Vigabatrin Associated Visual Field Loss: a Clinical Audit to Study

Total Page:16

File Type:pdf, Size:1020Kb

Vigabatrin Associated Visual Field Loss: a Clinical Audit to Study Eye (2002) 16, 567–571 2002 Nature Publishing Group All rights reserved 0950-222X/02 $25.00 www.nature.com/eye WD Newman, K Tocher and JF Acheson Vigabatrin associated CLINICAL STUDY visual field loss: a clinical audit to study prevalence, drug history and effects of drug withdrawal Abstract convulsants. We found no evidence of progression or resolution of visual field Purpose To survey clinical visual function defects on discontinuing the drug, and no including quantitative manual perimetry relationship between dose history and visual results in a group of patients taking deficit field loss. An idiosyncratic drug vigabatrin; to assess the severity of any field reaction within the neurosensory retina may defects; to tabulate cumulative and daily underlie the pathogenesis of the visual field doses of medication and to assess possible loss in some patients changes in visual function over time. Eye (2002) 16, 567–571. doi:10.1038/ Method A prevalence study of 100 out of sj.eye.6700168 183 patients currently attending a tertiary referral epilepsy centre who were taking or had recently discontinued vigabatrin Keywords: vigabatrin; visual failure; visual (duration 83–3570 days; mean 1885 days) as fields part of combination anticonvulsant therapy. Complete neuro-ophthalmic examination Introduction including Goldmann kinetic perimetry was performed and monocular mean radial Vigabatrin (Sabril, Hoechst Marion degrees (MRD) to the I/4e isopter calculated. Roussel/Aventis Ltd) was introduced into UK Patients were followed up at 6-monthly clinical practice on a trial basis in the mid- intervals for not less than 18 months. 1980s and granted a licence in 1989. Since Results Acuity and colour vision remained 1997 numerous reports have appeared stable in all patients regardless of changes in describing an association between use of the visual fields. Twenty per cent of patients had anticonvulsant and bilateral symmetrical loss 1–8 significant constriction of their visual field of visual field. It is hypothesised that in Dept of Neuro- defined as a monocular MRD of 30 degrees addition to effects on cerebral function, ophthalmology, or less. Males were significantly more likely irreversible inhibition of GABA National Hospital for to be severely affected than females aminotransferase with consequent elevation of Neurology & Neurosurgery Ͻ Queen Square (P 0.01). Twenty one patients were GABA levels in the inner retina is the London WC1N 3BG, UK followed after discontinuing vigabatrin priniciple cause of the depressed visual treatment. Only three of these showed a function and this is supported by Correspondence: change in MRD of 10 degrees or more with electrophysiological data.9–15 Outer retinal and JF Acheson MRCP two deteriorating and one improving. No possibly also cortical effects may play a role.12 FRCOphth Dept of Neuro- 11 correlation between treatment duration or Males may be more susceptible than females ophthalmology, cumulative dosage/kg and the severity of but the role of other risk factors such as National Hospital for defects could be demonstrated. cumulative dosage is less clear. There are Neurology & Neurosurgery Conclusions Earlier reports of a high reports of visual recovery after drug Queen Square prevalence of both moderate and more withdrawal16,17 but in a larger study of 13 London WC1N 3BG, UK Tel: +44 (0)20 7837 3611 serious field defects were confirmed in patients, Johnson et al found no association ext 3388 patients taking vigabatrin but not in between the recovery of visual function and Fax: +44 (0)20 7676 2041 epileptic patients taking other anti- either treatment duration or cumulative dosage.18 E-mail: jachesonȰuclh.org Vigabatrin associated visual field defects: a systematic audit WD Newman et al 568 As part of an on-going surveillance and audit screening programmes. Analysis of the kinetic visual exercise on visual field loss associated with vigabatrin field data was done by measuring the radial distance in a population of 183 patients attending a tertiary in degrees at each of 12 points, 30 degrees apart, of the referral epilepsy clinic conducted since 1998, we have I/4e isoptre of the visual field. The mean peripheral collected data on drug history and visual performance field diameter was then determined and the results on kinetic perimetry. We report our observations on expressed as mean radial degrees (MRD) averaged for the relationship between total dosage of vigabatrin and each eye of each patient and compared to those the presence of field defects, and the consequences of obtained from controls. This method follows the discontinuing the drug. techniques described in the NIH-sponsored Diabetic Retinopathy Trial in 198119 and latterly used in the study of vigabatrin-associated visual field loss by Patients and methods Krauss, Johnson and co-workers.11,18,20 The study commenced in March 1999. All patients who All patients were then examined by an were currently, or had in the past, taken vigabatrin as ophthalmologist (JFA or WDN) who were masked to part of combination anticonvulsant therapy and were the findings of the visual field examination. Each attending the epilepsy clinic at the National Hospital patient underwent a full neuro-ophthalmic examination for Neurology and Neurosurgery, London or the to assess any possible visual or ocular comorbidity National Society for Epilepsy at Chalfont, Bucks, UK including pupillary responses, anterior segment were identified and referred for ophthalmological biomicroscopy at the slit lamp and both direct and assessment. indirect fundus examination following pupillary Each patient was interviewed using a standardised dilatation with tropicamide 1%. proforma designed to reveal both symptomatic and Patients were then given rolling 6-month follow-up asymptomatic ocular disease. This included details of appointments. At subsequent visits changes to past ocular history including family history of ocular medication were noted and any new visual symptoms disease; refractive history; neurological and were enquired of. A repeat examination of best neurosurgical history and a drug history. The patients corrected visual acuity for near and distance, colour were asked if they had any visual problems, and then vision, and pupillary responses was carried out prior graded questions were asked in order to elicit any to performing a visual field test as described at their visual disturbance that might be related to vigabatrin, first attendance. The visual fields were undertaken by which included general questions about recent onset of the same perimetrist (KT). Control data were obtained any visual problems, to more direct questions of from a group of 10 patients with epilepsy taking other blurred vision; tunnel vision/restricted peripheral anticonvulsants who had never taken vigabatrin and a vision/ flickering lights. All the patients had been group of 10 healthy volunteers. informed by the referring neurologists that the reason The visual field data were analysed as a continuous for referral was a suspected link between reduced variable using a commercially available statistically peripheral vision and vigabatrin. package (SPSS). Only values from the right eye were Best corrected distance (Snellen) and near acuity used in the analysis. In addition, the visual fields were were recorded. Colour vision was assessed using the also arbritrarily assigned into those who had 17 number plate version of the Ishihara significant visual field defects (visual field of 30 or less pseudoisochromatic test. Goldmann kinetic field testing mean radial degrees) and those who did not (with a to the I/4e and V/4e isoptres only was performed, visual field of more than 30 MRD). This level of field with all the tests performed on the same regularly loss was believed likely to reflect clinically significant calibrated machine (Haag–Streit, with background loss of function although we were unable to test this luminance of 31.5 apostilbs, and using appropriate full assumption more fully. aperture spectacle correction for the central field) by the same experienced perimetrist (KT). Fixation was Results carefully monitored by direct visualisation of the fixating eye and by rechecking points both outside and The patients inside the area of the apparent seeing field at specific meridians. Automated static perimetry was not used One hundred and eighty-three patients were invited because of unacceptably high poor reliability indices in for examination; 14 failed to attend. One hundred and both our own patient population and others,17 using sixty-nine patients were examined, 94 male and 79 full-threshold stategies and the lack of validated female with a mean age of 37 years (range: 17–79, scoring systems for analysis of suprathreshold median 37 years). The following patients were Eye Vigabatrin associated visual field defects: a systematic audit WD Newman et al 569 excluded from the data analysis: 17 patients who were whom six were female and 14 were male. They had on unable to complete visual field assessment due to average been taking vigabatrin for 1943 days (median cognitive impairment; six patients with pre-existing 1668 days) and had taken a mean estimated total of ocular pathology which could affect visual field results 5380 g. This compares with the group with visual fields (either glaucoma or age-related macular degeneration); of 31 MRD or greater who had a mean age of 37 years 26 patients who had visual field defects arising from (median 35.5 years, SD 10.5) of whom 40 were female previous intra-cranial surgery for epilepsy; and 14 who and 40 male. These patients had taken a mean had pre-existing intra-cranial tumours. estimated total of 4574 g and had been on the drug for The data from the remaining 100 patients (54 male a mean time of 2758 days. Analysis of variance and 46 female) were used for analysis. The patients’ revealed no significant difference between the total ages ranged from 18 to 68 years with an average age amount of drug consumed by the two groups (F = 0.5, of 38 years (median 37 years), the mean treatment P = 0.48), or the period of treatment (F = 0.4, P = 0.5).
Recommended publications
  • Eslicarbazepine Acetate Longer Procedure No
    European Medicines Agency London, 19 February 2009 Doc. Ref.: EMEA/135697/2009 CHMP ASSESSMENT REPORT FOR authorised Exalief International Nonproprietary Name: eslicarbazepine acetate longer Procedure No. EMEA/H/C/000987 no Assessment Report as adopted by the CHMP with all information of a commercially confidential nature deleted. product Medicinal 7 Westferry Circus, Canary Wharf, London, E14 4HB, UK Tel. (44-20) 74 18 84 00 Fax (44-20) 74 18 84 16 E-mail: [email protected] http://www.emea.europa.eu TABLE OF CONTENTS 1. BACKGROUND INFORMATION ON THE PROCEDURE........................................... 3 1.1. Submission of the dossier ...................................................................................................... 3 1.2. Steps taken for the assessment of the product..................................................................... 3 2. SCIENTIFIC DISCUSSION................................................................................................. 4 2.1. Introduction............................................................................................................................ 4 2.2. Quality aspects ....................................................................................................................... 5 2.3. Non-clinical aspects................................................................................................................ 8 2.4. Clinical aspects....................................................................................................................
    [Show full text]
  • Mechanisms of Action of Antiepileptic Drugs
    Review Mechanisms of action of antiepileptic drugs Epilepsy affects up to 1% of the general population and causes substantial disability. The management of seizures in patients with epilepsy relies heavily on antiepileptic drugs (AEDs). Phenobarbital, phenytoin, carbamazepine and valproic acid have been the primary medications used to treat epilepsy for several decades. Since 1993 several AEDs have been approved by the US FDA for use in epilepsy. The choice of the AED is based primarily on the seizure type, spectrum of clinical activity, side effect profile and patient characteristics such as age, comorbidities and concurrent medical treatments. Those AEDs with broad- spectrum activity are often found to exert an action at more than one molecular target. This article will review the proposed mechanisms of action of marketed AEDs in the US and discuss the future of AEDs in development. 1 KEYWORDS: AEDs anticonvulsant drugs antiepileptic drugs epilepsy Aaron M Cook mechanism of action seizures & Meriem K Bensalem-Owen† The therapeutic armamentarium for the treat- patients with refractory seizures. The aim of this 1UK HealthCare, 800 Rose St. H-109, ment of seizures has broadened significantly article is to discuss the past, present and future of Lexington, KY 40536-0293, USA †Author for correspondence: over the past decade [1]. Many of the newer AED pharmacology and mechanisms of action. College of Medicine, Department of anti epileptic drugs (AEDs) have clinical advan- Neurology, University of Kentucky, 800 Rose Street, Room L-455, tages over older, so-called ‘first-generation’ First-generation AEDs Lexington, KY 40536, USA AEDs in that they are more predictable in their Broadly, the mechanisms of action of AEDs can Tel.: +1 859 323 0229 Fax: +1 859 323 5943 dose–response profile and typically are associ- be categorized by their effects on the neuronal [email protected] ated with less drug–drug interactions.
    [Show full text]
  • Chapter 25 Mechanisms of Action of Antiepileptic Drugs
    Chapter 25 Mechanisms of action of antiepileptic drugs GRAEME J. SILLS Department of Molecular and Clinical Pharmacology, University of Liverpool _________________________________________________________________________ Introduction The serendipitous discovery of the anticonvulsant properties of phenobarbital in 1912 marked the foundation of the modern pharmacotherapy of epilepsy. The subsequent 70 years saw the introduction of phenytoin, ethosuximide, carbamazepine, sodium valproate and a range of benzodiazepines. Collectively, these compounds have come to be regarded as the ‘established’ antiepileptic drugs (AEDs). A concerted period of development of drugs for epilepsy throughout the 1980s and 1990s has resulted (to date) in 16 new agents being licensed as add-on treatment for difficult-to-control adult and/or paediatric epilepsy, with some becoming available as monotherapy for newly diagnosed patients. Together, these have become known as the ‘modern’ AEDs. Throughout this period of unprecedented drug development, there have also been considerable advances in our understanding of how antiepileptic agents exert their effects at the cellular level. AEDs are neither preventive nor curative and are employed solely as a means of controlling symptoms (i.e. suppression of seizures). Recurrent seizure activity is the manifestation of an intermittent and excessive hyperexcitability of the nervous system and, while the pharmacological minutiae of currently marketed AEDs remain to be completely unravelled, these agents essentially redress the balance between neuronal excitation and inhibition. Three major classes of mechanism are recognised: modulation of voltage-gated ion channels; enhancement of gamma-aminobutyric acid (GABA)-mediated inhibitory neurotransmission; and attenuation of glutamate-mediated excitatory neurotransmission. The principal pharmacological targets of currently available AEDs are highlighted in Table 1 and discussed further below.
    [Show full text]
  • Anticonvulsants
    Clinical Pharmacy Program Guidelines for Anticonvulsants Program Prior Authorization - Anticonvulsants Medication Aptiom (eslicarbazepine), Briviact (brivaracetam), Fycompa (perampanel), Vimpat (lacosamide), Gabitril (tiagabine), Banzel (rufinamide), Onfi (clobazam), Epidiolex (cannabidiol), Sympazan (clobazam), Sabril, (vigabatrin), Diacomit (stiripentol), Xcopri (cenobamate), Fintepla (fenfluramine) Markets in Scope Arizona, California, Colorado, Hawaii, Nevada, New Jersey, New York, New York EPP, Pennsylvania- CHIP, Rhode Island, South Carolina Issue Date 6/2016 Pharmacy and 10/2020 Therapeutics Approval Date Effective Date 12/2020 1. Background: Aptiom (eslicarbazepine acetate), Briviact (brivaracetam), Vimpat (lacosamide) and Xcopri are indicated in the treatment of partial-onset seizures. Banzel (rufinamide), Onfi (clobazam), and Sympazan (clobazam) are indicated for the adjunctive treatment of seizures associated with Lennox-Gastaut syndrome (LGS). There is some clinical evidence to support the use of clobazam for refractory partial onset seizures. Diacomit (stiripentol) is indicated for seizures associated with Dravet syndrome in patients taking clobazam. Epidiolex (cannabadiol) is indicated for seizures associated with Lennox-Gastaut syndrome, Dravet syndrome or tuberous sclerosis complex. Fintepla (fenfluramine) is indicated for the treatment of seizures associated with Dravet syndrome. Fycompa (perampanel) is indicated for the treatment of partial-onset seizures with or without secondarily generalized seizures and as adjunctive therapy for the treatment of primary generalized tonic-clonic seizures. Gabitril (tiagabine) is indicated ad adjunctive therapy in the treatment of partial-onset seizures. Confidential and Proprietary, © 2020 UnitedHealthcare Services Inc. Sabril (vigabatrin) is indicated as adjunctive therapy for refractory complex partial seizures in patients who have inadequately responded to several alternative treatments and for infantile spasms for whom the potential benefits outweigh the risk of vision loss.
    [Show full text]
  • Center for Drug Evaluation and Research
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 22-006 PHARMACOLOGY REVIEW(S) Tertiary Pharmacology Review By: Paul C. Brown, Ph.D., ODE Associate Director for Pharmacology and Toxicology OND IO NDA: 20-427 and 22-006 Submission date: December 28, 2007 (Complete response) Drug: vigabatrin Sponsor: Ovation Pharmaceuticals Indication: 20-427: refractory complex partial seizures in adults 22-006: infantile spasms Reviewing Division: Division of Neurology Products Introductory Comments: The regulatory history of these two NDAs is summarized in the supervisory pharm/tox review. The pharm/tox review of NDA 20-427 found the nonclinical information adequate to support approval. The pharm/tox reviewer for NDA 22-006 did not find the nonclinical information adequate to support approval primarily based on evidence that juvenile animals were sensitive to neurotoxic effects of vigabatrin. The pharm/tox supervisor recognized this concern but did not object to the approval of NDA 22-006 based on the clinical benefit of vigabatrin in infantile spasms which is a serious indication with no other approved therapy. The supervisor recommended that additional studies on the retinal damage and neurotoxicity induced by vigabatrin be conducted as postmarketing requirements. This includes the following studies: 1. A toxicology study in the juvenile rat examining the potential of vigabatrin exposure during development to produce neuronal damage. 2. A juvenile animal toxicology study of vigabatrin in a non-rodent species. 3. A study examining the effect of taurine on vigabatrin-induced retinal damage in rodent. Conclusions: I have discussed these NDAs with the division pharm/tox supervisor and agree that they may be approved from a pharm/tox perspective.
    [Show full text]
  • Shared Care Guideline for Tiagabine (Gabitril®) for Use As Add on Therapy for Partial Seizures in Adults and Children Over 12
    Dorset Medicines Advisory Group SHARED CARE GUIDELINE FOR TIAGABINE (GABITRIL®) FOR USE AS ADD ON THERAPY FOR PARTIAL SEIZURES IN ADULTS AND CHILDREN OVER 12 INDICATION Licensed indications & therapeutic class Tiagabine is an anti-epileptic drug indicated as add-on therapy for partial seizures with or without secondary generalisation where control is not achieved by optimal doses of at least one other anti- epileptic drug. Tiagabine is licensed only for use in adults and children over the age of 12. It is not licensed for monotherapy. NICE CG137: Epilepsies: diagnosis and management (page 26) states: Offer carbamazepine, clobazam, gabapentin, lamotrigine, levetiracetam, oxcarbazepine, sodium valproate or topiramate as adjunctive treatment to children, young people and adults with focal seizures if first-line treatments [carbamazepine or lamotrigine, levetiracetam, oxcarbazepine or sodium valoprate] are ineffective or not tolerated. If adjunctive treatment is ineffective or not tolerated, discuss with, or refer to, a tertiary epilepsy specialist. Other AEDs that may be considered by the tertiary epilepsy specialist are eslicarbazepine acetate, lacosamide, phenobarbital, phenytoin, pregabalin, tiagabine, vigabatrin and zonisamide. Carefully consider the risk–benefit ratio when using vigabatrin because of the risk of an irreversible effect on visual fields. NICE also has a “Do not do” recommendation in relation to tiagabine: “Do not offer carbamazepine, gabapentin, oxcarbazepine, phenytoin, pregabalin, tiagabine or vigabatrin as adjunctive treatment in children, young people and adults with childhood absence epilepsy, juvenile absence epilepsy or other absence epilepsy syndromes.” AREAS OF RESPONSIBILITY FOR SHARED CARE Patients should be at the centre of any shared care arrangements. Individual patient information and a record of their preferences should accompany shared care prescribing guidelines, where appropriate.
    [Show full text]
  • Preliminary Report Treatment of Infantile Spasms with Sodium Valproate Followed by Benzodiazepines
    Preliminary Report Treatment of Infantile Spasms with Sodium Valproate followed by Benzodiazepines Narong Auvichayapat MD*, Sompon Tassniyom MD*, Sutthinee Treerotphon MD*, Paradee Auvichayapat MD** * Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen ** Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen Objective: To review the result of the infantile spasms’ treatment with sodium valproate followed by nitrazepam or clonazepam. Study design: Descriptive retrospective study. Setting: Srinagarind Hospital, Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand. Material and Method: Twenty-four infantile spasms admitted between January 1994 and December 2003 were analyzed. The inclusion criteria were the patients with infantile spasms clinically diagnosed by the pediatric neurologist, having hypsarrhythmic pattern EEG, and receiving sodium valproate with or without nitrazepam or clonazepam. The patients who had an uncertain diagnosis, incomplete medical record, or that were incompletely followed up were excluded. Data were collected on sex, age at onset of seizure, type of infantile spasms, associated type of seizure, predisposing etiological factor, neuroimaging study, and the result of treatment including cessation of spasms, subsequent development of other seizure types, quantitative reduction of spasms, relapse rates of spasms, psychomotor development, and adverse effects of AEDs. Results: The mean age at onset was 177 days. The male-to-female ratio was 1:1.2. There were 13 cryptogenic (54.2%) and 11 symptomatic (45.8%) infantile spasms. The most common predisposing etiological factors in symptomatic cases were hypoxic ischemic encephalopathy (45.5%) and microcephaly (36.4%), respectively. Ten patients received sodium valproate (41.7%), another 10 received sodium valproate with clonazepam (41.7%), and four received sodium valproate with nitrazepam (16.7%).
    [Show full text]
  • 20-427S011 Vigabatrin Clinical BPCA
    CLINICAL REVIEW Application Type NDA Efficacy Supplement Application Number(s) NDA 20427 S-011/S-012 (tablet) NDA 22006 S-012/S-013 (oral solution) Priority or Standard Priority Submit Date(s) April 26, 2013 Received Date(s) April 26, 2013 PDUFA Goal Date October 26, 2013 Division / Office DNP/ ODE 1 Reviewer Name(s) Philip H. Sheridan, M.D. Review Completion Date September 27, 2013 Established Name Vigabatrin (Proposed) Trade Name Sabril Therapeutic Class Anticonvulsant Applicant Lundbeck Inc. Formulation(s) Tablet Sachet for Oral Solution Dosing Regimen BID Indication(s) Complex Partial Seizures Infantile Spasms Intended Population(s) Adult and Pediatric Reference ID: 3396639 Template Version: March 6, 2009 APPEARS THIS WAY ON ORIGINAL Reference ID: 3396639 Clinical Review Philip H. Sheridan, MD NDA 20427 S011/S-012; NDA 22006 S-012/S-013 Sabril (Vigabatrin) Table of Contents 1 RECOMMENDATIONS/RISK BENEFIT ASSESSMENT ......................................... 9 1.1 Recommendation on Regulatory Action ............................................................. 9 1.2 Risk Benefit Assessment .................................................................................... 9 1.4 Recommendations for Postmarket Requirements and Commitments .............. 11 2 INTRODUCTION AND REGULATORY BACKGROUND ...................................... 12 2.1 Product Information .......................................................................................... 12 2.2 Tables of Currently Available Treatments for Proposed Indications ................
    [Show full text]
  • Antiepileptic Drugs for Epilepsy
    Antiepileptic Drugs for Epilepsy EDUCATIONAL OBJECTIVES After completing this activity, participants should be better able to: 1. Define the difference between a seizure and epilepsy. 2. Identify causes and risk factors associated with epilepsy. 3. Understand the proposed pathophysiology of seizures. 4. Describe the mechanism of action of AEDs used in the management of epilepsy. 5. Assess adverse effects and potential drug-drug interactions associated with the use of AEDs CE EXAM RATIONALE 1. Epilepsy is: A. The most common neurologic disorder worldwide B. A chronic condition in which patients experience recurrent, unprovoked seizures*** C. An isolated event resulting from abnormal electrical disturbances in the brain D. Not classified based on seizure type Correct answer: B Epilepsy is defined as a chronic condition in which patients experience recurrent, unprovoked seizures that range from short-lived intervals of inattention or muscle jerking to severe and elongated convulsions. It is the fourth most common neurologic disorder, affecting approximately 65 million people worldwide. The International Classification of Epileptic Seizures classifies seizures as partial (focal) or generalized. 2. Possible causes of epilepsy and seizures include: A. Stroke B. Head trauma C. Medications such as antidepressants and antipsychotics D. All of the above*** Correct answer: D The cause of epilepsy is idiopathic in origin in approximately half of all patients. However, several medical conditions have an associated risk or causation with epilepsy, including traumatic brain injury (TBI), CNS infections, hypoglycemia, eclampsia, fever, and stroke. In addition, many medications have been associated with precipitating seizures (Table 1). 3. Mechanisms of seizure control include all of the following except: A.
    [Show full text]
  • Chapter 26 Starting Antiepileptic Drug Treatment
    Chapter 26 Starting antiepileptic drug treatment KHALID HAMANDI Welsh Epilepsy Centre, University Hospital of Wales, Cardiff _________________________________________________________________________ The single most important consideration before starting antiepileptic medication is to be secure of the diagnosis of epilepsy based on the clinical history and, where needed, supporting investigations. Antiepileptic drug (AED) treatment should never be started as a trial to ‘test’ the diagnosis; this will only cause problems for you and the patient, and is generally unhelpful in resolving diagnostic uncertainty. Given a likely clinical diagnosis the next questions are when to start treatment, followed by what choice of AED. AEDs should prescribed after a careful evaluation of the risks and benefits of treatment and a discussion with the individual patient about the merits and potential side effects of treatment1. The decision to start medication is a major one – treatment will be for many years, even lifelong, and future withdrawal will bring its own issues around recurrence risk and driving, for instance. The decision to start will depend upon factors such as the risk of recurrence, seizure type, the risk around implication of further seizures, desire to regain a driving licence and, for women, the risks of AEDs and seizures in pregnancy. Antiepileptic medication is normally taken for years, and good adherence is essential to avoid withdrawal seizures. Before starting any medication it is important to give information about side effects, drug interactions, teratogenicity and driving. It is helpful to have to hand one or two of the commonest possible side effects for each AED, to caution the patient about these for any new drug started and to document this clearly in notes and letters.
    [Show full text]
  • Study Protocol SEP093-701
    Titlpage Eslicarbazepine Acetate Clinical Study Protocol SEP093-701 Efficacy and Safety of Eslicarbazepine Acetate as First Add-on to Levetiracetam or Lamotrigine Monotherapy or as Later Adjunctive Treatment for Subjects with Uncontrolled Partial-onset Seizures: A Multicenter, Open-label, Non-randomized Trial IND No. 67,466 Version 3.01 16 November 2017 Incorporating Non-substantial Amendment 1.00 SUNOVION PHARMACEUTICALS INC. 84 Waterford Drive Marlborough, MA 01752, USA (508) 481-6700 Protocol SEP093-701, Version 3.01 Eslicarbazepine acetate RESTRICTED DISTRIBUTION OF PROTOCOLS This protocol and the data gathered during the conduct of this protocol contains information that is confidential and/or of proprietary interest to Sumitomo Dainippon Pharma Co. Ltd. and/or Sunovion Pharmaceuticals Inc. (including their predecessors, subsidiaries or affiliates). The information cannot be disclosed to any third party or used for any purpose other than the purpose for which it is being submitted without the prior written consent of the appropriate Sumitomo Dainippon Pharma Company. This information is being provided to you for the purpose of conducting a study for Sunovion Pharmaceuticals, Inc. You may disclose the contents of this protocol to the study personnel under your supervision and to your Institutional Review Board or Independent Ethics Committee for the above purpose. You may not disclose the contents of this protocol to any other parties, unless such disclosure is required by government regulations or laws, without the prior written permission of Sunovion Pharmaceuticals Inc. Any supplemental information (eg, a protocol amendment) that may be added to this document is also proprietary to Sunovion Pharmaceuticals Inc., and should be handled consistently with that stated above.
    [Show full text]
  • Epilepsy in Glioblastoma Patients: Basic Mechanisms and Current
    Review Review Epilepsy in glioblastoma Expert Review of Clinical Pharmacology patients: basic mechanisms © 2013 Expert Reviews Ltd and current problems in 10.1586/ECP.13.12 treatment 1751-2433 Expert Rev. Clin. Pharmacol. 6(3), 00–00 (2013) 1751-2441 Jordi Bruna*1,3, Júlia Glioblastoma-related epilepsy requires paying careful attention to a combination of factors Miró2 and Roser with an integrated approach. Major inter-related issues must be considered in the seizure care Velasco1,3 of glioblastoma patients. Seizure control frequently requires the administration of antiepileptic drugs simultaneously with other treatments, including surgery, radiotherapy and chemotherapy, 1Unit of Neuro-Oncology, Hospital Universitari de Bellvitge-ICO Duran i with complete seizure relief often being difficult to achieve. The pharmacological interactions Reynals, Barcelona, Spain between antiepileptic drugs and antineoplastic agents can modify the activity of both treatments, 2Unit of Epilepsy, Department of compromising their efficacy and increasing the probability of developing adverse events related Neurology, Hospital Universitari de to both therapies. This review summarizes the new pathophysiological pathways involved in Bellvitge and Cognition and Brain Plasticity Group (IDIBELL), Barcelona, the epileptogenesis of glioblastoma-related seizures and the interactions between antiepileptic Spain drugs and oncological treatment, paying special attention to its impact on survival and the 3Group of Neuroplasticity and current evidence of the antiepileptic
    [Show full text]