26, 2021 Public Information 1 JPET Fast Forward. Published on May 20, 2019 as DOI: 10.1124/jpet.119.257105 This article has not been copyedited and formatted. The final version may differ from this version. JPET 257105 Running Title: PK/PD relationship with sepiapterin reductase inhibition Corresponding Author: Charles G. Knutson Amgen Research Department of Pharmacokinetics and Drug Metabolism Downloaded from Amgen Inc. 360 Binney Street jpet.aspetjournals.org AMA1/4-G-10 Cambridge, MA 02142 at ASPET Journals on September 26, 2021 Tel. 617.444.5470 E-mail: [email protected] Numbers: Text pages: 34 Number of tables: 3 Number of figures: 4 Number of references: 27 Number of words in Abstract: 241 Number of words in Introduction: 652 Number of words in Discussion: 1262 Public Information 2 JPET Fast Forward. Published on May 20, 2019 as DOI: 10.1124/jpet.119.257105 This article has not been copyedited and formatted.
    [Show full text]