FANCG Promotes Formation of a Newly Identified Protein Complex
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Structure and Function of the Human Recq DNA Helicases
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2005 Structure and function of the human RecQ DNA helicases Garcia, P L Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-34420 Dissertation Published Version Originally published at: Garcia, P L. Structure and function of the human RecQ DNA helicases. 2005, University of Zurich, Faculty of Science. Structure and Function of the Human RecQ DNA Helicases Dissertation zur Erlangung der naturwissenschaftlichen Doktorw¨urde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultat¨ der Universitat¨ Z ¨urich von Patrick L. Garcia aus Unterseen BE Promotionskomitee Prof. Dr. Josef Jiricny (Vorsitz) Prof. Dr. Ulrich H ¨ubscher Dr. Pavel Janscak (Leitung der Dissertation) Z ¨urich, 2005 For my parents ii Summary The RecQ DNA helicases are highly conserved from bacteria to man and are required for the maintenance of genomic stability. All unicellular organisms contain a single RecQ helicase, whereas the number of RecQ homologues in higher organisms can vary. Mu- tations in the genes encoding three of the five human members of the RecQ family give rise to autosomal recessive disorders called Bloom syndrome, Werner syndrome and Rothmund-Thomson syndrome. These diseases manifest commonly with genomic in- stability and a high predisposition to cancer. However, the genetic alterations vary as well as the types of tumours in these syndromes. Furthermore, distinct clinical features are observed, like short stature and immunodeficiency in Bloom syndrome patients or premature ageing in Werner Syndrome patients. Also, the biochemical features of the human RecQ-like DNA helicases are diverse, pointing to different roles in the mainte- nance of genomic stability. -
Regulation of DNA Cross-Link Repair by the Fanconi Anemia/BRCA Pathway
Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway Hyungjin Kim and Alan D. D’Andrea1 Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA The maintenance of genome stability is critical for sur- and quadradials, a phenotype widely used as a diagnostic vival, and its failure is often associated with tumorigen- test for FA. esis. The Fanconi anemia (FA) pathway is essential for At least 15 FA gene products constitute a common the repair of DNA interstrand cross-links (ICLs), and a DNA repair pathway, the FA pathway, which resolves germline defect in the pathway results in FA, a cancer ICLs encountered during replication (Fig. 1A). Specifi- predisposition syndrome driven by genome instability. cally, eight FA proteins (FANCA/B/C/E/F/G/L/M) form Central to this pathway is the monoubiquitination of a multisubunit ubiquitin E3 ligase complex, the FA core FANCD2, which coordinates multiple DNA repair activ- complex, which activates the monoubiquitination of ities required for the resolution of ICLs. Recent studies FANCD2 and FANCI after genotoxic stress or in S phase have demonstrated how the FA pathway coordinates three (Wang 2007). The FANCM subunit initiates the pathway critical DNA repair processes, including nucleolytic in- (Fig. 1B). It forms a heterodimeric complex with FAAP24 cision, translesion DNA synthesis (TLS), and homologous (FA-associated protein 24 kDa), and the complex resem- recombination (HR). Here, we review recent advances in bles an XPF–ERCC1 structure-specific endonuclease pair our understanding of the downstream ICL repair steps (Ciccia et al. -
A Novel Breast Cancer ^ Associated BRIP1 (FANCJ/BACH1) Germ- Line Mutation Impairs Protein Stability and Function
Cancer Prevention and Susceptibility A Novel Breast Cancer ^ Associated BRIP1 (FANCJ/BACH1)Germ- line Mutation Impairs Protein Stability and Function Arcangela De Nicolo,1MariellaTancredi,4 Grazia Lombardi,4 Cristina Chantal Flemma,4 Serena Barbuti,4 Claudio Di Cristofano,4 Bijan Sobhian,1Generoso Bevilacqua,4 Ronny Drapkin,2,3 andMariaAdelaideCaligo4 Abstract Purpose: BRCA1-interacting protein 1 (BRIP1; FANCJ/BACH1), which encodes a DNA helicase that interacts with BRCA1, has been suggested to be a low-penetrance breast cancer predispos- ing gene.We aimed to assess whether BRIP1 mutations contribute to breast cancer susceptibility in our population and, if so, to investigate the effect of such mutation(s) on BRIP1function. Experimental Design: A series of49 breast/ovarian cancer families, devoid ofa BRCA1/ BRCA2 mutation, were screened for BRIP1 mutations. Functional analyses, including coimmuno- precipitation and stability assays, were employed to further characterize a previously unreported variant. Results: Five sequence alterations were identified, of which four had been already described. Herein, we report a novel BRIP1 germ-line mutation identified in a woman with early-onset breast cancer. The mutation consists ofa 4-nucleotide deletion (c.2992-2995delAAGA) in BRIP1 exon 20 that causes a shift in the reading frame, disrupts the BRCA1-binding domain of BRIP1, and creates a premature stop codon. Functional analysis ofthe recombinant mutant protein in transfected cells showed that the truncation interferes with the stability of the protein and with its ability to interact with BRCA1. Loss ofthe wild-type BRIP1 allele with retention ofthe mutated one was observed in the patient’s breast tumor tissue. Conclusions: These results, by showing that the newly identified BRIP1 c.2992-2995delAAGA mutation is associated with instability and functional impairment of the encoded protein, provide further evidence of a breast cancer ^ related role for BRIP1. -
Open Full Page
CCR PEDIATRIC ONCOLOGY SERIES CCR Pediatric Oncology Series Recommendations for Childhood Cancer Screening and Surveillance in DNA Repair Disorders Michael F. Walsh1, Vivian Y. Chang2, Wendy K. Kohlmann3, Hamish S. Scott4, Christopher Cunniff5, Franck Bourdeaut6, Jan J. Molenaar7, Christopher C. Porter8, John T. Sandlund9, Sharon E. Plon10, Lisa L. Wang10, and Sharon A. Savage11 Abstract DNA repair syndromes are heterogeneous disorders caused by around the world to discuss and develop cancer surveillance pathogenic variants in genes encoding proteins key in DNA guidelines for children with cancer-prone disorders. Herein, replication and/or the cellular response to DNA damage. The we focus on the more common of the rare DNA repair dis- majority of these syndromes are inherited in an autosomal- orders: ataxia telangiectasia, Bloom syndrome, Fanconi ane- recessive manner, but autosomal-dominant and X-linked reces- mia, dyskeratosis congenita, Nijmegen breakage syndrome, sive disorders also exist. The clinical features of patients with DNA Rothmund–Thomson syndrome, and Xeroderma pigmento- repair syndromes are highly varied and dependent on the under- sum. Dedicated syndrome registries and a combination of lying genetic cause. Notably, all patients have elevated risks of basic science and clinical research have led to important in- syndrome-associated cancers, and many of these cancers present sights into the underlying biology of these disorders. Given the in childhood. Although it is clear that the risk of cancer is rarity of these disorders, it is recommended that centralized increased, there are limited data defining the true incidence of centers of excellence be involved directly or through consulta- cancer and almost no evidence-based approaches to cancer tion in caring for patients with heritable DNA repair syn- surveillance in patients with DNA repair disorders. -
Analysis of and Fanconi Anemia Genes in -Negative Spanish Breast Cancer Families María J
Analysis of and Fanconi Anemia genes in -negative Spanish breast cancer families María J. García, Victoria Fernández, Ana Osorio, Alicia Barroso, Gemma Llort, Conxi Lázaro, Ignacio Blanco, Trinidad Caldés, Miguel Hoya, Teresa Ramón y Cajal, et al. To cite this version: María J. García, Victoria Fernández, Ana Osorio, Alicia Barroso, Gemma Llort, et al.. Analysis of and Fanconi Anemia genes in -negative Spanish breast cancer families. Breast Cancer Research and Treatment, Springer Verlag, 2008, 113 (3), pp.545-551. 10.1007/s10549-008-9945-0. hal-00478320 HAL Id: hal-00478320 https://hal.archives-ouvertes.fr/hal-00478320 Submitted on 30 Apr 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Breast Cancer Res Treat (2009) 113:545–551 DOI 10.1007/s10549-008-9945-0 EPIDEMIOLOGY Analysis of FANCB and FANCN/PALB2 Fanconi Anemia genes in BRCA1/2-negative Spanish breast cancer families Marı´a J. Garcı´a Æ Victoria Ferna´ndez Æ Ana Osorio Æ Alicia Barroso Æ Gemma LLort Æ Conxi La´zaro Æ Ignacio Blanco Æ Trinidad Calde´s Æ Miguel de la Hoya Æ Teresa Ramo´n y Cajal Æ Carmen Alonso Æ Marı´a-Isabel Tejada Æ Carlos San Roma´n Æ Luis Robles-Dı´az Æ Miguel Urioste Æ Javier Benı´tez Received: 12 February 2008 / Accepted: 12 February 2008 / Published online: 27 February 2008 Ó Springer Science+Business Media, LLC. -
The ATM Gene in Breast Cancer: Its Relevance in Clinical Practice
G C A T T A C G G C A T genes Review The ATM Gene in Breast Cancer: Its Relevance in Clinical Practice Luigia Stefania Stucci 1,* , Valeria Internò 1 , Marco Tucci 1,2 , Martina Perrone 1, Francesco Mannavola 1 , Raffaele Palmirotta 3 and Camillo Porta 1 1 Division of Medical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, A.O.U. Consorziale Policlinico di Bari, 70121 Bari, Italy; [email protected] (V.I.); [email protected] (M.T.); [email protected] (M.P.); [email protected] (F.M.); [email protected] (C.P.) 2 National Cancer Research Center, Tumori Institute IRCCS Giovanni Paolo II, 70121 Bari, Italy 3 Interdisciplinary Department of Medicine, Section of Sciences and Technologies of Laboratory Medicine, University of Bari, 70121 Bari, Italy; [email protected] * Correspondence: [email protected] Abstract: Molecular alterations of the Ataxia-telangiectasia (AT) gene are frequently detected in breast cancer (BC), with an incidence ranging up to 40%. The mutated form, the Ataxia-telangiectasia mutated (ATM) gene, is involved in cell cycle control, apoptosis, oxidative stress, and telomere maintenance, and its role as a risk factor for cancer development is well established. Recent studies have confirmed that some variants of ATM are associated with an increased risk of BC development and a worse prognosis. Thus, many patients harboring ATM mutations develop intermediate- and high-grade disease, and there is a higher rate of lymph node metastatic involvement. The evidence concerning a correlation of ATM gene mutations and the efficacy of therapeutic strategies in BC management are controversial. -
Gene Section Review
Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL INIST-CNRS Gene Section Review XRCC2 (X-ray repair cross complementing 2) Paul R Andreassen, Helmut Hanenberg Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati OH, USA; [email protected] (PRA); Department of Pediatrics III, University Children's Hospital Essen, University Duisburg- Essen, Essen Germany; [email protected] (HH) Published in Atlas Database: November 2017 Online updated version : http://AtlasGeneticsOncology.org/Genes/XRCC2ID334ch7q36.html Printable original version : http://documents.irevues.inist.fr/bitstream/handle/2042/69759/11-2017-XRCC2ID334ch7q36.pdf DOI: 10.4267/2042/69759 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2019 Atlas of Genetics and Cytogenetics in Oncology and Haematology Clinically, the only known FA-U patient in the Abstract world exhibits severe congenital abnormalities, but XRCC2 is one of five somatic RAD51 paralogs, all had not developed, by seven years of age, the bone of which have Walker A and B ATPase motifs. marrow failure and cancer that are often seen in Each of the paralogs, including XRCC2, has a patients from other FA complementation groups. function in DNA double-strand break repair by Keywords homologous recombination (HR). However, their Fanconi anemia, Breast Cancer Susceptibility, individual roles are not as well understood as that Tumor Suppressor, Homologous Recombination, of RAD51 itself. DNA Repair, RAD51 Paralog The XRCC2 protein forms a complex (BCDX2) with three other RAD51 paralogs, RAD51B, RAD51C and RAD51D. It is believed that the Identity BCDX2 complex mediates HR downstream of Other names: FANCU BRCA2 but upstream of RAD51, as XRCC2 is HGNC (Hugo): XRCC2 involved in the assembly of RAD51 into DNA damage foci. -
Genomic Profiling Reveals High Frequency of DNA Repair Genetic
www.nature.com/scientificreports OPEN Genomic profling reveals high frequency of DNA repair genetic aberrations in gallbladder cancer Reham Abdel‑Wahab1,9, Timothy A. Yap2, Russell Madison4, Shubham Pant1,2, Matthew Cooke4, Kai Wang4,5,7, Haitao Zhao8, Tanios Bekaii‑Saab6, Elif Karatas1, Lawrence N. Kwong3, Funda Meric‑Bernstam2, Mitesh Borad6 & Milind Javle1,10* DNA repair gene aberrations (GAs) occur in several cancers, may be prognostic and are actionable. We investigated the frequency of DNA repair GAs in gallbladder cancer (GBC), association with tumor mutational burden (TMB), microsatellite instability (MSI), programmed cell death protein 1 (PD‑1), and its ligand (PD‑L1) expression. Comprehensive genomic profling (CGP) of 760 GBC was performed. We investigated GAs in 19 DNA repair genes including direct DNA repair genes (ATM, ATR , BRCA1, BRCA2, FANCA, FANCD2, MLH1, MSH2, MSH6, PALB2, POLD1, POLE, PRKDC, and RAD50) and caretaker genes (BAP1, CDK12, MLL3, TP53, and BLM) and classifed patients into 3 groups based on TMB level: low (< 5.5 mutations/Mb), intermediate (5.5–19.5 mutations/Mb), and high (≥ 19.5 mutations/Mb). We assessed MSI status and PD‑1 & PD‑L1 expression. 658 (86.6%) had at least 1 actionable GA. Direct DNA repair gene GAs were identifed in 109 patients (14.2%), while 476 (62.6%) had GAs in caretaker genes. Both direct and caretaker DNA repair GAs were signifcantly associated with high TMB (P = 0.0005 and 0.0001, respectively). Tumor PD‑L1 expression was positive in 119 (15.6%), with 17 (2.2%) being moderate or high. DNA repair GAs are relatively frequent in GBC and associated with coexisting actionable mutations and a high TMB. -
Understanding the Role of Rad52 in Homologous Recombination for Therapeutic Advancement
Author Manuscript Published OnlineFirst on October 15, 2012; DOI: 10.1158/1078-0432.CCR-11-3150 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. The Role of Rad52 in Homologous Recombination MOLECULAR PATHWAYS: Understanding the role of Rad52 in homologous recombination for therapeutic advancement Benjamin H. Lok 1,2 and Simon N. Powell 1 1 Memorial Sloan-Kettering Cancer Center, New York, NY 2 New York University School of Medicine, New York, NY Corresponding author: Simon N. Powell, MD PhD Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY Mailing address: 1250 1st Avenue, Box 33, New York, NY 10065 Telephone: 212-639-6072 Facsimile: 212-794-3188 E-mail: [email protected] Conflicts of interest. The authors have no potential conflict of interest to report. 1 Downloaded from clincancerres.aacrjournals.org on September 26, 2021. © 2012 American Association for Cancer Research. Author Manuscript Published OnlineFirst on October 15, 2012; DOI: 10.1158/1078-0432.CCR-11-3150 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. The Role of Rad52 in Homologous Recombination Table of Contents Abstract ......................................................................................................................................................... 2 Background .................................................................................................................................................. -
Encyclopedia of Life Sciences
DNA repair: Disorders Lehmann, Alan R and O‟Driscoll, Mark Alan R Lehmann and Mark O‟Driscoll Genome Damage and Stability Centre University of Sussex Falmer, Brighton BN1 9RQ UK Encyclopedia of Life Sciences DNA Repair: Disorders Abstract Deoxyribonucleic acid inside cells is being damaged continually. Cells have evolved a series of complex mechanisms to repair all types of damage. Deficiencies in these repair pathways can result in several different genetic disorders. In many cases these are associated with a greatly elevated incidence of specific cancers. Other disorders do not show increased cancer susceptibility, but instead they present with neurological abnormalities or immune defects. Features of premature ageing also often result. These disorders indicate that DNA repair and damage response processes protect us from cancer and are important for the maintenance of a healthy condition. Keywords: UV light; xeroderma pigmentosum; ataxia telangiectasia; cancer; immunodeficiency; DNA repair. Key concepts DNA is damaged continually from both endogenous and exogenous sources. Cells have evolved many different ways for repairing different types of damage Genetic defects in these pathways result in different disorders Defective DNA repair often results in an increased mutation frequency and consequent elevated incidence of cancer. Many of the DNA repair disorders are highly cancer-prone. The central nervous system appears to be particularly sensitive to DNA breaks. Several disorders caused by defective break repair are associated with neurological abnormalities including mental retardation, ataxia and microcephaly. Development of immunological diversity uses some of the enzymes required to repair double-strand breaks. Disorders caused by defects in this process are associated with immune deficiencies. -
Further Insights Into the Regulation of the Fanconi Anemia FANCD2 Protein
University of Rhode Island DigitalCommons@URI Open Access Dissertations 2015 Further Insights Into the Regulation of the Fanconi Anemia FANCD2 Protein Rebecca Anne Boisvert University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss Recommended Citation Boisvert, Rebecca Anne, "Further Insights Into the Regulation of the Fanconi Anemia FANCD2 Protein" (2015). Open Access Dissertations. Paper 397. https://digitalcommons.uri.edu/oa_diss/397 This Dissertation is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. FURTHER INSIGHTS INTO THE REGULATION OF THE FANCONI ANEMIA FANCD2 PROTEIN BY REBECCA ANNE BOISVERT A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN CELL AND MOLECULAR BIOLOGY UNIVERSITY OF RHODE ISLAND 2015 DOCTOR OF PHILOSOPHY DISSERTATION OF REBECCA ANNE BOISVERT APPROVED: Dissertation Committee: Major Professor Niall Howlett Paul Cohen Becky Sartini Nasser H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2015 ABSTRACT Fanconi anemia (FA) is a rare autosomal and X-linked recessive disorder, characterized by congenital abnormalities, pediatric bone marrow failure and cancer susceptibility. FA is caused by biallelic mutations in any one of 16 genes. The FA proteins function cooperatively in the FA-BRCA pathway to repair DNA interstrand crosslinks (ICLs). The monoubiquitination of FANCD2 and FANCI is a central step in the activation of the FA-BRCA pathway and is required for targeting these proteins to chromatin. -
Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia.