Resources for the Study of Real Analysis 4 AMS / MAA PRESS

Total Page:16

File Type:pdf, Size:1020Kb

Resources for the Study of Real Analysis 4 AMS / MAA PRESS AMS / MAA TEXTBOOKS VOL 4 Resources for the Study VOL of Real Analysis AMS / MAA TEXTBOOKS 4 Robert L Brabenec The book offers even more than its title suggests: a true trove of resources for students (and their teachers) who face the exciting—but often rough— passage from the routine calculations of elementary calculus to the Analysis of Real the Study for Resources deeper arguments and insights of real analysis. There are gems here for average students who need review; for the quickest students who need mathematical challenges; for teachers who need ideas; and for everyone with a taste for mathematical highlights and culture. —Paul Zorn, St. Olaf College Brabenec has provided a rich smorgasbord of mathematical analysis— L Brabenec Robert including a host of problems, historical essays, and selected readings— from which no one should go away hungry. —William Dunham, Muhlenberg College This book is a collection of materials gathered by the author while teaching real analysis over a period of years. It is intended for use as a supplement to a traditional analysis textbook, or to provide material for seminars or independent study in analysis and its historical development. The book includes historical and biographical information, a wide range of problem types, selected readings on a variety of topics, and many references for additional study. Since all these materials are collected into a single book, teachers and students can easily choose items most suitable for their purpose. Teachers may use the book as a supplement to their courses, while students may read much of the book on their own. No other book has been written specifically as a supplement for a real analysis course. AMSMAA / PRESS Trim Size 7 x 10 243 pages • Spine: 1/2 in • 50lb paper • Softcover • 4-color Process (CMYK) Resources for the Study of Real Analysis 10.1090/text/004 Resources for the Study of Real Analysis by Robert L. Brabenec Wheaton College Published and Distributed by THE MATHEMATICAL ASSOCIATION OF AMERICA CLASSROOM RESOURCE MATERIALS Classroom Resource Materials is intended to provide supplementary classroom material for students-laboratory exercises, projects, historical information, textbooks with unusual approaches for presenting mathematical ideas, career information, etc. Council on Publications Roger Nelsen, Chair Zaven A. Karlan, Editor William Bauldry Daniel E. Kullman Gerald Bryce Stephen B Maurer Sheldon P. Gordon Douglas Meade William J. Higgins Judith A. Palagallo Mic Jackson Wayne Roberts Paul Knopp 101 Careers in Mathematics, edited by Andrew Sterrett Archimedes: What Did He Do Besides Cry Eureka?, Sherman Stein Calculus Mysteries and Thrillers, R. Grant Woods Combinatorics: A Problem Oriented Approach, Daniel A. Marcus Conjecture and Proof, Miklos Laczkovich A Course in Mathematical Modeling, Douglas Mooney and Randall Swift Cryptological Mathematics, Robert Edward Lewand Elementary Mathematical Models, Dan Kalman Environmental Mathematics in the Classroom, edited by B. A. Fusaro and P. C. Kenschaft Essentials of Mathematics: Introduction to Theory, Proof, and the Professional Culture, Margie Hale Exploratory Examples for Real Analysis, Joanne E. Snow and Kirk E. Weller Geometry from Africa: Mathematical and Educational Explorations, Paulus Gerdes Identification Numbers and Check Digit Schemes, Joseph Kirtland Interdisciplinary Lively Application Projects, edited by Chris Amey Inverse Problems: Activities for Undergraduates, C. W. Groetsch Laboratory Experiences in Group Theory, Ellen Maycock Parker Learn from the Masters, Frank Swetz, John Fauvel, Otto Bekken, Bengt Johansson, and Victor Katz Math through the Ages: A Gentle History for Teachers and Others (Expanded Edition), William P. Berlinghoff and Fernando Q. Gouvea Mathematical Evolutions, edited by Abe Shenitzer and John Stillwell Mathematical Modeling in the Environment, Charles Hadlock Mathematics for Business Decisions Part 1: Probability and Simulation (electronic textbook), Richard B. Thompson and Christopher G. Lamoureux Mathematics for Business Decisions Part 2: Calculus and Optimization (electronic textbook), Richard B. Thompson and Christopher G. Lamoureux Ordinary Differential Equations: A Brief Eclectic Tour, David A. Sanchez Oval Track and Other Permutation Puzzles, Robert B. Ash A Primer ofAbstract Mathematics, Robert B. Ash Proofs Without Words, Roger B. Nelsen Proofs Without Words II, Roger B. Nelsen A Radical Approach to Real Analysis, David M. Bressoud Resources for the Study of Real Analysis, Robert L. Brabenec She Does Math!, edited by Marla Parker Solve This: Math Activities for Students and Clubs, James S. Tanton Student Manual for Mathematics for Business Decisions Part 1: Probability and Simulation, David Williamson, Marilou Mendel, Julie Tarr, and Deborah Yoklic Student Manual for Mathematics for Business Decisions Part 2: Calculus and Optimization, David Williamson, Marilou Mendel, Julie Tarr, and Deborah Yoklic Tepching Statistics Using Baseball, Jim Albert Writing Projects for Mathematics Courses: Crushed Clowns, Cars, and Coffee to Go, Annalisa Crannell, Gavin LaRose, Thomas Ratliff, and Elyn Rykken MAA Service Center P. 0. Box 91112 Washington, DC 20090-1112 1-800-331-lMAA FAX: 1-301-206-9789 www.maa.org This book is dedicated to the hundreds of Wheaton College students who have taken my course in real analysis during the past forty years. Their enthusiasm and contributions enriched these classes and helped to shape the material in this book. Contents Preface xi Review of Calculus 1 An Outline of a Traditional Course in Calculus 1 Calculus Review Problems 6 II Analysis Problems 19 Introduction 19 Section 1. Basic Problems Problem l. Properties of Even and Odd Functions 19 Problem 2. Use of the Cancellation Principle 22 Problem 3. Finding Maclaurin Series Representations 26 Problem 4. Evaluating Jd xk dx by Cavalieri Sums 29 Section 2. Supplementary Problems Problem 5. The Pervasive Nature of Sequences 31 Problem 6. Counterexamples 36 Problem 7. Some Examples of Unusual Functions 37 Problem 8. Identifying Interior, Exterior, Boundary, and Limit Points 39 Problem 9. Exploring Uniform Continuity 40 Problem 10. Comparing the Ratio Test, the Root Test, and Raabe's Test 42 Problem 11. Various Proofs that L:'= 1 ;!,: = 1~t 47 viii Part . Contents Problem 12. Finding a Value for I::= 1 n\ 51 Problem 13. Rearrangements of Conditionally Convergent Series 52 Problem 14. Finding Approximations for rr 61 Problem 15. A Function with Derivatives of All Orders, but No Maclaurin Series 68 Problem 16. Evaluating Jd xk dx by Fermat's Method 69 Problem 17. Two Proofs that Jd (x lnx)ll dx = (-l)nn!/(n + l)<n+l) 70 Problem 18. Evaluating Jd xx dx by Bernoulli's Method 72 Problem 19. Some Interesting Sequences of Functions 73 Problem 20. Comparing Uniform Continuity and Uniform Convergence 74 Problem 21. Questions for Sequences of Functions and for Series of Functions 75 Section 3 .. Enrichment Problems Problem 22. Generalizing the Fibonacci Sequence 79 Problem 23. Euler's Proof that e Is Irrational 81 Problem 24. Subseries of the Harmonic Series 83 Problem 25. Finding Functions whose Maclaurin Series is I::= 1 n k xn 87 Problem 26. A Pascal-like Triangle 91 Problem 27. Finding Areas without Antiderivatives 95 Problem 28. Questions from the Euler-Stirling Correspondence 100 Problem 29. The Gamma Function 102 Problem 30. Bernoulli Numbers 109 Problem 31. A Look at Fourier Series 112 Problem 32. Summability of Divergent Series 115 Problem 33. Lebesgue Measure 121 Problem 34. Cantor's Middle Third Set 123 Ill Essays 125 Section 1. History and Biography Essay 1. The Time of Archimedes and Other Giants (pre-1660) 126 Essay 2. The Time of Newton and Leibniz (1660-1690) 129 Essay 3. The Time of Euler and the Bernoullis (1690-1790) 132 Essay 4. The Time of Cauchy, Fourier, and Lagrange (1790-1850) 135 Essay 5. The Time of Riemann and Weierstrass (1850-1900) 139 Essay 6. The Time of Lebesgue and Hardy (1900-1940) 142 Section 2. New Looks at Calculus Content Essay 7. Obtaining the Derivative Formulas 147 Essay 8. Tests for Convergence of Series 155 Section 3. General Topics for Analysis Essay 9. Proof Techniques in Analysis 163 Essay 10. Sets and Topology 170 Part . Contents Ix IV Selected Readings 175 Introduction 175 Selection 1. John Bernoulli and the Marquis de l'Hopital 177 Selection 2. The Euler-Stirling Correspondence 179 Selection 3. Developing Rigor in Calculus 187 Selection 4. The Contribution of Lebesgue 198 Selection 5. The Bernoulli Numbers and Some Wonderful Discoveries of Euler 202 Annotated Bibliography 207 Addltlonal References 217 Index 221 Preface This book is a collection of materials I have gathered while teaching a real analysis course every year for more than thirty-five years. I prepared it with the hope it will benefit and enrich the experience both of students who take a real analysis course, as well as those who teach it. This collection is intended to supplement a traditional real analysis textbook, where teachers and students may choose items of interest to them. It is my conviction that such supplementary materials have a much greater chance of being used in an analysis course if they are readily available in one place. Part I contains materials that provide the greatest benefit if read before the real analysis course begins. Because such a course assumes knowledge of topics from calculus of one real variable, review of this material in advance frees the student to concentrate on new content and theoretical emphases in analysis without having to revisit the calculus at the same time. The outline of a traditional calculus course allows a student to check necessary topics for review, whereas the calculus review problems offer the opportunity to refresh necessary skills which may have lain dormant for some time. Many hints are provided with the problems to encourage students to carry out this review. The problems in Part II are intended to supplement the ones usually found in an analysis text. There is a wide variety of problem types, and each one has exercises for the student to attempt.
Recommended publications
  • Abel's Identity, 131 Abel's Test, 131–132 Abel's Theorem, 463–464 Absolute Convergence, 113–114 Implication of Condi
    INDEX Abel’s identity, 131 Bolzano-Weierstrass theorem, 66–68 Abel’s test, 131–132 for sequences, 99–100 Abel’s theorem, 463–464 boundary points, 50–52 absolute convergence, 113–114 bounded functions, 142 implication of conditional bounded sets, 42–43 convergence, 114 absolute value, 7 Cantor function, 229–230 reverse triangle inequality, 9 Cantor set, 80–81, 133–134, 383 triangle inequality, 9 Casorati-Weierstrass theorem, 498–499 algebraic properties of Rk, 11–13 Cauchy completeness, 106–107 algebraic properties of continuity, 184 Cauchy condensation test, 117–119 algebraic properties of limits, 91–92 Cauchy integral theorem algebraic properties of series, 110–111 triangle lemma, see triangle lemma algebraic properties of the derivative, Cauchy principal value, 365–366 244 Cauchy sequences, 104–105 alternating series, 115 convergence of, 105–106 alternating series test, 115–116 Cauchy’s inequalities, 437 analytic functions, 481–482 Cauchy’s integral formula, 428–433 complex analytic functions, 483 converse of, 436–437 counterexamples, 482–483 extension to higher derivatives, 437 identity principle, 486 for simple closed contours, 432–433 zeros of, see zeros of complex analytic on circles, 429–430 functions on open connected sets, 430–432 antiderivatives, 361 on star-shaped sets, 429 for f :[a, b] Rp, 370 → Cauchy’s integral theorem, 420–422 of complex functions, 408 consequence, see deformation of on star-shaped sets, 411–413 contours path-independence, 408–409, 415 Cauchy-Riemann equations Archimedean property, 5–6 motivation, 297–300
    [Show full text]
  • Calculus and Differential Equations II
    Calculus and Differential Equations II MATH 250 B Sequences and series Sequences and series Calculus and Differential Equations II Sequences A sequence is an infinite list of numbers, s1; s2;:::; sn;::: , indexed by integers. 1n Example 1: Find the first five terms of s = (−1)n , n 3 n ≥ 1. Example 2: Find a formula for sn, n ≥ 1, given that its first five terms are 0; 2; 6; 14; 30. Some sequences are defined recursively. For instance, sn = 2 sn−1 + 3, n > 1, with s1 = 1. If lim sn = L, where L is a number, we say that the sequence n!1 (sn) converges to L. If such a limit does not exist or if L = ±∞, one says that the sequence diverges. Sequences and series Calculus and Differential Equations II Sequences (continued) 2n Example 3: Does the sequence converge? 5n 1 Yes 2 No n 5 Example 4: Does the sequence + converge? 2 n 1 Yes 2 No sin(2n) Example 5: Does the sequence converge? n Remarks: 1 A convergent sequence is bounded, i.e. one can find two numbers M and N such that M < sn < N, for all n's. 2 If a sequence is bounded and monotone, then it converges. Sequences and series Calculus and Differential Equations II Series A series is a pair of sequences, (Sn) and (un) such that n X Sn = uk : k=1 A geometric series is of the form 2 3 n−1 k−1 Sn = a + ax + ax + ax + ··· + ax ; uk = ax 1 − xn One can show that if x 6= 1, S = a .
    [Show full text]
  • Ch. 15 Power Series, Taylor Series
    Ch. 15 Power Series, Taylor Series 서울대학교 조선해양공학과 서유택 2017.12 ※ 본 강의 자료는 이규열, 장범선, 노명일 교수님께서 만드신 자료를 바탕으로 일부 편집한 것입니다. Seoul National 1 Univ. 15.1 Sequences (수열), Series (급수), Convergence Tests (수렴판정) Sequences: Obtained by assigning to each positive integer n a number zn z . Term: zn z1, z 2, or z 1, z 2 , or briefly zn N . Real sequence (실수열): Sequence whose terms are real Convergence . Convergent sequence (수렴수열): Sequence that has a limit c limznn c or simply z c n . For every ε > 0, we can find N such that Convergent complex sequence |zn c | for all n N → all terms zn with n > N lie in the open disk of radius ε and center c. Divergent sequence (발산수열): Sequence that does not converge. Seoul National 2 Univ. 15.1 Sequences, Series, Convergence Tests Convergence . Convergent sequence: Sequence that has a limit c Ex. 1 Convergent and Divergent Sequences iin 11 Sequence i , , , , is convergent with limit 0. n 2 3 4 limznn c or simply z c n Sequence i n i , 1, i, 1, is divergent. n Sequence {zn} with zn = (1 + i ) is divergent. Seoul National 3 Univ. 15.1 Sequences, Series, Convergence Tests Theorem 1 Sequences of the Real and the Imaginary Parts . A sequence z1, z2, z3, … of complex numbers zn = xn + iyn converges to c = a + ib . if and only if the sequence of the real parts x1, x2, … converges to a . and the sequence of the imaginary parts y1, y2, … converges to b. Ex.
    [Show full text]
  • 11.3-11.4 Integral and Comparison Tests
    11.3-11.4 Integral and Comparison Tests The Integral Test: Suppose a function f(x) is continuous, positive, and decreasing on [1; 1). Let an 1 P R 1 be defined by an = f(n). Then, the series an and the improper integral 1 f(x) dx either BOTH n=1 CONVERGE OR BOTH DIVERGE. Notes: • For the integral test, when we say that f must be decreasing, it is actually enough that f is EVENTUALLY ALWAYS DECREASING. In other words, as long as f is always decreasing after a certain point, the \decreasing" requirement is satisfied. • If the improper integral converges to a value A, this does NOT mean the sum of the series is A. Why? The integral of a function will give us all the area under a continuous curve, while the series is a sum of distinct, separate terms. • The index and interval do not always need to start with 1. Examples: Determine whether the following series converge or diverge. 1 n2 • X n2 + 9 n=1 1 2 • X n2 + 9 n=3 1 1 n • X n2 + 1 n=1 1 ln n • X n n=2 Z 1 1 p-series: We saw in Section 8.9 that the integral p dx converges if p > 1 and diverges if p ≤ 1. So, by 1 x 1 1 the Integral Test, the p-series X converges if p > 1 and diverges if p ≤ 1. np n=1 Notes: 1 1 • When p = 1, the series X is called the harmonic series. n n=1 • Any constant multiple of a convergent p-series is also convergent.
    [Show full text]
  • 1 Mean Value Theorem 1 1.1 Applications of the Mean Value Theorem
    Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary In Section 1, we go over the Mean Value Theorem and its applications. In Section 2, we will recap what we have covered so far this term. Topics Page 1 Mean Value Theorem 1 1.1 Applications of the Mean Value Theorem . .1 2 Midterm Review 5 2.1 Proof Techniques . .5 2.2 Sequences . .6 2.3 Series . .7 2.4 Continuity and Differentiability of Functions . .9 1 Mean Value Theorem The Mean Value Theorem is the following result: Theorem 1.1 (Mean Value Theorem). Let f be a continuous function on [a; b], which is differentiable on (a; b). Then, there exists some value c 2 (a; b) such that f(b) − f(a) f 0(c) = b − a Intuitively, the Mean Value Theorem is quite trivial. Say we want to drive to San Francisco, which is 380 miles from Caltech according to Google Map. If we start driving at 8am and arrive at 12pm, we know that we were driving over the speed limit at least once during the drive. This is exactly what the Mean Value Theorem tells us. Since the distance travelled is a continuous function of time, we know that there is a point in time when our speed was ≥ 380=4 >>> speed limit. As we can see from this example, the Mean Value Theorem is usually not a tough theorem to understand. The tricky thing is realizing when you should try to use it. Roughly speaking, we use the Mean Value Theorem when we want to turn the information about a function into information about its derivative, or vice-versa.
    [Show full text]
  • 3.3 Convergence Tests for Infinite Series
    3.3 Convergence Tests for Infinite Series 3.3.1 The integral test We may plot the sequence an in the Cartesian plane, with independent variable n and dependent variable a: n X The sum an can then be represented geometrically as the area of a collection of rectangles with n=1 height an and width 1. This geometric viewpoint suggests that we compare this sum to an integral. If an can be represented as a continuous function of n, for real numbers n, not just integers, and if the m X sequence an is decreasing, then an looks a bit like area under the curve a = a(n). n=1 In particular, m m+2 X Z m+1 X an > an dn > an n=1 n=1 n=2 For example, let us examine the first 10 terms of the harmonic series 10 X 1 1 1 1 1 1 1 1 1 1 = 1 + + + + + + + + + : n 2 3 4 5 6 7 8 9 10 1 1 1 If we draw the curve y = x (or a = n ) we see that 10 11 10 X 1 Z 11 dx X 1 X 1 1 > > = − 1 + : n x n n 11 1 1 2 1 (See Figure 1, copied from Wikipedia) Z 11 dx Now = ln(11) − ln(1) = ln(11) so 1 x 10 X 1 1 1 1 1 1 1 1 1 1 = 1 + + + + + + + + + > ln(11) n 2 3 4 5 6 7 8 9 10 1 and 1 1 1 1 1 1 1 1 1 1 1 + + + + + + + + + < ln(11) + (1 − ): 2 3 4 5 6 7 8 9 10 11 Z dx So we may bound our series, above and below, with some version of the integral : x If we allow the sum to turn into an infinite series, we turn the integral into an improper integral.
    [Show full text]
  • What Is on Today 1 Alternating Series
    MA 124 (Calculus II) Lecture 17: March 28, 2019 Section A3 Professor Jennifer Balakrishnan, [email protected] What is on today 1 Alternating series1 1 Alternating series Briggs-Cochran-Gillett x8:6 pp. 649 - 656 We begin by reviewing the Alternating Series Test: P k+1 Theorem 1 (Alternating Series Test). The alternating series (−1) ak converges if 1. the terms of the series are nonincreasing in magnitude (0 < ak+1 ≤ ak, for k greater than some index N) and 2. limk!1 ak = 0. For series of positive terms, limk!1 ak = 0 does NOT imply convergence. For alter- nating series with nonincreasing terms, limk!1 ak = 0 DOES imply convergence. Example 2 (x8.6 Ex 16, 20, 24). Determine whether the following series converge. P1 (−1)k 1. k=0 k2+10 P1 1 k 2. k=0 − 5 P1 (−1)k 3. k=2 k ln2 k 1 MA 124 (Calculus II) Lecture 17: March 28, 2019 Section A3 Recall that if a series converges to a value S, then the remainder is Rn = S − Sn, where Sn is the sum of the first n terms of the series. An upper bound on the magnitude of the remainder (the absolute error) in an alternating series arises form the following observation: when the terms are nonincreasing in magnitude, the value of the series is always trapped between successive terms of the sequence of partial sums. Thus we have jRnj = jS − Snj ≤ jSn+1 − Snj = an+1: This justifies the following theorem: P1 k+1 Theorem 3 (Remainder in Alternating Series).
    [Show full text]
  • The Binomial Series 16.3   
    The Binomial Series 16.3 Introduction In this Section we examine an important example of an infinite series, the binomial series: p(p − 1) p(p − 1)(p − 2) 1 + px + x2 + x3 + ··· 2! 3! We show that this series is only convergent if |x| < 1 and that in this case the series sums to the value (1 + x)p. As a special case of the binomial series we consider the situation when p is a positive integer n. In this case the infinite series reduces to a finite series and we obtain, by replacing x with b , the binomial theorem: a n(n − 1) (b + a)n = bn + nbn−1a + bn−2a2 + ··· + an. 2! Finally, we use the binomial series to obtain various polynomial expressions for (1 + x)p when x is ‘small’. ' • understand the factorial notation $ Prerequisites • have knowledge of the ratio test for convergence of infinite series. Before starting this Section you should ... • understand the use of inequalities '& • recognise and use the binomial series $% Learning Outcomes • state and use the binomial theorem On completion you should be able to ... • use the binomial series to obtain numerical approximations & % 26 HELM (2008): Workbook 16: Sequences and Series ® 1. The binomial series A very important infinite series which occurs often in applications and in algebra has the form: p(p − 1) p(p − 1)(p − 2) 1 + px + x2 + x3 + ··· 2! 3! in which p is a given number and x is a variable. By using the ratio test it can be shown that this series converges, irrespective of the value of p, as long as |x| < 1.
    [Show full text]
  • Series: Convergence and Divergence Comparison Tests
    Series: Convergence and Divergence Here is a compilation of what we have done so far (up to the end of October) in terms of convergence and divergence. • Series that we know about: P∞ n Geometric Series: A geometric series is a series of the form n=0 ar . The series converges if |r| < 1 and 1 a1 diverges otherwise . If |r| < 1, the sum of the entire series is 1−r where a is the first term of the series and r is the common ratio. P∞ 1 2 p-Series Test: The series n=1 np converges if p1 and diverges otherwise . P∞ • Nth Term Test for Divergence: If limn→∞ an 6= 0, then the series n=1 an diverges. Note: If limn→∞ an = 0 we know nothing. It is possible that the series converges but it is possible that the series diverges. Comparison Tests: P∞ • Direct Comparison Test: If a series n=1 an has all positive terms, and all of its terms are eventually bigger than those in a series that is known to be divergent, then it is also divergent. The reverse is also true–if all the terms are eventually smaller than those of some convergent series, then the series is convergent. P P P That is, if an, bn and cn are all series with positive terms and an ≤ bn ≤ cn for all n sufficiently large, then P P if cn converges, then bn does as well P P if an diverges, then bn does as well. (This is a good test to use with rational functions.
    [Show full text]
  • Mathematics 1
    Mathematics 1 MATH 1141 Calculus I for Chemistry, Engineering, and Physics MATHEMATICS Majors 4 Credits Prerequisite: Precalculus. This course covers analytic geometry, continuous functions, derivatives Courses of algebraic and trigonometric functions, product and chain rules, implicit functions, extrema and curve sketching, indefinite and definite integrals, MATH 1011 Precalculus 3 Credits applications of derivatives and integrals, exponential, logarithmic and Topics in this course include: algebra; linear, rational, exponential, inverse trig functions, hyperbolic trig functions, and their derivatives and logarithmic and trigonometric functions from a descriptive, algebraic, integrals. It is recommended that students not enroll in this course unless numerical and graphical point of view; limits and continuity. Primary they have a solid background in high school algebra and precalculus. emphasis is on techniques needed for calculus. This course does not Previously MA 0145. count toward the mathematics core requirement, and is meant to be MATH 1142 Calculus II for Chemistry, Engineering, and Physics taken only by students who are required to take MATH 1121, MATH 1141, Majors 4 Credits or MATH 1171 for their majors, but who do not have a strong enough Prerequisite: MATH 1141 or MATH 1171. mathematics background. Previously MA 0011. This course covers applications of the integral to area, arc length, MATH 1015 Mathematics: An Exploration 3 Credits and volumes of revolution; integration by substitution and by parts; This course introduces various ideas in mathematics at an elementary indeterminate forms and improper integrals: Infinite sequences and level. It is meant for the student who would like to fulfill a core infinite series, tests for convergence, power series, and Taylor series; mathematics requirement, but who does not need to take mathematics geometry in three-space.
    [Show full text]
  • Beyond Mere Convergence
    Beyond Mere Convergence James A. Sellers Department of Mathematics The Pennsylvania State University 107 Whitmore Laboratory University Park, PA 16802 [email protected] February 5, 2002 – REVISED Abstract In this article, I suggest that calculus instruction should include a wider variety of examples of convergent and divergent series than is usually demonstrated. In particular, a number of convergent series, P k3 such as 2k , are considered, and their exact values are found in a k≥1 straightforward manner. We explore and utilize a number of math- ematical topics, including manipulation of certain power series and recurrences. During my most recent spring break, I read William Dunham’s book Euler: The Master of Us All [3]. I was thoroughly intrigued by the material presented and am certainly glad I selected it as part of the week’s reading. Of special interest were Dunham’s comments on series manipulations and the power series identities developed by Euler and his contemporaries, for I had just completed teaching convergence and divergence of infinite series in my calculus class. In particular, Dunham [3, p. 47-48] presents Euler’s proof of the Basel Problem, a challenge from Jakob Bernoulli to determine the 1 P 1 exact value of the sum k2 . Euler was the first to solve this problem by k≥1 π2 proving that the sum equals 6 . I was reminded of my students’ interest in this result when I shared it with them just weeks before. I had already mentioned to them that exact values for relatively few families of convergent series could be determined.
    [Show full text]
  • Convergence Tests: Divergence, Integral, and P-Series Tests
    Convergence Tests: Divergence, Integral, and p-Series Tests SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should reference your lecture notes and the relevant chapters in a textbook/online resource. EXPECTED SKILLS: • Recognize series that cannot converge by applying the Divergence Test. • Use the Integral Test on appropriate series (all terms positive, corresponding function is decreasing and continuous) to make a conclusion about the convergence of the series. • Recognize a p-series and use the value of p to make a conclusion about the convergence of the series. • Use the algebraic properties of series. PRACTICE PROBLEMS: For problems 1 { 9, apply the Divergence Test. What, if any, conlcusions can you draw about the series? 1 X 1. (−1)k k=1 lim (−1)k DNE and thus is not 0, so by the Divergence Test the series diverges. k!1 Also, recall that this series is a geometric series with ratio r = −1, which confirms that it must diverge. 1 X 1 2. (−1)k k k=1 1 lim (−1)k = 0, so the Divergence Test is inconclusive. k!1 k 1 X ln k 3. k k=3 ln k lim = 0, so the Divergence Test is inconclusive. k!1 k 1 1 X ln 6k 4. ln 2k k=1 ln 6k lim = 1 6= 0 [see Sequences problem #26], so by the Divergence Test the series diverges. k!1 ln 2k 1 X 5. ke−k k=1 lim ke−k = 0 [see Limits at Infinity Review problem #6], so the Divergence Test is k!1 inconclusive.
    [Show full text]