Preferred Drug List

Total Page:16

File Type:pdf, Size:1020Kb

Preferred Drug List Comprehensive PREFERRED DRUG LIST Coordinated Care Pharmacy Program Coordinated Care is committed to providing appropriate, high quality, and cost effective drug therapy to all Coordinated Care members. Coordinated Care works with providers and pharmacists to ensure that medications used to treat a variety of conditions and diseases are covered. Coordinated Care covers prescription medications and certain over-the-counter (OTC) medications when ordered by a Washington Medicaid enrolled, Coordinated Care practitioner. The pharmacy program does not cover all medications. Some medications require prior authorization (PA) or have limitations on age, dosage, and maximum quantities. Apple Health Core Connections Coordinated Care has been selected as the statewide managed care health plan to run the Apple Health Foster Care program starting April 1, 2016. The Apple Health Core Connections program is a new managed care program. Preferred Drug List The Coordinated Care Preferred Drug List (PDL) is a list of covered drugs. The PDL is a list of drugs members can receive at retail pharmacies. The Coordinated Care PDL is continually evaluated by the Coordinated Care Pharmacy and Therapeutics (P&T) Committee to promote the appropriate and cost-effective use of medications. The P&T Committee is composed of the Coordinated Care Medical Director, Coordinated Care Pharmacy Program Director, and several Washington primary care physicians and specialists. Pharmacy Benefit Manager Coordinated Care works with Envolve Pharmacy Solutions to process all pharmacy claims for prescribed drugs. Envolve Pharmacy Solutions is Coordinated Care’s Pharmacy Benefit Manager (PBM). Some drugs on the Coordinated Care PDL require a PA and Envolve Pharmacy Solutions is responsible for administering the PA process. Specialty Pharmacy Program Certain medications are only covered when supplied by Coordinated Care’s specialty pharmacy provider. AcariaHealth is the preferred specialty pharmacy provider of Coordinated Care. All specialty drugs, such as biopharmaceuticals and injectables, require a PA to be approved for payment by Coordinated Care. Coordinated Care’s Medical Director and Pharmacy Director oversee the clinical review of these PA requests. AcariaHealth provides the following services: A dedicated, multilingual team available 24 hours a day, 7 days a week to meet the unique needs of each patient. Disease-specific product education and training Customized treatment programs and compliance monitoring Prior authorization support Timely delivery to the physician’s office or the patient’s home, as requested Drug or disease state specific prior authorization forms will be available on Coordinated Care’s website. Dispensing Limits Drugs may be dispensed up to a maximum of a 34 day supply for each new prescription or refill. A total of 85% of the day supply must elapse before a prescription can be refilled. Maintenance Drug Program Members can obtain a 90 day supply (3 month supply) of maintenance drugs from participating pharmacies. Maintenance medications are used to treat long-term conditions or illnesses. Additional information about the Maintenance Drug Program, including a list of “Maintenance Medications” and participating pharmacies can be found at www.coordinatedcarehealth.com/for-providers/pharmacy- program/ Members may request their practitioner to transfer a current prescription or phone in a prescription directly to Coordinated Care’s mail order pharmacy, Homescripts. Homescripts may be reached at 1- 800-785-4197. Members may also have their extended supply of maintenance medications filled at a Coordinated Care network pharmacy. Appropriate Use and Safety Edits The health and safety of the member is a priority of Coordinated Care. One of the ways we address member safety is through point-of-sale (POS) edits at the time a prescription is processed at the pharmacy. These edits are based on FDA recommendations and promote safe and effective medication utilization. Additional information about the drugs that are part of the Appropriate Use and Safety Edits can be found in the Appropriate Use and Safety Edits document located on the Coordinated Care website at www.coordinatedcarehealth.com/for-providers/pharmacy-program/ Second Opinion Network (SON) Washington’s Health Care Authority (HCA) implemented a drug initiative, called the Second Opinion Network (SON). The goal is to reduce therapeutic duplications of psychotropic drugs prescribed to children 17 years of age and younger. Coordinated Care has adopted the guidelines for age limitations and dosing limitations set forth by Washington’s HCA. Members (17 years of age and younger) who are prescribed medications outside these guidelines for the “first time”, or prescribed prescriptions with “dose escalations”, will be referred by Coordinated Care to the HCA to initiate the process of the second opinion review. After the second opinion review has been completed by the HCA, Coordinated Care will receive a copy of the “SON” from the HCA. The “SON” will have recommendations explaining the approval or unable to approve determination of the psychotropic prescription request. Opioid Policy Effective November 1, 2019, Apple Health will apply a safety limit to the total daily dose of opioids. The dose of different opioids is measured in units called morphine milligram equivalents (MME). An opioid prescription or combinations of opioid prescriptions that exceed a daily dose equal to 120 MME will require the prescriber to complete and sign an opioid attestation form. This safety limit helps ensure prescribers are following best practices. Prior Authorizations If a medication is not listed on the PDL, a Prior Authorization (PA) outlining the Medical Necessity for the drug is needed (please see Medical Necessity Requests information below). Furthermore, some medications listed on the Coordinated Care PDL may require a PA. The information should be submitted by the practitioner or pharmacist to Envolve Pharmacy Solutions on the Medication Prior Authorization Form. This form should be faxed to Envolve Pharmacy Solutions at 1-866-399-0929. This document is located on the Coordinated Care website at www.coordinatedcarehealth.com/for- providers/pharmacy-program/ In addition, Providers and Pharmacists can conduct a telephonic prior authorization via phone at 855-757-6565, from 5am – 5pm Pacific Time, Monday through Friday, for all non-specialty drugs. You can visit www.coordinatedcarehealth.com/for-providers/pharmacy-program/ for more details. Coordinated Care will cover the medication if it is determined that: 1. There is a medical reason the member needs the specific medication. 2. Depending on the medication, other medications on the PDL have not worked. All reviews are performed by a licensed clinical pharmacist using the criteria established by the Coordinated Care P&T Committee. Once approved, Envolve Pharmacy Solutions notifies the practitioner by fax. If the clinical information provided does not meet the coverage criteria for the requested medication, Coordinated Care will notify the member and their practitioner of alternatives and provide information regarding the appeal process. Step Therapy Some medications listed on the Coordinated Care PDL may require specific medications to be used before the member can receive the step therapy medication. If Coordinated Care has a record that the required medication was tried first, the step therapy medications are automatically covered. If Coordinated Care does not have a record that the required medication was tried, the member and their practitioner may be required to provide additional information. If Coordinated Care does not grant a PA, then Coordinated Care will notify the member and their practitioner and provide information regarding the appeal process. Quantity Limits Coordinated Care may limit how much of a medication a member can get at one time. If the practitioner feels that the member has a medical reason for getting a larger amount, then the practitioner can submit a PA. If Coordinated Care does not grant a PA, Coordinated Care will notify the member and their practitioner and provide information regarding the appeal process. Age Limits Some medications on the Coordinated Care PDL may have age limits. These are set for certain drugs based on FDA approved labeling and for safety concerns and quality standards of care. Age limits align with current FDA alerts for the appropriate use of pharmaceuticals. Medical Necessity Requests If a member requires a medication that does not appear on the PDL, then the member or member’s practitioner can make a medical necessity request for the medication. It is anticipated that such exceptions will be rare and that PDL medications will be appropriate to treat the vast majority of medical conditions. Coordinated Care requires: -Documentation of failure of at least two PDL agents within the same therapeutic class (provided two agents exist in the therapeutic category with comparable labeled indications) for the same diagnosis (e.g. migraine, neuropathic pain, etc.); or - Documented intolerance or contraindication to at least two PDL agents within the same therapeutic class (provided two agents exist in the therapeutic category with comparable labeled indications); or - Documented clinical history or presentation where the patient is not a candidate for any of the PDL agents for the indication. All reviews are performed by a licensed clinical pharmacist using the criteria established by the Coordinated Care P&T Committee.
Recommended publications
  • Carbon Monoxide Down-Regulates Α4β1 Integrin
    Chigaev et al. BMC Immunology 2014, 15:52 http://www.biomedcentral.com/1471-2172/15/52 RESEARCH ARTICLE Open Access Carbon monoxide down-regulates α4β1 integrin-specific ligand binding and cell adhesion: a possible mechanism for cell mobilization Alexandre Chigaev1,2,3*, Yelena Smagley1,2,3 and Larry A Sklar1,2,3 Abstract Background: Carbon monoxide (CO), a byproduct of heme degradation, is attracting growing attention from the scientific community. At physiological concentrations, CO plays a role as a signal messenger that regulates a number of physiological processes. CO releasing molecules are under evaluation in preclinical models for the management of inflammation, sepsis, ischemia/reperfusion injury, and organ transplantation. Because of our discovery that nitric oxide signaling actively down-regulates integrin affinity and cell adhesion, and the similarity between nitric oxide and CO-dependent signaling, we studied the effects of CO on integrin signaling and cell adhesion. Results: We used a cell permeable CO releasing molecule (CORM-2) to elevate intracellular CO, and a fluorescent Very Late Antigen-4 (VLA-4, α4β1-integrin)-specific ligand to evaluate the integrin state in real-time on live cells. We show that the binding of the ligand can be rapidly down-modulated in resting cells and after inside-out activation through several Gαi-coupled receptors. Moreover, cell treatment with hemin, a natural source of CO, resulted in comparable VLA-4 ligand dissociation. Inhibition of VLA-4 ligand binding by CO had a dramatic effect on cell-cell interaction in a VLA-4/VCAM-1-dependent cell adhesion system. Conclusions: We conclude that the CO signaling pathway can rapidly down-modulate binding of the VLA-4 -specific ligand.
    [Show full text]
  • Eslicarbazepine Acetate Longer Procedure No
    European Medicines Agency London, 19 February 2009 Doc. Ref.: EMEA/135697/2009 CHMP ASSESSMENT REPORT FOR authorised Exalief International Nonproprietary Name: eslicarbazepine acetate longer Procedure No. EMEA/H/C/000987 no Assessment Report as adopted by the CHMP with all information of a commercially confidential nature deleted. product Medicinal 7 Westferry Circus, Canary Wharf, London, E14 4HB, UK Tel. (44-20) 74 18 84 00 Fax (44-20) 74 18 84 16 E-mail: [email protected] http://www.emea.europa.eu TABLE OF CONTENTS 1. BACKGROUND INFORMATION ON THE PROCEDURE........................................... 3 1.1. Submission of the dossier ...................................................................................................... 3 1.2. Steps taken for the assessment of the product..................................................................... 3 2. SCIENTIFIC DISCUSSION................................................................................................. 4 2.1. Introduction............................................................................................................................ 4 2.2. Quality aspects ....................................................................................................................... 5 2.3. Non-clinical aspects................................................................................................................ 8 2.4. Clinical aspects....................................................................................................................
    [Show full text]
  • Long-Term Administration of Tolvaptan to Patients with Decompensated
    Int. J. Med. Sci. 2020, Vol. 17 874 Ivyspring International Publisher International Journal of Medical Sciences 2020; 17(7): 874-880. doi: 10.7150/ijms.41454 Research Paper Long-term administration of Tolvaptan to patients with decompensated cirrhosis Kengo Kanayama1, Tetsuhiro Chiba1, Kazufumi Kobayashi1, Keisuke Koroki1, Susumu Maruta1, Hiroaki Kanzaki1, Yuko Kusakabe1, Tomoko Saito1, Soichiro Kiyono1, Masato Nakamura1, Sadahisa Ogasawara1, Eiichiro Suzuki1, Yoshihiko Ooka1, Shingo Nakamoto1, Shin Yasui1, Tatsuo Kanda2, Hitoshi Maruyama3, Jun Kato1, Naoya Kato1 1. Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan. 2. Department of Gastroenterology and Hepatology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo 173-8610, Japan. 3. Department of Gastroenterology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan. Corresponding author: Tetsuhiro Chiba, M.D., Ph.D. Department of Gastroenterology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan. Telephone: +81-43-2262083, Fax: +81-43-2262088, E-mail: [email protected]. © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2019.10.24; Accepted: 2020.02.20; Published: 2020.03.15 Abstract Aim: Tolvaptan, an oral vasopressin-2 antagonist, sometimes improves hepatic edema including ascites in patients with decompensated cirrhosis. In this study, we examined the effectiveness and survival advantage in patients with the long-term administration of tolvaptan.
    [Show full text]
  • Mechanisms of Action of Antiepileptic Drugs
    Review Mechanisms of action of antiepileptic drugs Epilepsy affects up to 1% of the general population and causes substantial disability. The management of seizures in patients with epilepsy relies heavily on antiepileptic drugs (AEDs). Phenobarbital, phenytoin, carbamazepine and valproic acid have been the primary medications used to treat epilepsy for several decades. Since 1993 several AEDs have been approved by the US FDA for use in epilepsy. The choice of the AED is based primarily on the seizure type, spectrum of clinical activity, side effect profile and patient characteristics such as age, comorbidities and concurrent medical treatments. Those AEDs with broad- spectrum activity are often found to exert an action at more than one molecular target. This article will review the proposed mechanisms of action of marketed AEDs in the US and discuss the future of AEDs in development. 1 KEYWORDS: AEDs anticonvulsant drugs antiepileptic drugs epilepsy Aaron M Cook mechanism of action seizures & Meriem K Bensalem-Owen† The therapeutic armamentarium for the treat- patients with refractory seizures. The aim of this 1UK HealthCare, 800 Rose St. H-109, ment of seizures has broadened significantly article is to discuss the past, present and future of Lexington, KY 40536-0293, USA †Author for correspondence: over the past decade [1]. Many of the newer AED pharmacology and mechanisms of action. College of Medicine, Department of anti epileptic drugs (AEDs) have clinical advan- Neurology, University of Kentucky, 800 Rose Street, Room L-455, tages over older, so-called ‘first-generation’ First-generation AEDs Lexington, KY 40536, USA AEDs in that they are more predictable in their Broadly, the mechanisms of action of AEDs can Tel.: +1 859 323 0229 Fax: +1 859 323 5943 dose–response profile and typically are associ- be categorized by their effects on the neuronal [email protected] ated with less drug–drug interactions.
    [Show full text]
  • Chapter 25 Mechanisms of Action of Antiepileptic Drugs
    Chapter 25 Mechanisms of action of antiepileptic drugs GRAEME J. SILLS Department of Molecular and Clinical Pharmacology, University of Liverpool _________________________________________________________________________ Introduction The serendipitous discovery of the anticonvulsant properties of phenobarbital in 1912 marked the foundation of the modern pharmacotherapy of epilepsy. The subsequent 70 years saw the introduction of phenytoin, ethosuximide, carbamazepine, sodium valproate and a range of benzodiazepines. Collectively, these compounds have come to be regarded as the ‘established’ antiepileptic drugs (AEDs). A concerted period of development of drugs for epilepsy throughout the 1980s and 1990s has resulted (to date) in 16 new agents being licensed as add-on treatment for difficult-to-control adult and/or paediatric epilepsy, with some becoming available as monotherapy for newly diagnosed patients. Together, these have become known as the ‘modern’ AEDs. Throughout this period of unprecedented drug development, there have also been considerable advances in our understanding of how antiepileptic agents exert their effects at the cellular level. AEDs are neither preventive nor curative and are employed solely as a means of controlling symptoms (i.e. suppression of seizures). Recurrent seizure activity is the manifestation of an intermittent and excessive hyperexcitability of the nervous system and, while the pharmacological minutiae of currently marketed AEDs remain to be completely unravelled, these agents essentially redress the balance between neuronal excitation and inhibition. Three major classes of mechanism are recognised: modulation of voltage-gated ion channels; enhancement of gamma-aminobutyric acid (GABA)-mediated inhibitory neurotransmission; and attenuation of glutamate-mediated excitatory neurotransmission. The principal pharmacological targets of currently available AEDs are highlighted in Table 1 and discussed further below.
    [Show full text]
  • Therapeutic Drug Monitoring of Antiepileptic Drugs by Use of Saliva
    REVIEW ARTICLE Therapeutic Drug Monitoring of Antiepileptic Drugs by Use of Saliva Philip N. Patsalos, FRCPath, PhD*† and Dave J. Berry, FRCPath, PhD† INTRODUCTION Abstract: Blood (serum/plasma) antiepileptic drug (AED) therapeu- Measuring antiepileptic drugs (AEDs) in serum or tic drug monitoring (TDM) has proven to be an invaluable surrogate plasma as an aid to personalizing drug therapy is now a well- marker for individualizing and optimizing the drug management of established practice in the treatment of epilepsy, and guidelines patients with epilepsy. Since 1989, there has been an exponential are published that indicate the particular features of epilepsy and increase in AEDs with 23 currently licensed for clinical use, and the properties of AEDs that make the practice so beneficial.1 recently, there has been renewed and extensive interest in the use of The goal of AED therapeutic drug monitoring (TDM) is to saliva as an alternative matrix for AED TDM. The advantages of saliva ’ fl optimize a patient s clinical outcome by supporting the man- include the fact that for many AEDs it re ects the free (pharmacolog- agement of their medication regimen with the assistance of ically active) concentration in serum; it is readily sampled, can be measured drug concentrations/levels. The reason why TDM sampled repetitively, and sampling is noninvasive; does not require the has emerged as an important adjunct to treatment with the expertise of a phlebotomist; and is preferred by many patients, AEDs arises from the fact that for an individual patient
    [Show full text]
  • Anticonvulsants
    Clinical Pharmacy Program Guidelines for Anticonvulsants Program Prior Authorization - Anticonvulsants Medication Aptiom (eslicarbazepine), Briviact (brivaracetam), Fycompa (perampanel), Vimpat (lacosamide), Gabitril (tiagabine), Banzel (rufinamide), Onfi (clobazam), Epidiolex (cannabidiol), Sympazan (clobazam), Sabril, (vigabatrin), Diacomit (stiripentol), Xcopri (cenobamate), Fintepla (fenfluramine) Markets in Scope Arizona, California, Colorado, Hawaii, Nevada, New Jersey, New York, New York EPP, Pennsylvania- CHIP, Rhode Island, South Carolina Issue Date 6/2016 Pharmacy and 10/2020 Therapeutics Approval Date Effective Date 12/2020 1. Background: Aptiom (eslicarbazepine acetate), Briviact (brivaracetam), Vimpat (lacosamide) and Xcopri are indicated in the treatment of partial-onset seizures. Banzel (rufinamide), Onfi (clobazam), and Sympazan (clobazam) are indicated for the adjunctive treatment of seizures associated with Lennox-Gastaut syndrome (LGS). There is some clinical evidence to support the use of clobazam for refractory partial onset seizures. Diacomit (stiripentol) is indicated for seizures associated with Dravet syndrome in patients taking clobazam. Epidiolex (cannabadiol) is indicated for seizures associated with Lennox-Gastaut syndrome, Dravet syndrome or tuberous sclerosis complex. Fintepla (fenfluramine) is indicated for the treatment of seizures associated with Dravet syndrome. Fycompa (perampanel) is indicated for the treatment of partial-onset seizures with or without secondarily generalized seizures and as adjunctive therapy for the treatment of primary generalized tonic-clonic seizures. Gabitril (tiagabine) is indicated ad adjunctive therapy in the treatment of partial-onset seizures. Confidential and Proprietary, © 2020 UnitedHealthcare Services Inc. Sabril (vigabatrin) is indicated as adjunctive therapy for refractory complex partial seizures in patients who have inadequately responded to several alternative treatments and for infantile spasms for whom the potential benefits outweigh the risk of vision loss.
    [Show full text]
  • Emerging Concepts on the Anti-Inflammatory Actions of Carbon Monoxide-Releasing Molecules (CO-Rms)
    Emerging concepts on the anti-inflammatory actions of carbon monoxide-releasing molecules (CO-RMs). Roberto Motterlini, Benjamin Haas, Roberta Foresti To cite this version: Roberto Motterlini, Benjamin Haas, Roberta Foresti. Emerging concepts on the anti-inflammatory actions of carbon monoxide-releasing molecules (CO-RMs).. Medical Gas Research, BioMed Central, 2012, 2 (1), pp.28. 10.1186/2045-9912-2-28. inserm-00769904 HAL Id: inserm-00769904 https://www.hal.inserm.fr/inserm-00769904 Submitted on 3 Jan 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Motterlini et al. Medical Gas Research 2012, 2:28 http://www.medicalgasresearch.com/content/2/1/28 MEDICAL GAS RESEARCH REVIEW Open Access Emerging concepts on the anti-inflammatory actions of carbon monoxide-releasing molecules (CO-RMs) Roberto Motterlini*, Benjamin Haas and Roberta Foresti* Abstract Carbon monoxide-releasing molecules (CO-RMs) are a class of organometallo compounds capable of delivering controlled quantities of CO gas to cells and tissues thus exerting a broad spectrum of pharmacological effects. CO-RMs containing transition metal carbonyls were initially implemented to mimic the function of heme oxygenase-1 (HMOX1), a stress inducible defensive protein that degrades heme to CO and biliverdin leading to anti-oxidant and anti-inflammatory actions.
    [Show full text]
  • From99mtc@Citrateand9smtc-Pertechnetateion Netate in Saline Solution and Subsequently Treated with a Sephadex G25 Column
    jnin/CONCISE COMMUNICATION BINDING OF 9OmTcION TO HEMOGLOBIN MrinaI Kanti Dewanjee New England Medical Center, Tufts University School of Medicine, Boston, Massachusetts The mechanism and preferential site of bind removed, and the red cells were washed free of ing of 99―'Tcion to hemoglobin had been deter plasma with isotonic saline solution. The cells were mined by the separation of 9@Tc-hemoglobin then incubated with a small volume of oomTc@pertech@ from99mTc@citrateand9smTc-pertechnetateion netate in saline solution and subsequently treated with a Sephadex G25 column. This purified with the content of a kit containing mainly stannous fraction was analyzed by the HC1/acetone mix citrate and glucose. The method of labeling (6) is ture to determine the OsmTc activity distribution described below. with heme and globin. Most of the ssmTc activity Twenty milligrams of SnCl2 were dissolved in 20 is associated with globin fraction. The preferred ml of ACD solution (Abbott). The solution was fit chain for O9mTc ion binding was determined by tered with 0.22-micron Millipore filter paper. A 1-mi the splitting of otmTc.hemoglobin with para aliquot transferred to a serum vial was freeze-dried chloromercuribenzoate solution followed by sep and preserved under nitrogen atmosphere to prevent aration with a diethylaminoethyl cellulose col hydrolysis and oxidation of Sn(II) citrate. The kit umn equilibrated with phosphate buffer. The was reconstituted with I ml of isotonic saline solu @ tsmTc ion, like Cr' ion, tends to bind preferen tion, and the content was transferred to a washed red tially with the beta chain of hemoglobin.
    [Show full text]
  • Subject: Samsca (Tolvaptan) Original Effective Date: 07/27/15
    Subject: Samsca (tolvaptan) Original Effective Date: 07/27/15 Policy Number: MCP-252 Revision Date(s): Review Date(s): 12/15/2016; 6/22/2017 DISCLAIMER This Medical Policy is intended to facilitate the Utilization Management process. It expresses Molina's determination as to whether certain services or supplies are medically necessary, experimental, investigational, or cosmetic for purposes of determining appropriateness of payment. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that this service or supply is covered (i.e., will be paid for by Molina) for a particular member. The member's benefit plan determines coverage. Each benefit plan defines which services are covered, which are excluded, and which are subject to dollar caps or other limits. Members and their providers will need to consult the member's benefit plan to determine if there are any exclusion(s) or other benefit limitations applicable to this service or supply. If there is a discrepancy between this policy and a member's plan of benefits, the benefits plan will govern. In addition, coverage may be mandated by applicable legal requirements of a State, the Federal government or CMS for Medicare and Medicaid members. CMS's Coverage Database can be found on the CMS website. The coverage directive(s) and criteria from an existing National Coverage Determination (NCD) or Local Coverage Determination (LCD) will supersede the contents of this Molina Clinical Policy (MCP) document and provide the directive for all Medicare members. SUMMARY OF EVIDENCE/POSITION This policy addresses the coverage of Samsca (tolvaptan) for the treatment of clinically significant hypervolemic and euvolemic hyponatremia when appropriate criteria are met.
    [Show full text]
  • Experience with Rufinamide in a Pediatric Population: a Single
    Original Articles Experience With Rufinamide in a Pediatric Population: A Single Center’s Experience Martina Vendrame, MD, PhD*1, Tobias Loddenkemper, MD*†1, Vasu D. Gooty, MD*†, Masanori Takeoka, MD*†, Alexander Rotenberg, MD, PhD*†, Ann M. Bergin, MD*†, Yaman Z. Eksioglu, MD*†, Annapurna Poduri, MD*†, Frank H. Duffy, MD*†, Mark Libenson, MD*†, Blaise F. Bourgeois, MD*†, and Sanjeev V. Kothare, MD*† Rufinamide is a new antiepileptic drug recently ap- with rapid and almost complete oral absorption, low plasma proved as adjunctive treatment for generalized seizures protein-binding, high renal excretion, and low propensity to in Lennox-Gastaut syndrome. We undertook a retro- drug-drug interactions [1,2]. Although these properties spective analysis of 77 patients with refractory epilepsy make rufinamide a potentially useful drug in the treatment and receiving rufinamide to evaluate the drug’s effi- of intractable epilepsy in children, rufinamide is currently cacy, tolerability, safety, and dosing schedules. It ap- only approved for the adjunctive treatment of generalized peared efficacious in diverse epilepsy syndromes, with seizures in Lennox-Gastaut syndrome. the highest responder rate in focal cryptogenic epilep- In this study, we retrospectively analyzed the use of rufi- sies (81.1% of patients with >50% response rate), and namide in children with diverse epilepsy syndromes in a ter- in diverse seizure types, with the highest responder tiary pediatric epilepsy center. We describe the safety, rate in tonic/atonic and partial seizures (48.6% and tolerability, efficacy, and dosing of rufinamide, to identify 46.7% of patients with >50% response rate, respec- the advantages or difficulties of its use across a diverse tively).
    [Show full text]
  • Center for Drug Evaluation and Research
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 22-006 PHARMACOLOGY REVIEW(S) Tertiary Pharmacology Review By: Paul C. Brown, Ph.D., ODE Associate Director for Pharmacology and Toxicology OND IO NDA: 20-427 and 22-006 Submission date: December 28, 2007 (Complete response) Drug: vigabatrin Sponsor: Ovation Pharmaceuticals Indication: 20-427: refractory complex partial seizures in adults 22-006: infantile spasms Reviewing Division: Division of Neurology Products Introductory Comments: The regulatory history of these two NDAs is summarized in the supervisory pharm/tox review. The pharm/tox review of NDA 20-427 found the nonclinical information adequate to support approval. The pharm/tox reviewer for NDA 22-006 did not find the nonclinical information adequate to support approval primarily based on evidence that juvenile animals were sensitive to neurotoxic effects of vigabatrin. The pharm/tox supervisor recognized this concern but did not object to the approval of NDA 22-006 based on the clinical benefit of vigabatrin in infantile spasms which is a serious indication with no other approved therapy. The supervisor recommended that additional studies on the retinal damage and neurotoxicity induced by vigabatrin be conducted as postmarketing requirements. This includes the following studies: 1. A toxicology study in the juvenile rat examining the potential of vigabatrin exposure during development to produce neuronal damage. 2. A juvenile animal toxicology study of vigabatrin in a non-rodent species. 3. A study examining the effect of taurine on vigabatrin-induced retinal damage in rodent. Conclusions: I have discussed these NDAs with the division pharm/tox supervisor and agree that they may be approved from a pharm/tox perspective.
    [Show full text]