Line Card Listing by Vendor
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Theory of Operation: How Parts Cleaning Works
Theory of Operation: How Parts Cleaning Works MART defines the term to clean as to overpower the soils. The MART Parts Washer is a high-impact pressure, high-temperature, industrial water-based cleaning system that uses a combination of the following factors to achieve cleaning results: Power x Temperature x Chemical x Time = Clean The relationship of these variables can be varied in an infinite number of ways to achieve the same level of cleanliness. Your own needs determine the relative value of each variable. Keep in mind that the MART Parts Washer provides one of the highest blasting powers in the cleaning industry, allowing you to reduce the wash-cycle times for your parts to a minimum. Additionally, the high blasting power allows you to operate the washer at lower cleaning temperatures, thus saving energy, and using less chemical than spray washers The exact combination of the factors must be determined for your application, based on the types of soils to be removed, the degree of cleanliness required, the cycle time required, the types of parts to be cleaned, and so on. How the Parts Washer Works The parts washer operates on a timed cycle. The operator places the parts to be cleaned in the washer on the turntable, closes and latches the door, and then starts the timed cleaning cycle. During the cleaning cycle, a high-temperature, high-pressure, water-and-detergent cleaning solution blasts soils from the parts. After the cycle has stopped and the steam has exhausted, the operator removes the cleaned parts. The parts washer utilizes closed loop, waste minimization technology, continuously reusing its cleaning solution and effectively reducing pollution potential. -
Firma Preisstand 3M Deutschland Gmbh 01.02.2019 A.L.S. Gmbh
Firma Preisstand 3M Deutschland GmbH 01.02.2019 A.L.S. GmbH & Co.KG 06.08.2018 AASSET Security GmbH 04.05.2015 abalight GmbH 09.09.2019 ABB Automation GmbH 01.09.2012 ABB Solar GmbH 18.03.2019 ABB STOTZ Kontakt, Striebel und John Vertriebsgesellschaft mbH 26.06.2019 ABEBA Spezialschuhausstatter GmbH 09.11.2017 ABL SURSUM Bayerische Elektrozubehör GmbH & Co. KG 01.01.2018 ABL Sursum eMobility 12.08.2019 ABN Braun AG 01.08.2018 ABUS Security GmbH & Co. KG 30.05.2018 Acculux, Witte & Sutor GmbH 01.04.2019 Adolf Schuch GmbH 01.04.2019 AEROTEC Kompressoren 18.06.2018 AGFEO GmbH & Co. KG 01.03.2019 Airflow Lufttechnik GmbH 25.02.2019 Albrecht Jung GmbH & Co. KG 01.11.2018 ALLNET Deutschland GmbH 01.02.2012 ALRE-IT Regeltechnik GmbH 01.01.2019 Fischer & Honsel GmbH 28.11.2018 F.L.I. GmbH 14.08.2015 Amica International GmbH 01.02.2019 AMPERCELL GmbH 04.07.2016 ANAMET Europe B.V. 01.04.2019 ANKARO Deutschland GmbH 27.04.2015 ANSMANN AG 23.12.2016 Apsa - Elektrotechnische Fabrik, Ing. W. Sauerwein GmbH & Co. KG 29.03.2019 Arclite Lichtvertrieb GmbH 01.04.2019 ARCUS Elektrotechnik Alois Schiffmann GmbH 06.02.2019 Argon Lighting GmbH 01.03.2019 Arnold Houben GmbH 01.01.2019 Artemide GmbH 16.09.2019 ASMETEC GmbH 13.08.2015 ASSA ABLOY Sicherheitstechnik GmbH 01.01.2019 Assmann Electronic GmbH 02.03.2016 ASTRO Strobel Kommunikationssysteme GmbH 01.11.2018 ATLAS Schuhfabrik GmbH & Co. K 25.01.2019 J. Auer Signalgeräte GmbH 01.01.2019 Auerswald GmbH & Co KG 07.04.2017 Aura Light GmbH 15.01.2019 Aurora Lighting 15.01.2019 Austria Email AG 04.10.2018 Axing AG 01.07.2019 Berg Kabeltragsysteme GmBH 01.04.2019 Baak GmbH & Co. -
The Biomatic® Parts Cleaning System Is…
BIOMATIC® The Environmentally Friendly Bioremediation Parts Washer 1 The Biomatic® Parts Cleaning System Is… • A Bioremediation System. The Graymills Biomatic Parts Cleaning System uses the natural technology of microbial bioremediation to reduce oils, greases and other hydrocarbons introduced into the cleaning system to water and carbon dioxide (CO2). No oil and hydrocarbon buildup means the unit continues to clean parts indefinitely (we recommend cleaning the tank once a year, but the fluid can be put back in for continued use if desired.) • A Waste Minimization System. Talking to your customers about “waste minimization” will get their attention. With the Graymills Biomatic Parts Cleaning System, users will go from monthly dumping of fluid and unit cleanup…to once a year. That’s a “waste minimization” sales story few customers can resist. • A Tough Cleaner. Aqueous based Super Biotene® is pH neutral with a mild, pleasant odor. A mixture of emulsifiers and surfactants, they contain no VOCs, so they’re EPA and air quality friendly! Super Biotene cleans grease and grime off even the dirtiest parts, then the microbes go to work, reducing the hydrocarbon contaminants (oils, greases) to water and CO2. • A Good Investment. Recycling costs are slashed…parts cleaner waste is minimized…the dirtiest parts come clean…and the system is operator friendly. 2 How The Biomatic® Parts Cleaning System Works It is important to understand that the Biomatic® Parts Cleaning System is more than individual products - it is a total cleaning environment. The Biomatic Parts Cleaning System relies on the perfect balance between the Super Biotene® cleaning solution and the microbes introduced into the system. -
Traditional Aqueous Parts-Cleaning Operations Work Great on Day One, but Rapidly Become Contaminated
➤ B Y S tep H en D . te M ple , ran S O H O FF Cleaning you can count on Traditional aqueous parts-cleaning operations work great on day one, but rapidly become contaminated. Adding an ultrafiltration process to a parts cleaning system can dramatically extend and improve its performance. Traditional aqueous parts-cleaning operations can be inconsistent and costly. Machine shops and contract manufacturers dealing with a range of contaminants and heavy contaminant loads are finding they need something more. In many cases, adding an ultrafil- tration (UF) system to an existing parts cleaning system can provide cleaner parts as well as dramatically lower maintenance and operating costs. This is not to say that traditional sys- tems cannot be effective in certain situ- ations. For example, a shop can realize good bath life and part cleanliness when primarily cleaning with non- emulsified oils and when the system’s cleaning chemistry can effectively split the oil to the surface of the parts bath. This splitting allows removal via con- All images: Ransohoff ventional oil skimming or decanting Deerfield Manufacturing installed a 360 gal./day UF system that effectively turns methods. (A typical industrial parts over its wash tank every fourth day. washer includes a wash stage where most contaminants are removed, fol- rity and achieve optimal cleaning. The This is an inefficient and inconsistent lowed by rinsing and drying stages. result is that metalworking operations process, particularly for operations that Newer systems may include only a start out on day one with fresh water must meet stringent parts cleanliness single-stage wash with dry off.) and a new chemical charge to create specifications, such as in Six Sigma However, a more likely scenario for the cleaning solution. -
Aero-Green Parts Washer Degreaser -4160-4150
Aero-Green Parts Washer Degreaser -4160-4150 Aero-Green 4150-4160 Parts Washer Concentrated Degreaser for use in Immersion Degreasers: Ultrasonic Degreaser, Spray Cabinet Washer, Adjulift Parts Washer, Glove Box Washers and Hot & Cold Standard parts washers. Cleans Virtually All Metals Including Steels, Aluminum & Titanium SPRAY CABINET WASHERS Spray Cabinet Washers are designed to clean large parts that are placed directly on a retractable turntable or batches of small parts loaded in baskets. This heavy-duty industrial parts washer combines pressure, heat and aqueous cleaning solution such as Aero-Green 4150-4160 to clean and degrease parts to spec within minutes. Many machines are designed with added features such as low-maintenance pumps, digital temperature controllers, and cycle timers, low water shut off, automatic fill, proportioners, oils skimmers and fresh water rinses. Each recirculate stage has its dedicated tank, heating system, circulation pump, cycle controls and spray manifolds in the main spray cabinet. Typhoon® HD is an ideal aqueous parts washer for in-process and final cleaning in maintenance, manufacturing and remanufacturing applications. Spray Cabinet Washers deliver deep-down auto parts cleaning designed for durability and precision under the most demanding conditions. The powerful force of the jets and the Aero-Green 4150- 4160 combine to remove grease, oil, carbon and other grime in just minutes. Spray Cabinet Washer technology, is effectively used in industries ranging from remanufactured railroad drivetrain parts to in-process cleaning for jet engine components Spray Cabinet Washers are designed to clean, degrease bulk loads of small or large parts in preparation for surface treatment, packaging and distribution. -
Clean Ozzyjuice Means Clean Parts
® OZZYMAT The SmartWasher® Bioremediating Parts Washing System is both self-cleaning and non-hazardous. Through the process of bioremediation the SMARTWASHER constantly maintains the cleanliness of the OZZYJUICE cleaning/degreasing solution without the need for hauling, skimming or evacuating the unit. WHAT IS OZZYJUICE®? OZZY ® OZZYJUICE is a powerful, aqueous based degreasing MICROBES Ozzy Ozzy ® Microbe solution that is pH-neutral, non-irritating, non-flammable, and non-toxic. Armed with superior cleaning capability, the OZZYJUICE solutions will match or surpass the performance of a premium solvent without all the associated risks. All HEATED OZZYJUICE OZZYJUICE solutions are certified by both NSF and AQMD. HEATING 300 GPH ELEMENT RECIRCULATING OZZY® MICROBES KEEP THE OZZYJUICE CLEAN AND STRONG. PUMP MODELS Microbes (OZZYS), introduced into the SMARTWASHER 14161 14145 14711 system through the OZZYMAT, eat the grease, oil and other contaminants, cleaning off the dirty parts, creating the harmless by-products of carbon dioxide and water. CLEAN OZZYJUICE MEANS CLEAN PARTS. SW-23 SW-25 SW-25C Mobile Parts/Brake Signature Parts Combo Brake/Parts Washer Washer Washer The OZZYJUICE cleaning/degreasing solution cleans the dirty 14144 14710 14162 parts and the OZZY microbes clean the OZZYJUICE leaving it strong and clean for every use. You should never need to haul away dirty parts cleaning fluid again, if the unit is maintained properly, and according to the operating instructions. Ozzy® SW-28 SW-28XE SW-37 ® Microbe Ozzy SuperSink Parts SuperSink XE Parts Mobile Heavyweight Washer Washer Parts Washer www.crcindustries.com/ei | 885 Louis Drive, Warminster, PA 18974, (PH) 800-272-4620 Copyright © 2015 ChemFree Corporation, a subsidiary of CRC Industries. -
Industrial Parts Cleaners & Alternative Cleaning
Welcome to Industrial Parts Cleaners & Alternative Cleaning Solutions P2 training 1 First we will look at why you clean and what are the common soils on the the substrate to be cleaned. Then we will look at parts cleaning solutions and equipment, including potential pollution prevention opportunities Then we will look at two parts cleaning exercises that examine the true costs of industrial parts cleaning and the cost and waste reduction benefits of changing cleaning solutions and cleaning equipment. Finally, we will provide a few Web sites with helpful industrial parts cleaning resources, vendor information and case studies. 2 Why do we have to clean parts… Often, its is necessary as a pretreatment step prior to painting or coating to make sure the paint stays on the part and performs as expected. Parts are cleaned as a final step after metal fabrication, stamping and assembly to wash off metal working fluids and other contaminants. Parts cleaning is also routinely occurs as a maintenance step. Most automotive shops use parts cleaning to remove grease, oils and other solids from tools, equipment and vehicle parts. 3 Whether you are looking to add parts cleaning to a process, or switch to a more environmentally-friendly process, there are important factors that must be considered. What will be cleaned, what is the contaniment or soil type, how did it get there, what is the typical part (substrate) shape and geometry? Do these parts need to be clean, what is clean, have you always cleaned the way, and what are your cleaning costs? 4 Here are some coming soil or contaminant types that occur during a pretreatment, final or maintenance step. -
Smart Cleaning for Stamped Parts
Smart Cleaning for Stamped Parts Cleaning systems need to Choosing the best approach for aluminum cylinder heads, often clean and comply with cleaning a particular metal part require complex cleaning technolo- depends on a multitude of factors. gies, according to Ed Kiebler of LS environmental rules. A The decision becomes even trickier Industries (Wichita, KS). “But in the as cleaning standards become more stamping, forming, fabricating end custom-mmade system may rigorous and as choices expand in of things, we’re still using aqueous- parts-cleaning equipment and chem- based, pass-through, or flow-through be the answer for the icals. Fortunately, given the relatively washers to clean most applications.” kind of parts your shop simple part shapes that are typical Flow-through washers, in general, with stamping processes, stamped convey parts through a tunnel of var- produces. parts don’t always require state-of- ious pre-soaking, cleaning, and rins- the-art cleaning chemicals and ing stages. An extreme simplification equipment to prepare them for of the process might be a car-wash painting, plating, welding, or other analogy—parts come in one end cov- secondary operations. ered with stamping and drawing However, in a volume-driven lubricants and other contaminants, business like metalforming, a choice and come out dry at the other end. of cleaning system does require extra Given the continuous nature of the attention to processing speed, ease of system, “There’s a tremendous need use, flexibility, and efficiency in for that style of washer for stamping resource use. These issues are and forming,” says Kiebler. -
Pliego De Características Tecnicas
2020-01077 PLIEGO DE PRESCRIPCIONES TÉCNICAS PARA LA CONTRATACION DE SUMINISTRO DE MATERIAL DE FERRETERÍA PARA EL COMPLEJO DE COMMUNICACIONES PARA EL ESPACIO LEJANO DE MADRID (MDSCC)” Nº EXPEDIENTE: 2020-01077 CONTRATO DE SUMINISTRO/ Procedimiento abierto no armonizado/ Uno o varios criterios cuantificables de forma automática. DOCUMENTO PROCEDIMIENTO VALIDACIÓN TÉCNICA PPT Suministro abierto no armonizado (criterios automáticos) 1 2020-01077 ÍNDICE 1. OBJETO ................................................................................................... 3 2. LISTADO DE MATERIAL Y OTROS SUMINISTROS. ESTIMACIÓN DE CANTIDADES. GRUPOS DE ELEMENTOS...................................................... 3 2.1. Listado de Material ............................................................................... 3 2.2. Requisitos de Calidad de los Productos ............................................... 4 3. CONDICIONES DEL SUMINISTRO ................................................................. 5 3.1. Condiciones Generales ........................................................................ 5 3.2. Formalización de Pedidos .................................................................... 6 3.3. Plazos de Entrega ................................................................................ 6 3.4. Lugar y Horario de Entrega de Suministros. Recepción de Pedidos ..... 7 3.4.1. Lugar y Horario de Entrega ........................................................ 7 3.4.2. Recepción de Pedidos ............................................................... -
Standardized Parent Company Names for TRI Reporting
Standardized Parent Company Names for TRI Reporting This alphabetized list of TRI Reporting Year (RY) 2010 Parent Company names is provided here as a reference for facilities filing their RY 2011 reports using paper forms. For RY2011, the Agency is emphasizing the importance of accurate names for Parent Companies. Your facility may or may not have a Parent Company. Also, if you do have a Parent Company, please note that it is not necessarily listed here. Instructions Search for your standardized company name by pressing the CTRL+F keys. If your Parent Company is on this list, please write the name exactly as spelled and abbreviated here in Section 5.1 of the appropriate TRI Reporting Form. If your Parent Company is not on this list, please clearly write out the name of your parent company. In either case, please use ALL CAPITAL letters and DO NOT use periods. Please consult the most recent TRI Reporting Forms and Instructions (http://www.epa.gov/tri/report/index.htm) if you need additional information on reporting for reporting Parent Company names. Find your standardized company name on the alphabetical list below, or search for a name by pressing the CTRL+F keys Standardized Parent Company Names 3A COMPOSITES USA INC 3M CO 4-D CORROSION CONTROL SPECIALISTS INC 50% DAIRY FARMERS OF AMERICA 50% PRAIRIE FARM 88TH REGIONAL SUPPORT COMMAND A & A MANUFACTURING CO INC A & A READY MIX INC A & E INC A G SIMPSON AUTOMOTIVE INC A KEY 3 CASTING CO A MATRIX METALS CO LLC A O SMITH CORP A RAYMOND TINNERMAN MANUFACTURING INC A SCHULMAN INC A TEICHERT -
Parts Cleaning
Create account Log in Article Talk Read Edit ViMewo rheistorySearch Wiki Loves Earth in focus during May 2015 Discover nature, make it visible, take photos, help Wikipedia! Main page Contents Featured content Parts cleaning Current events From Wikipedia, the free encyclopedia Random article Donate to Wikipedia Parts cleaning is essential to many industrial processes, as a prelude to Wikipedia store surface finishing or to protect sensitive components. Electroplating is particularly Interaction sensitive to part cleanliness, since molecular layers of oil can prevent adhesion Help of the coating. ASTM B322 is a standard guide for cleaning metals prior to About Wikipedia electroplating. Cleaning processes include solvent cleaning, hot alkaline Community portal detergent cleaning, electrocleaning, and acid etch. The most common industrial Recent changes Contact page test for cleanliness is the waterbreak test, in which the surface is thoroughly rinsed and held vertical. Hydrophobic contaminants such as oils cause the water Tools to bead and break up, allowing the water to drain rapidly. Perfectly clean metal What links here surfaces are hydrophilic and will retain an unbroken sheet of water that does not Related changes Upload file bead up or drain off. ASTM F22 describes a version of this test. This test does Special pages not detect hydrophilic contaminants, but the electroplating process can displace Permanent link these easily since the solutions are water-based. Surfactants such as soap Page information reduce the sensitivity of the -
Ultrasonic Cleaning Systems
1 Technical Profiles Click on any of the 15 technology categories — representing the core of critical cleaning — for general principles, strengths and limitations, plus compatibility issues and selection considerations. Aqueous Cleaning Systems Organic Solvent Cleaning Systems Semiaqueous and Hybrid Systems Ultrasonic Cleaning Systems Megasonic Cleaning Systems Carbon Dioxide Cleaning Manual Cleaning Systems Aerosol Cleaning Agents Plasma Cleaning Laser Cleaning Systems UV/Ozone Cleaning Drying Systems Filtration and Recycling Systems Wastewater Treatment Systems Cleanliness Verification Techniques Ultrasonic Cleaning Bubbling Over Ultrasonic cleaning is a good fit for a wide range of applications, from removing swarf and grinding and polishing residue to treating parts covered in oil, grease, or layers of paint. Ultrasonics can be used to clean miniature watch parts or to support the overhaul of jumbo jet engines. And from an industry perspective, the fields of electrotechnics, precision mechanics and light engineering, optics, metal processing, and medical equipment have proven particularly receptive to the ultrasonic concept. So the impact of ultrasonic cleaning is clearly recognizable. But to truly understand the value of ultrasonics, one must understand how ultrasonic cleaners really work. 2 Ultrasonic Cleaning Explained The cleansing effect of ultrasound is the product of a phenomenon called cavitation. Billions of minute gas bubbles implode, causing shock waves that undermine dirt and blast it off a part’s surface. One of the key advantages of this process is that it allows users to clean part surfaces that are completely inaccessible to a manual cleaning process. Ultrasound frequencies generally range between 20 kilohertz and 50 kilohertz, depending on application requirements. Ultrasonic cleaning is typically performed at temperatures between 122 C and 176 C.