XRCC2 Mutation Causes Meiotic Arrest, Azoospermia and Infertility
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Open Full Page
CCR PEDIATRIC ONCOLOGY SERIES CCR Pediatric Oncology Series Recommendations for Childhood Cancer Screening and Surveillance in DNA Repair Disorders Michael F. Walsh1, Vivian Y. Chang2, Wendy K. Kohlmann3, Hamish S. Scott4, Christopher Cunniff5, Franck Bourdeaut6, Jan J. Molenaar7, Christopher C. Porter8, John T. Sandlund9, Sharon E. Plon10, Lisa L. Wang10, and Sharon A. Savage11 Abstract DNA repair syndromes are heterogeneous disorders caused by around the world to discuss and develop cancer surveillance pathogenic variants in genes encoding proteins key in DNA guidelines for children with cancer-prone disorders. Herein, replication and/or the cellular response to DNA damage. The we focus on the more common of the rare DNA repair dis- majority of these syndromes are inherited in an autosomal- orders: ataxia telangiectasia, Bloom syndrome, Fanconi ane- recessive manner, but autosomal-dominant and X-linked reces- mia, dyskeratosis congenita, Nijmegen breakage syndrome, sive disorders also exist. The clinical features of patients with DNA Rothmund–Thomson syndrome, and Xeroderma pigmento- repair syndromes are highly varied and dependent on the under- sum. Dedicated syndrome registries and a combination of lying genetic cause. Notably, all patients have elevated risks of basic science and clinical research have led to important in- syndrome-associated cancers, and many of these cancers present sights into the underlying biology of these disorders. Given the in childhood. Although it is clear that the risk of cancer is rarity of these disorders, it is recommended that centralized increased, there are limited data defining the true incidence of centers of excellence be involved directly or through consulta- cancer and almost no evidence-based approaches to cancer tion in caring for patients with heritable DNA repair syn- surveillance in patients with DNA repair disorders. -
Gene Section Review
Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL INIST-CNRS Gene Section Review XRCC2 (X-ray repair cross complementing 2) Paul R Andreassen, Helmut Hanenberg Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati OH, USA; [email protected] (PRA); Department of Pediatrics III, University Children's Hospital Essen, University Duisburg- Essen, Essen Germany; [email protected] (HH) Published in Atlas Database: November 2017 Online updated version : http://AtlasGeneticsOncology.org/Genes/XRCC2ID334ch7q36.html Printable original version : http://documents.irevues.inist.fr/bitstream/handle/2042/69759/11-2017-XRCC2ID334ch7q36.pdf DOI: 10.4267/2042/69759 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2019 Atlas of Genetics and Cytogenetics in Oncology and Haematology Clinically, the only known FA-U patient in the Abstract world exhibits severe congenital abnormalities, but XRCC2 is one of five somatic RAD51 paralogs, all had not developed, by seven years of age, the bone of which have Walker A and B ATPase motifs. marrow failure and cancer that are often seen in Each of the paralogs, including XRCC2, has a patients from other FA complementation groups. function in DNA double-strand break repair by Keywords homologous recombination (HR). However, their Fanconi anemia, Breast Cancer Susceptibility, individual roles are not as well understood as that Tumor Suppressor, Homologous Recombination, of RAD51 itself. DNA Repair, RAD51 Paralog The XRCC2 protein forms a complex (BCDX2) with three other RAD51 paralogs, RAD51B, RAD51C and RAD51D. It is believed that the Identity BCDX2 complex mediates HR downstream of Other names: FANCU BRCA2 but upstream of RAD51, as XRCC2 is HGNC (Hugo): XRCC2 involved in the assembly of RAD51 into DNA damage foci. -
Understanding the Role of Rad52 in Homologous Recombination for Therapeutic Advancement
Author Manuscript Published OnlineFirst on October 15, 2012; DOI: 10.1158/1078-0432.CCR-11-3150 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. The Role of Rad52 in Homologous Recombination MOLECULAR PATHWAYS: Understanding the role of Rad52 in homologous recombination for therapeutic advancement Benjamin H. Lok 1,2 and Simon N. Powell 1 1 Memorial Sloan-Kettering Cancer Center, New York, NY 2 New York University School of Medicine, New York, NY Corresponding author: Simon N. Powell, MD PhD Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY Mailing address: 1250 1st Avenue, Box 33, New York, NY 10065 Telephone: 212-639-6072 Facsimile: 212-794-3188 E-mail: [email protected] Conflicts of interest. The authors have no potential conflict of interest to report. 1 Downloaded from clincancerres.aacrjournals.org on September 26, 2021. © 2012 American Association for Cancer Research. Author Manuscript Published OnlineFirst on October 15, 2012; DOI: 10.1158/1078-0432.CCR-11-3150 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. The Role of Rad52 in Homologous Recombination Table of Contents Abstract ......................................................................................................................................................... 2 Background .................................................................................................................................................. -
Use of the XRCC2 Promoter for in Vivo Cancer Diagnosis and Therapy
Chen et al. Cell Death and Disease (2018) 9:420 DOI 10.1038/s41419-018-0453-9 Cell Death & Disease ARTICLE Open Access Use of the XRCC2 promoter for in vivo cancer diagnosis and therapy Yu Chen1,ZhenLi1,ZhuXu1, Huanyin Tang1,WenxuanGuo1, Xiaoxiang Sun1,WenjunZhang1, Jian Zhang2, Xiaoping Wan1, Ying Jiang1 and Zhiyong Mao 1 Abstract The homologous recombination (HR) pathway is a promising target for cancer therapy as it is frequently upregulated in tumors. One such strategy is to target tumors with cancer-specific, hyperactive promoters of HR genes including RAD51 and RAD51C. However, the promoter size and the delivery method have limited its potential clinical applications. Here we identified the ~2.1 kb promoter of XRCC2, similar to ~6.5 kb RAD51 promoter, as also hyperactivated in cancer cells. We found that XRCC2 expression is upregulated in nearly all types of cancers, to a degree comparable to RAD51 while much higher than RAD51C. Further study demonstrated that XRCC2 promoter is hyperactivated in cancer cell lines, and diphtheria toxin A (DTA) gene driven by XRCC2 promoter specifically eliminates cancer cells. Moreover, lentiviral vectors containing XRCC2 promoter driving firefly luciferase or DTA were created and applied to subcutaneous HeLa xenograft mice. We demonstrated that the pXRCC2-luciferase lentivirus is an effective tool for in vivo cancer visualization. Most importantly, pXRCC2-DTA lentivirus significantly inhibited the growth of HeLa xenografts in comparison to the control group. In summary, our results strongly indicate that virus-mediated delivery of constructs built upon the XRCC2 promoter holds great potential for tumor diagnosis and therapy. -
The Genetic Bases of Uterine Fibroids; a Review
Review Article The Genetic Bases of Uterine Fibroids; A Review Veronica Medikare 1, Lakshmi Rao Kandukuri 2, Venkateshwari Ananthapur 3, Mamata Deenadayal 4, Pratibha Nallari 1* 1- Department of Genetics, Osmania University, Hyderabad, India 2- Center for Cellular and Molecular Biology, Habsiguda, Hyderabad, India 3- Institute of Genetics and Hospital for Genetic Diseases, Begumpet, Hyderabad, India 4- Infertility Institute and research Center, Secunderabad, India Abstract Uterine leiomyomas/fibroids are the most common pelvic tumors of the female genital tract. The initiators remaining unknown, estrogens and progesterone are considered as promoters of fibroid growth. Fibroids are monoclonal tumors showing 40-50% karyo- typically detectable chromosomal abnormalities. Cytogenetic aberrations involving chromosomes 6, 7, 12 and 14 constitute the major chromosome abnormalities seen in leiomyomata. This has led to the discovery that disruptions or dysregulations of HMGIC and HMGIY genes contribute to the development of these tumors. Genes such as RAD51L1 act as translocation partners to HMGIC and lead to disruption of gene structure leading to the pathogenesis of uterine fibroids. The mechanism underlying * Corresponding Author: this disease is yet to be identified. The occurrence of PCOLCE amid a cluster of at Downloaded from http://www.jri.ir Pratibha Nallari, Department of Genetics, least eight Alu sequences is potentially relevant to the possible involvement of Osmania University, PCOLCE in the 7q22 rearrangements that occur in many leiomyomata. PCOLCE is Hyderabad, 500 007, implicated in cell growth processes. Involvement of Alu sequences in rearrangements India can lead to the disruption of this gene and, hence, loss of control for gene expression E-mail: leading to uncontrolled cell growth. -
Homologous Recombination As a Potential Target for Ca€Eine
Oncogene (2000) 19, 5788 ± 5800 ã 2000 Macmillan Publishers Ltd All rights reserved 0950 ± 9232/00 $15.00 www.nature.com/onc Homologous recombination as a potential target for caeine radiosensitization in mammalian cells: reduced caeine radiosensitization in XRCC2 and XRCC3 mutants Nesrin A Asaad1, Zhao-Chong Zeng1, Jun Guan1, John Thacker2 and George Iliakis*,1 1Department of Radiation Oncology of Kimmel Cancer Center, Jeerson Medical College, Philadelphia, Pennsylvania, PA 19107, USA; 2Medical Research Council, Radiation and Genome Stability Unit, Harwell, Oxfordshire, OX11 ORD, UK The radiosensitizing eect of caeine has been associated Introduction with the disruption of multiple DNA damage-responsive cell cycle checkpoints, but several lines of evidence also Caeine (1,3,7-trimethylxanthine) at submillimolar implicate inhibition of DNA repair. The role of DNA concentrations exerts a wide variety of physiological repair inhibition in caeine radiosensitization remains eects on dierent organisms from bacteria to man uncharacterized, and it is unknown which repair process, (Garattini, 1993; Timson, 1977). At higher concentra- or lesion, is aected. We show that a radiosensitive cell tions (0.5 ± 10 mM), it strongly enhances the cytotoxic line, mutant for the RAD51 homolog XRCC2 and eect of ionizing radiation and other physical or defective in homologous recombination repair (HRR), chemical agents that act by inducing damage in DNA displays signi®cantly diminished caeine radiosensitiza- (Kihlman, 1977; Murnane, 1995; Timson, 1977; tion that can be restored by expression of XRCC2. Waldren and Rasko, 1978). Radiosensitization is Despite the reduced radiosensitization, caeine eec- manifest at non-cytotoxic concentrations and therefore tively abrogates checkpoints in S and G2 phases in caeine is considered a model radiosensitizer. -
Biochemistry of Recombinational DNA Repair
BiochemistryBiochemistry ofof RecombinationalRecombinational DNADNA Repair:Repair: CommonCommon ThemesThemes StephenStephen KowalczykowskiKowalczykowski UniversityUniversity ofof California,California, DavisDavis •Overview of genetic recombination and its function. •Biochemical mechanism of recombination in Eukaryotes. •Universal features: steps common to all organisms. HomologousHomologous RecombinationRecombination AB ab+ Ab aB+ Genesis:Genesis: ScienceScience andand thethe BeginningBeginning ofof TimeTime How does recombination occur? And why? DNADNA ReplicationReplication CanCan ProduceProduce dsDNAdsDNA BreaksBreaks andand ssDNAssDNA GapsGaps RepairRepair ofof DNADNA BreaksBreaks Non-Homologous Homologous End-Joining (NHEJ) Recombination (HR) (error-prone) (error-free) dsDNA Break-Repair Synthesis-Dependent ssDNA Annealing (DSBR) Strand-Annealing (SSA) (SDSA) DoubleDouble--StrandStrand DNADNA BreakBreak RepairRepair 5' 3' 3' 5' + 3' 5' 5' 3' Initiation 1 5' 3' Helicase and/or 3' 5' nuclease 2 5' 3' 3' 3' 3' 5' Homologous Pairing & DNA Strand 3 Exchange 3' 5' 5' 3' RecA-like protein 5' 3' Accessory proteins 3' 3' 5' 4 3' 5' 5' 3' 5' 3' 3' 5' DNA Heteroduplex 5 Branch migration Extension proteins 3' 5' 5' 3' 5' 3' 3' 5' Resolution 6 Resolvase Spliced Patched ProteinsProteins InvolvedInvolved inin RecombinationalRecombinational DNADNA RepairRepair E. coli Archaea S. cerevisiae Human Initiation RecBCD -- -- -- SbcCD Mre11/Rad50 Mre11/Rad50/Xrs2 Mre11/Rad50/Nbs1 RecQ Sgs1(?) Sgs1(?) RecQ1/4/5 LM/WRN(?) RecJ -- ExoI ExoI UvrD -- Srs2 -- Homologous Pairing RecA RadA Rad51 Rad51 & DNA Strand SSB SSB/RPA RPA RPA Exchange RecF(R) RadB/B2/B3(?) Rad55/57 Rad51B/C/D/Xrcc2/3 RecO -- Rad52 Rad52 -- -- Rad59 -- -- Rad54 Rad54/Rdh54 Rad54/54B Brca2 DNA Heteroduplex RuvAB Rad54 Rad54 Rad54 Extension RecG -- -- RecQ Sgs1(?) RecQL/4/5 LM/WRN(?) Resolution RuvC Hjc/Hje -- -- -- -- Mus81/Mms4 Mus81/Mms4 ProteinsProteins InvolvedInvolved inin RecombinationalRecombinational DNADNA RepairRepair 5' 3' E. -
Whole-Exome Sequencing of Metastatic Cancer and Biomarkers of Treatment Response
Supplementary Online Content Beltran H, Eng K, Mosquera JM, et al. Whole-exome sequencing of metastatic cancer and biomarkers of treatment response. JAMA Oncol. Published online May 28, 2015. doi:10.1001/jamaoncol.2015.1313 eMethods eFigure 1. A schematic of the IPM Computational Pipeline eFigure 2. Tumor purity analysis eFigure 3. Tumor purity estimates from Pathology team versus computationally (CLONET) estimated tumor purities values for frozen tumor specimens (Spearman correlation 0.2765327, p- value = 0.03561) eFigure 4. Sequencing metrics Fresh/frozen vs. FFPE tissue eFigure 5. Somatic copy number alteration profiles by tumor type at cytogenetic map location resolution; for each cytogenetic map location the mean genes aberration frequency is reported eFigure 6. The 20 most frequently aberrant genes with respect to copy number gains/losses detected per tumor type eFigure 7. Top 50 genes with focal and large scale copy number gains (A) and losses (B) across the cohort eFigure 8. Summary of total number of copy number alterations across PM tumors eFigure 9. An example of tumor evolution looking at serial biopsies from PM222, a patient with metastatic bladder carcinoma eFigure 10. PM12 somatic mutations by coverage and allele frequency (A) and (B) mutation correlation between primary (y- axis) and brain metastasis (x-axis) eFigure 11. Point mutations across 5 metastatic sites of a 55 year old patient with metastatic prostate cancer at time of rapid autopsy eFigure 12. CT scans from patient PM137, a patient with recurrent platinum refractory metastatic urothelial carcinoma eFigure 13. Tracking tumor genomics between primary and metastatic samples from patient PM12 eFigure 14. -
Distinct Pathways of Homologous Recombination Controlled by the SWS1–SWSAP1–SPIDR Complex ✉ Rohit Prakash 1 , Thomas Sandoval1, Florian Morati 2, Jennifer A
ARTICLE https://doi.org/10.1038/s41467-021-24205-6 OPEN Distinct pathways of homologous recombination controlled by the SWS1–SWSAP1–SPIDR complex ✉ Rohit Prakash 1 , Thomas Sandoval1, Florian Morati 2, Jennifer A. Zagelbaum3, Pei-Xin Lim 1, Travis White1, Brett Taylor 1, Raymond Wang1, Emilie C. B. Desclos4, Meghan R. Sullivan5, Hayley L. Rein5, Kara A. Bernstein 5, Przemek M. Krawczyk4, Jean Gautier3, Mauro Modesti 2, Fabio Vanoli 1 & ✉ Maria Jasin 1 1234567890():,; Homology-directed repair (HDR), a critical DNA repair pathway in mammalian cells, is complex, leading to multiple outcomes with different impacts on genomic integrity. However, the factors that control these different outcomes are often not well understood. Here we show that SWS1–SWSAP1-SPIDR controls distinct types of HDR. Despite their requirement for stable assembly of RAD51 recombinase at DNA damage sites, these proteins are not essential for intra-chromosomal HDR, providing insight into why patients and mice with mutations are viable. However, SWS1–SWSAP1-SPIDR is critical for inter-homolog HDR, the first mitotic factor identified specifically for this function. Furthermore, SWS1–SWSAP1-SPIDR drives the high level of sister-chromatid exchange, promotes long-range loss of hetero- zygosity often involved with cancer initiation, and impels the poor growth of BLM helicase- deficient cells. The relevance of these genetic interactions is evident as SWSAP1 loss prolongs Blm-mutant embryo survival, suggesting a possible druggable target for the treat- ment of Bloom syndrome. 1 Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. 2 Cancer Research Center of Marseille, CNRS, Inserm, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France. -
Genetic Polymorphism of DNA Repair Genes (XRCC1, XRCC2 & XRCC3)
International Journal of Health Sciences and Research www.ijhsr.org ISSN: 2249-9571 Original Research Article Genetic Polymorphism of DNA Repair Genes (XRCC1, XRCC2 & XRCC3) in Breast Cancer Patients from Rural Maharashtra Kailas D. Datkhile1, Suresh J. Bhosale2, Madhavi N. Patil1, Tejasvi S. Khamkar1, Pratik P. Durgawale1, Satish V. Kakade3 1Molecular & Genetic Laboratory, 2Department of Surgery, 3Department of Preventive and Social Medicine, Krishna Institute of Medical Sciences University, Taluka-Karad, Dist-Satara, Pin-415 110 Maharashtra, India Corresponding Author: Kailas D. Datkhile Received: 17/01/2017 Revised: 28/01/2017 Accepted: 30/01/2017 ABSTRACT Background & Objectives: Breast cancer is a major concern of health risk, moreover the leading cause of cancer causing deaths in women of rural parts of India. In this study, we focused to determine the frequency of polymorphisms in DNA repair genes, XRCC1 at codon (cd) 194, cd 280, cd 399, XRCC 2 at cd 188 and XRCC3 at cd 241 to evaluate their role in breast cancer risk. Methods: We used polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) to analyze XRCC genes polymorphisms in 150 breast cancer women and 200 age matched disease-free controls. Results: The result from our study showed that allele frequencies of selected genes were not statistically different between the groups for XRCC1 Trp194, Gln399, XRCC2 His188 and XRCC3 Met241. XRCC1 His280 (OR= 4.14; 95% CI= (2.63-6.53); p= <0.0001) genotype significantly increased the risk of breast cancer. Interpretation & conclusions: This study indicates that polymorphisms in cd280 of XRCC1 gene could play a role in modifying genetic susceptibility of individuals towards breast cancer among women from rural Maharashtra. -
Differential Expression of Thymic DNA Repair Genes in Low-Dose-Rate Irradiated AKR/J Mice
pISSN 1229-845X, eISSN 1976-555X JOURNAL OF J. Vet. Sci. (2013), 14(3), 271-279 http://dx.doi.org/10.4142/jvs.2013.14.3.271 Veterinary Received: 9 Mar. 2012, Revised: 19 Sep. 2012, Accepted: 23 Oct. 2012 Science Original Article Differential expression of thymic DNA repair genes in low-dose-rate irradiated AKR/J mice Jin Jong Bong1, Yu Mi Kang1, Suk Chul Shin1, Seung Jin Choi1, Kyung Mi Lee2,*, Hee Sun Kim1,* 1Radiation Health Research Institute, Korea Hydro and Nuclear Power, Seoul 132-703, Korea 2Global Research Lab, BAERI Institute, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-705, Korea We previously determined that AKR/J mice housed in a harmful to human life. For example, LDR irradiation low-dose-rate (LDR) (137Cs, 0.7 mGy/h, 2.1 Gy) γ-irradiation therapy for cancer is known to stimulate antioxidant facility developed less spontaneous thymic lymphoma and capacity, repair of DNA damage, apoptosis, and induction survived longer than those receiving sham or high-dose-rate of immune responses [4], and LDR irradiation has been (HDR) (137Cs, 0.8 Gy/min, 4.5 Gy) radiation. Interestingly, shown to mitigate lymphomagenesis and prolong the life histopathological analysis showed a mild lymphomagenesis in span of AKR/J mice [17,18]. Conversely, low-dose (LD) the thymus of LDR-irradiated mice. Therefore, in this study, we irradiation is reportedly involved in carcinogenesis, and LD investigated whether LDR irradiation could trigger the irradiation (lower than 2.0 Gy) has been shown to promote expression of thymic genes involved in the DNA repair process tumor growth and metastasis by enhancing angiogenesis of AKR/J mice. -
FANCG Promotes Formation of a Newly Identified Protein Complex
Oncogene (2008) 27, 3641–3652 & 2008 Nature Publishing Group All rights reserved 0950-9232/08 $30.00 www.nature.com/onc ORIGINAL ARTICLE FANCG promotes formation of a newly identified protein complex containing BRCA2, FANCD2 and XRCC3 JB Wilson1, K Yamamoto2,9, AS Marriott1, S Hussain3, P Sung4, ME Hoatlin5, CG Mathew6, M Takata2,10, LH Thompson7, GM Kupfer8 and NJ Jones1 1Molecular Oncology and Stem Cell Research Group, School of Biological Sciences, University of Liverpool, Liverpool, UK; 2Department of Immunology and Medical Genetics, Kawasaki Medical School, Kurashiki, Okayama, Japan; 3Department of Biochemistry, University of Cambridge, Cambridge, UK; 4Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA; 5Division of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland, OR, USA; 6Department of Medical and Molecular Genetics, King’s College London School of Medicine, Guy’s Hospital, London, UK; 7Biosciences and Biotechnology Division, L441, Lawrence Livermore National Laboratory, Livermore, CA, USA and 8Department of Pediatrics, Division of Hematology-Oncology, Yale University School of Medicine, New Haven, CT, USA Fanconi anemia (FA) is a human disorder characterized intricate interface between FANC and HRR proteins in by cancer susceptibility and cellular sensitivity to DNA maintaining chromosome stability. crosslinks and other damages. Thirteen complementation Oncogene (2008) 27, 3641–3652; doi:10.1038/sj.onc.1211034; groups and genes are identified, including BRCA2, which published online 21 January 2008 is defective in the FA-D1 group. Eight of the FA proteins, including FANCG, participate in a nuclear core complex Keywords: Fanconi anemia; ATR; interstrand cross- that is required for the monoubiquitylation of FANCD2 links; DNA repair; RAD51 paralog; replication restart; and FANCI.