Age and Growth of Stone Scorpionfish (Scorpaena Mystes) from the Gulf of California in Mexico

Total Page:16

File Type:pdf, Size:1020Kb

Age and Growth of Stone Scorpionfish (Scorpaena Mystes) from the Gulf of California in Mexico 324 National Marine Fisheries Service Fishery Bulletin First U.S. Commissioner established in 1881 of Fisheries and founder NOAA of Fishery Bulletin Abstract—The stone scorpionfish (Scor- Age and growth of stone scorpionfish paena mystes) is common throughout the Gulf of California in Mexico. Because (Scorpaena mystes) from the Gulf of little information is available regard- ing the basic biological characteristics California in Mexico of this species and because commercial demand for it is increasing, the need Ulianov Jakes-Cota (contact author)1 for studies of population dynamics is Arturo Tripp-Valdez1 urgent. We sampled 233 stone scorpi- 1 onfish (117 males and 116 females) in Marisol Arce-Acosta 2 the Gulf of California from May 2015 Francisco Omar López-Fuerte through April 2016 to estimate age and individual growth. Total lengths (TL) Email address for contact author: [email protected] ranged between 15.3 and 35.5 cm for males and between 19.0 and 44.5 cm 1 Departamento de Pesquerías y Biología Marina 2 Laboratorio de Sistemas Arrecifales for females. Results from analysis of Centro Interdisciplinario de Ciencias Marinas Departamento Académico de Ciencias the edge types of otoliths (opaque and Instituto Politécnico Nacional Marinas y Costeras translucent) indicate an annual period- Avenida Instituto Politécnico Nacional s/n Universidad Autónoma de Baja California Sur icity in the formation of annuli in sagit- Colonia Playa Palo de Santa Rita Carretera al Sur km 5.5 tae. Ages of stone scorpionfish ranged Apartado Postal 592 23080 La Paz, Baja California Sur, Mexico from 2 to 10 years for males and from 23096 La Paz, Baja California Sur, Mexico 3 to 15 years for females. Estimates for the parameters of the von Berta- lanffy growth function were 34.76 and 48.22 cm TL for asymptotic length, 0.202/year and 0.135/year for growth coefficient, and −1.28 and −0.80 years for theoretical age at length zero for The stone scorpionfish (Scorpaena mys- the catches of other species of high males and females, respectively. This tes) is commonly found throughout the commercial value, such as the Pacific study resulted in the first estimates of age and individual growth of stone Gulf of California in Mexico, with a dis- red snapper (Lutjanus peru) and yel- scorpionfish, information that is essen- tribution in the eastern Pacific Ocean lowtail jack (Seriola lalandi), caused tial for evaluation and management of that extends from southern California to an increase in price and capture vol- this important fishery resource. Chile, including offshore islands (Butler ume of the stone scorpionfish, driving et al., 2012). This demersal species occurs this species into the commercial sec- in shallow waters and seaweed-covered tor as a complementary, high-quality reefs as well as in open, sandy areas to product. depths of 85 m. It is considered an oppor- Given the little amount of data avail- tunistic predator and feeds mainly on able on the basic biological characteris- crustaceans and small fish (Butler et al., tics of this species and its recent 2012). Adults reach sizes up to 51 cm in commercial exploitation in the region total length (TL) (Robertson and Allen, of the Gulf of California, there is an 2015). urgent need to document its basic life The meat of stone scorpionfish is history (e.g., age, growth, mortality, considered to be of excellent quality and reproduction) and its population and has high commercial value; as dynamics and to create a management a result, this species has become an protocol for this fishery resource. Age important fishery resource (J akes-Cota and individual growth should be Manuscript submitted 14 May 2020. et al., 2017). Historically, however, included as key elements in every Manuscript accepted 15 October 2020. this species has not been sought after investigation focused on the rational Fish. Bull. 118:324–328 (2020). Online publication date: 29 October 2020. commercially because venom glands exploitation of fishing resources doi: 10.7755/FB.118.4.2 located along the spines of the fins (Beamish and Fournier, 1981). Prior to can cause painful injuries and severe this study, the age and individual The views and opinions expressed or respiratory disorders (Poss, 1995); it growth characteristics of stone scorpi- implied in this article are those of the has long been a secondary priority spe- onfish were not available; therefore, author (or authors) and do not necessarily reflect the position of the National cies in the artisanal fishery in the Gulf the aims of our study were 1) to esti- Marine Fisheries Service, NOAA. of California. Since 2012, decreases in mate age by using otoliths, 2) to Jakes-Cota et al.: Age and growth of Scorpaena mystes 325 National Marine estimate individual growth parameters, Fisheries Service Fishery Bulletin First U.S. Commissioner and 3) to test for significant differences established in 1881 of Fisheries and founder NOAA of Fishery Bulletin in growth trajectories between males and females. Materials and methods Stone scorpionfish were collected once a month (21–22 individuals per month) in the artisanal fishery from May 2015 through April 2016. The fish were taken by spearing while using semiau- tonomous diving equipment (hookah), at depths up to 30 m, at different fish- ing sites along 20 km of coastline south of the harbor of Santa Rosalia in Baja California Sur, Mexico. The standard length (SL) and TL were measured to the nearest millimeter, and the weight Figure 1 (W) was recorded to the nearest 0.1 g Photograph showing the annular pattern in the sagittae of a 4-year-old male for each individual. Sex was deter- stone scorpionfish (Scorpaena mystes) caught in May 2015 in the Gulf of mined by using macroscopic exam- California in Mexico. Black dots indicate annuli. The black arrow indicates the ination of the gonads, and the exact measurement of the otolith radius. The scale bar is equal to 1 mm. binomial test was used to test differ- ences in sex ratio. Pairs of sagittae were extracted, cleaned, and stored dry in plastic vials in the laboratory, and only the right otoliths software AxioVision, vers. 4.6 (Carl Zeiss AG). The ste- were used for the analyses described in the rest of this reoscope was attached to a digital camera (AxioCam section. MRc 5, Carl Zeiss AG). The relationship between TL and To describe the length–weight relationship, we used this OR was described by using a simple linear regression equation: analysis. Right otoliths were immersed in ethanol with the con- W = aTLb, (1) cave side down, and 2 independent readers counted the where a = the intercept of the regression line; and annuli once with a stereoscope, using reflected light b = the allometric coefficient, the slope of the regres- against a dark background without prior knowledge of sion line. fish length or weight. Under reflected light, the nucleus (the core of the otolith) and the opaque bands appeared To describe the relationship independently for males and as light rings and the translucent bands appeared as dark females with log-transformed length and weight data, we rings (e.g., La Mesa et al., 2005, 2010; Bilgin and Çelik, used this equation: 2009). The combination of an opaque band followed by log W = a + blog TL. (2) a translucent band was considered to be an annulus, as has been done for other scorpionfish species (e.g., Massutí The a and b parameters were estimated by using a sim- et al., 2000; La Mesa et al., 2005, 2010; Bilgin and Çelik, ple linear regression analysis. A Student’s t-test was 2009). Annuli were counted from the nucleus toward the performed to evaluate whether the b-value was signifi- tip of the rostrum (the anterior projection of the otolith) cantly different from 3, a value that indicates an isometric along the same line (Fig. 1). The precision between readers growth pattern (i.e., all body parts grow at approximately was evaluated by using the mean coefficient of variation the same rate, and a fish has an unchanging body form (CV) and average percent error (APE). Values of 5.5% for throughout development). An analysis of covariance was APE and of 7.6% for CV have been considered adequate in used to test differences in b-values between males and many aging studies (Campana, 2001). females. To validate the periodicity of the formation of opaque The otolith radius (OR) (Fig. 1) was measured under 1 and translucent bands and to assign a unit of time (e.g., a stereoscope (Stemi SV11 , Carl Zeiss AG, Oberkochen, years) to the counted annuli, edge type analysis was Germany) at 3.2× magnification by using the imaging used. For this analysis, the edge type of each otolith was recorded as either opaque or translucent, and, for each month, the percentages of opaque edges and of translu- 1 Mention of trade names or commercial companies is for identi- fication purposes only and does not imply endorsement by the cent edges in the total number of otoliths analyzed was National Marine Fisheries Service, NOAA. plotted. 326 Fishery Bulletin 118(4) The von Bertalanffy growth function was fitted to Otolith radius ranged between 2.5 and 5.6 mm. The lin- length-at-age data to estimate individual growth: ear regression model developed to predict the relationship between OR and TL was as follows: (3) TL = −3.53 + 3.91OR. (4) The linear relationship between both variables was signif- where L = the length (TL, in centimeters) at age t; t icant (coefficient of determination [r2]=0.79, P<0.05). L = the asymptotic length; ∞ The highest percentage of otoliths with opaque edges k = the growth coefficient; and was recorded in August (81%), followed by the percentage t = the theoretical age at length zero.
Recommended publications
  • Dalmatia Tourist Guide
    Vuk Tvrtko Opa~i}: County of Split and Dalmatia . 4 Tourist Review: Publisher: GRAPHIS d.o.o. Maksimirska 88, Zagreb Tel./faks: (385 1) 2322-975 E-mail: [email protected] Editor-in-Chief: Elizabeta [unde Ivo Babi}: Editorial Committee: Zvonko Ben~i}, Smiljana [unde, Split in Emperor Diocletian's Palace . 6 Marilka Krajnovi}, Silvana Jaku{, fra Gabriel Juri{i}, Ton~i ^ori} Editorial Council: Mili Razovi}, Bo`o Sin~i}, Ivica Kova~evi}, Stjepanka Mar~i}, Ivo Babi}: Davor Glavina The historical heart of Trogir and its Art Director: Elizabeta [unde cathedral . 9 Photography Editor: Goran Morovi} Logo Design: @eljko Kozari} Layout and Proofing: GRAPHIS Language Editor: Marilka Krajnovi} Printed in: Croatian, English, Czech, and Gvido Piasevoli: German Pearls of central Dalmatia . 12 Translators: German – Irena Bad`ek-Zub~i} English – Katarina Bijeli}-Beti Czech – Alen Novosad Tourist Map: Ton~i ^ori} Printed by: Tiskara Mei}, Zagreb Cover page: Hvar Port, by Ivo Pervan Ivna Bu}an: Biblical Garden of Stomorija . 15 Published: annually This Review is sponsored by the Tourist Board of the County of Split and Dalmatia For the Tourist Board: Mili Razovi}, Director Prilaz bra}e Kaliterna 10, 21000 Split Gvido Piasevoli: Tel./faks: (385 21) 490-032, 490-033, 490-036 One flew over the tourists' nest . 18 Web: www.dalmacija.net E-mail: [email protected] We would like to thank to all our associates, tourist boards, hotels, and tourist agencies for cooperation. @eljko Kuluz: All rights reserved. No part of this publication may be used or repro- Fishing and fish stories .
    [Show full text]
  • New Evidence of Marine Fauna Tropicalization Off the 3 Southwestern Iberian Peninsula
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 February 2019 doi:10.20944/preprints201902.0249.v1 Peer-reviewed version available at Diversity 2019, 11, 48; doi:10.3390/d11040048 1 Communication 2 New evidence of marine fauna tropicalization off the 3 southwestern Iberian Peninsula 4 João Encarnação 1,*, Pedro Morais 2, Vânia Baptista 1, Joana Cruz 1 and Maria Alexandra Teodósio 1 5 6 1 CCMAR – Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 7 Faro, Portugal; [email protected] (J.E); [email protected] (V.B.); [email protected] (J.C.); 8 [email protected] (M.A.T.) 9 2 Department of Environmental Science, Policy, and Management, Mulford Hall, University of 10 California, Berkeley, Berkeley, CA 94720, USA; [email protected] (P.M.) 11 * Correspondence: [email protected] 12 13 14 15 Abstract: Climate change and the overall increase of seawater temperature is causing a poleward 16 shift in species distribution, which includes a phenomenon described as tropicalization of temperate 17 regions. This work aims at reporting the first records of four species off the southwestern Iberian 18 Peninsula, namely oceanic puffer Lagocephalus lagocephalus Linnaeus, 1758, Madeira rockfish 19 Scorpaena maderensis Valenciennes, 1833, ornate wrasse Thalassoma pavo Linnaeus, 1758, and bearded 20 fireworm Hermodice carunculata Pallas, 1766. These last three species, along with other occurrences of 21 aquatic fauna and flora along the Portuguese coast, reveal an ongoing process of poleward expansion 22 of several species for which a comprehensive survey along the entire Iberian Peninsula is urgent. The 23 putative origins of these subtropical and tropical species off continental Portugal are discussed, as 24 well as the urgent need of public awareness due to potential health risks resulting from the toxicity 25 of two of the four species reported in this paper.
    [Show full text]
  • Lionfish (Pterois Volitans)
    CLOSE ENCOUNTERS WITH THE ENVIRONMENT Aquatic Antagonists: Lionfish (Pterois volitans) Dirk M. Elston, MD ionfish (Pterois volitans and related species) also are known as turkeyfish, zebrafish, dragonfish, L and scorpionfish.1 They are most common in subtropical and tropical regions of the Pacific and Indian oceans, as well as the Red Sea, but have become widely distributed and are now found in all oceans. Studies of mitochondrial DNA sequences of lionfish of the Pacific and Indian oceans suggest that some related species, such as P volitans and Pterois miles, actually could be geographically sepa- rated populations of a single species.1 Most incidences of lionfish envenomation occur A in the tropics, especially the Indo-Pacific region and Mediterranean Sea,2 but stings increasingly are being reported off the east coast of the United States because lionfish have been introduced off the coasts of Florida, Georgia, the Carolinas, and New York.3 Since August 2000, lionfish have been found all along the southeastern coast of the United States from Florida to Cape Hatteras in North Carolina, where they tend to reside in water depths from 85 to 260 ft. Isolated foci have been noted off the coast of New York.4 Lionfish belong to the family of scorpionfish (Scorpaenidae), a large family characterized by the ability to envenomate with specialized spines. The 3 major genera of Scorpaenidae are Pterois (eg, lion- fish)(Figure), possessing long slender spines with B small venom glands and a relatively mild sting; Pterois volitans, also known as lionfish (A and B). Scorpaena (eg, “true” scorpionfish, bullrout, and sculpin), possessing shorter and thicker spines with larger venom glands and a more dangerous sting; and Synanceia (eg, stonefish), possessing thick spines referred to as scorpionfish, though this term perhaps with highly developed venom glands and a poten- is best reserved for the genus Scorpaena.
    [Show full text]
  • ARQUIPELAGO Life and Marine Sciences
    ARQUIPELAGO Life and Marine Sciences OPEN ACCESS ISSN 0870-4704 / e-ISSN 2182-9799 SCOPE ARQUIPELAGO - Life and Marine Sciences, publishes annually original scientific articles, short communications and reviews on the terrestrial and marine environment of Atlantic oceanic islands and seamounts. PUBLISHER University of the Azores Rua da Mãe de Deus, 58 PT – 9500-321 Ponta Delgada, Azores, Portugal. EDITOR IN CHIEF Helen Rost Martins Department of Oceanography and Fisheries / Faculty of Science and Technology University of the Azores Phone: + 351 292 200 400 / 428 E-mail: [email protected] TECHNICAL EDITOR Paula C.M. Lourinho Phone: + 351 292 200 400 / 454 E-mail: [email protected] INTERNET RESOURCES http://www.okeanos.pt/arquipelago FINANCIAL SUPPORT Okeanos-UAc – Apoio Func. e Gest. de centros I&D: 2019-DRCT-medida 1.1.a; SRMCT/GRA EDITORIAL BOARD José M.N. Azevedo, Faculty of Science and Technology, University of the Azores, Ponta Delgada, Azores; Paulo A.V. Borges, Azorean Biodiversity Group, University of the Azores, Angra do Heroísmo, Azores; João M.A. Gonçalves, Faculty of Science and Technology, University of the Azores, Horta, Azores; Louise Allcock, National University of Ireland, Galway, Ireland; Joël Bried, Cabinet vétérinaire, Biarritz, France; João Canning Clode, MARE - Marine and Environmental Sciences Centre, ARDITI, Madeira; Martin A. Collins, British Antarctic Survey, Cambridge, UK; Charles H.J.M. Fransen, Naturalis Biodiversity Center, Leiden, Netherlands, Suzanne Fredericq, Louisiana University at Lafayette, Louisiana, USA; Tony Pitcher, University of British Colombia Fisheries Center, Vancouver, Canada; Hanno Schaefer, Munich Technical University, Munich, Germany. Indexed in: Web of Science Master Journal List Cover design: Emmanuel Arand Arquipelago - Life and Marine Sciences ISSN: 0873-4704 Bryophytes of Azorean parks and gardens (I): “Reserva Florestal de Recreio do Pinhal da Paz” - São Miguel Island CLARA POLAINO-MARTIN, ROSALINA GABRIEL, PAULO A.V.
    [Show full text]
  • Pdf Underwater Routes
    UNDERWATER ROUTES of the western Algarve CONTENTS CREDITS COORDINATION: Jorge M. S. INTRODUCTION 3 Gonçalves e Mafalda Rangel TEXT: Mafalda Rangel DIVING IN THE ROUTES 5 RESEARCH TEAM: Mafalda Rangel, Luís Bentes, Pedro MAP OF THE NETWORK OF UNDERWATER ROUTES 8 Monteiro, Carlos M. L. Afonso, Frederico Oliveira, Inês Sousa, SCUBA DIVING ROUTES 10 Karim Erzini, Jorge M. S. Gonçalves (CCMAR – Centre of GRUTA DO MARTINHAL (SAGRES) 10 Marine Sciences) PHOTOGRAPHY: Carlos M. L. PONTA DOS CAMINHOS (SAGRES) 12 Afonso, David Abecasis, Frederico Oliveira, João Encarnação/ “POÇO” (ARMAÇÃO DE PERA) 14 Subnauta (p.7), Jorge M. S. Gonçalves, Nuno Alves (p.19), SNORKELING ROUTES 16 Pedro Veiga ILUSTRATION_ Underwater P. 2 PRAIA DA MARINHA (LAGOA) 16 slates: Frederico Oliveira GRAPHIC DESIGN AND PRAIA DOS ARRIFES (ALBUFEIRA) 18 ILUSTRATION: GOBIUS Comunication and Science PHOTOS 20 COLABORATION: Isidoro Costa ADB COORDINATION: José CURIOSITIES 25 Moura Bastos TRANSLATION: Mafalda DANGERS 26 Rangel, Fátima Noronha CONTACTS: INTEREST FOR CONSERVATION 26 _CCMAR - Centro de Ciências do Mar do Algarve: Universidade do READING SUGGESTIONS 27 Algarve, Campus de Gambelas, FCT Ed7, 8005-139 Faro Telf. 289 800 051 http://www.ccmar.ualg.pt HOW TO QUOTE THIS PUBLICATION: _ADB - Agência Desenvolvimento Rangel, M.; Oliveira, F.; Bentes, L.; Monteiro, P.; Afonso, C.M.L.; do Barlavento, Rua Impasse à Rua Sousa, I.; Erzini, K.; Gonçalves, J.M.S.. 2015. Underwater Routes Poeta António Aleixo, Bloco B, GENTES D’MAR of the windward Algarve. Centre of Marine Sciences (CCMAR), R/c, 8500-525 Portimão, Portugal Algarve University; Agência Desenvolvimento do Barlavento Telf. 282 482 889 (ADB). GOBIUS Communication and Science, 27p.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • (Copepoda: Chondracanthidae), a Parasite of Bullseye Puffer Fish Sphoeroides Annulatus Revista De Biología Marina Y Oceanografía, Vol
    Revista de Biología Marina y Oceanografía ISSN: 0717-3326 [email protected] Universidad de Valparaíso Chile Fajer-Ávila, Emma Josefina; Guzman-Beltran, Leslie; Zárate-Rodríguez, Walter Camilo; Del Río- Zaragoza, Oscar Basilio; Almazan-Rueda, Pablo Pathology caused by adult Pseudochondracanthus diceraus (Copepoda: Chondracanthidae), a parasite of bullseye puffer fish Sphoeroides annulatus Revista de Biología Marina y Oceanografía, vol. 46, núm. 3, diciembre, 2011, pp. 293-302 Universidad de Valparaíso Viña del Mar, Chile Available in: http://www.redalyc.org/articulo.oa?id=47922575001 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista de Biología Marina y Oceanografía Vol. 46, Nº3: 293-302, diciembre 2011 Article Pathology caused by adult Pseudochondracanthus diceraus (Copepoda: Chondracanthidae), a parasite of bullseye puffer fish Sphoeroides annulatus Patología causada por adultos de Pseudochondracanthus diceraus (Copepoda: Chondracanthidae) parásito del botete diana Sphoeroides annulatus Emma Josefina Fajer-Ávila1, Leslie Guzman-Beltran2, Walter Camilo Zárate-Rodríguez2, Oscar Basilio Del Río-Zaragoza1 and Pablo Almazan-Rueda1 1Centro de Investigación en Alimentación y Desarrollo, A.C., Unidad Mazatlán en Acuicultura y Manejo Ambiental, Av. Sábalo Cerritos s/n, Estero del Yugo, C.P. 82010, Mazatlán, Sinaloa, México. [email protected] 2Universidad de La Salle, Facultad de Medicina Veterinaria, Sede La Floresta, Carretera 7a No. 172-85, Bogotá DC, Colombia Resumen.- El copépodo condracántido Pseudochondracanthus diceraus es un parásito frecuente en las branquias del botete diana silvestre, Sphoeroides annulatus en Sinaloa, México.
    [Show full text]
  • Vulnerable Forests of the Pink Sea Fan Eunicella Verrucosa in the Mediterranean Sea
    diversity Article Vulnerable Forests of the Pink Sea Fan Eunicella verrucosa in the Mediterranean Sea Giovanni Chimienti 1,2 1 Dipartimento di Biologia, Università degli Studi di Bari, Via Orabona 4, 70125 Bari, Italy; [email protected]; Tel.: +39-080-544-3344 2 CoNISMa, Piazzale Flaminio 9, 00197 Roma, Italy Received: 14 April 2020; Accepted: 28 April 2020; Published: 30 April 2020 Abstract: The pink sea fan Eunicella verrucosa (Cnidaria, Anthozoa, Alcyonacea) can form coral forests at mesophotic depths in the Mediterranean Sea. Despite the recognized importance of these habitats, they have been scantly studied and their distribution is mostly unknown. This study reports the new finding of E. verrucosa forests in the Mediterranean Sea, and the updated distribution of this species that has been considered rare in the basin. In particular, one site off Sanremo (Ligurian Sea) was characterized by a monospecific population of E. verrucosa with 2.3 0.2 colonies m 2. By combining ± − new records, literature, and citizen science data, the species is believed to be widespread in the basin with few or isolated colonies, and 19 E. verrucosa forests were identified. The overall associated community showed how these coral forests are essential for species of conservation interest, as well as for species of high commercial value. For this reason, proper protection and management strategies are necessary. Keywords: Anthozoa; Alcyonacea; gorgonian; coral habitat; coral forest; VME; biodiversity; mesophotic; citizen science; distribution 1. Introduction Arborescent corals such as antipatharians and alcyonaceans can form mono- or multispecific animal forests that represent vulnerable marine ecosystems of great ecological importance [1–4].
    [Show full text]
  • Zootaxa, Scorpaeniformes, Scorpaenidae, Scorpaena
    Zootaxa 1043: 17–32 (2005) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1043 Copyright © 2005 Magnolia Press ISSN 1175-5334 (online edition) Scorpaena bulacephala, a new species of scorpionfish (Scorpaeniformes: Scorpaenidae) from the northern Tasman Sea HIROYUKI MOTOMURA1, PETER R. LAST2 & GORDON K. YEARSLEY2 1Ichthyology, Australian Museum, 6 College Street, Sydney, New South Wales 2010, Australia (motomu- [email protected]) 2CSIRO Marine & Atmospheric Research, GPO Box 1538, Hobart, Tasmania 7001, Australia (PRL, [email protected]; GKY, [email protected]) Abstract A new species of small-sized scorpionfish, Scorpaena bulacephala, is described on the basis of seven specimens collected from off Norfolk and Lord Howe Islands, northern Tasman Sea, south- western Pacific Ocean, at depths of 86–113 m. The new species is closely related to a Hawaiian endemic species, S. colorata. The two species are distinguished from other Indo–Pacific species of Scorpaena by the following combination of characters: exposed cycloid scales covering the anteroventral surface of the body and pectoral-fin base, the lateral surface of the lacrimal without spines, and 17 pectoral-fin rays. The new species differs from S. colorata in having 39–44 longitu- dinal scales rows and relatively short fin spines and rays, especially short longest pectoral-fin ray (31.5–33.5% of standard length). Morphological changes with growth and sexual dimorphism of the new species are also discussed. Key words: Scorpaenidae, Scorpaena, new species, Tasman Sea, southwestern Pacific Ocean Introduction In May–June 2003, the biodiversity of the northern Tasman Sea was surveyed by an inter- national research team using the New Zealand FRV Tangaroa.
    [Show full text]
  • Systematics of Scorpaeniformes Species in the Mediterranean Sea Inferred from Mitochondrial 16S Rdna Sequence and Morphological Data
    Folia biologica (Kraków), vol. 57 (2009), No 1-2 doi:10.3409/fb57_1-2.219-226 SystematicsofScorpaeniformesSpecies intheMediterraneanSeaInferred fromMitochondrial16SrDNASequenceandMorphologicalData CemalTURAN,IslamGUNDUZ,MevlütGURLEK,DenizYAGLIOGLU andDenizERGUDEN Accepted September 15, 2008 TURAN C., GUNDUZ I., GURLEK M., YAGLIOGLU D., ERGUDEN D. 2009. Systematics of Scorpaeniformes species in the Mediterranean Sea inferred from mitochondrial 16S rDNA sequence and morphological data. Folia biol. (Kraków) 57: 219-226. Genetic and morphological divergence and phylogenetic relationships of Scorpaeniformes fishincludingtwogeneraandsixspecies, Helicolenus dactylopterus, Scorpaena maderensis, Scorpaena porcus, Scorpaena elongata, Scorpaena scrofa, Scorpaena notata, living in the Mediterranean Sea, were investigated with morphological and mitochondrial 16S rDNA sequence data. The mean nucleotide diversity was found to be 0.0792. Average sequence divergence between species of Sebastidae and Scorpaenidae was 8.4%, and 6.4%. between species of the genus Scorpaena. For congeneric comparisions, the lowest genetic divergence (0.7%) was observed between S. porcus and S. notata, and the highest divergence (10.8%) was detected between S. maderensis and S. notata. High levels of nucleotide divergence were detected between species of two families, and the maximum value was found to be 14.5% between H. dactylopterus and S. elongata. The two phylogenetic methods (NJ and MP)identifiedtwomajorlineages. IntheNJtree S. elongata wasthesistergroupto S. scrofa. S. maderensis was more divergent from these groups. Another lineage contained S. porcus and S. notata. The topology of the MP tree is similar to that of the NJ tree. The pattern and degree of morphological differentiation was not congruent with the genetic differentiation. The Euclidiean distances of morphological data revealed very high morphological divergence between the two families.
    [Show full text]
  • Gap Analysis on the Biology of Mediterranean Marine Fishes
    RESEARCH ARTICLE Gap analysis on the biology of Mediterranean marine fishes Donna Dimarchopoulou1, Konstantinos I. Stergiou1,2, Athanassios C. Tsikliras1* 1 Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2 Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, Athens, Greece * [email protected] a1111111111 a1111111111 Abstract a1111111111 a1111111111 We estimated the current level of knowledge concerning several biological characteristics a1111111111 of the Mediterranean marine fishes by carrying out a gap analysis based on information extracted from the literature, aiming to identify research trends and future needs in the field of Mediterranean fish biology that can be used in stock assessments, ecosystem modeling and fisheries management. Based on the datasets that emerged from the literature review, OPEN ACCESS there is no information on any biological characteristic for 43% (n = 310) of the Mediterra- Citation: Dimarchopoulou D, Stergiou KI, Tsikliras nean fish species, whereas for an additional 15% (n = 109) of them there is information AC (2017) Gap analysis on the biology of about just one characteristic. The gap between current and desired knowledge (defined Mediterranean marine fishes. PLoS ONE 12(4): here as having information on most biological characteristics for at least half of the Mediter- e0175949. https://doi.org/10.1371/journal. pone.0175949 ranean marine fishes) is smaller in length-weight relationships, which have been studied for 43% of the species, followed by spawning (39%), diet (29%), growth (25%), maturity (24%), Editor: Dennis M. Higgs, University of Windsor, CANADA lifespan (19%) and fecundity (17%). The gap is larger in natural mortality for which informa- tion is very scarce (8%).
    [Show full text]
  • Parasites from the Red Lionfish, Pterois Volitans from the Gulf of Mexico
    Gulf and Caribbean Research Volume 27 Issue 1 2016 Parasites from the Red Lionfish, Pterois volitans from the Gulf of Mexico Alexander Q. Fogg Florida Fish and Wildlife Conservation Commission, [email protected] Carlos F. Ruiz Auburn University, [email protected] Stephen S. Curran The University of Southern Mississippi, [email protected] Stephen A. Bullard Auburn University, [email protected] Follow this and additional works at: https://aquila.usm.edu/gcr Part of the Biodiversity Commons, Marine Biology Commons, and the Zoology Commons Recommended Citation Fogg, A. Q., C. F. Ruiz, S. S. Curran and S. A. Bullard. 2016. Parasites from the Red Lionfish, Pterois volitans from the Gulf of Mexico. Gulf and Caribbean Research 27 (1): SC1-SC5. Retrieved from https://aquila.usm.edu/gcr/vol27/iss1/7 DOI: https://doi.org/10.18785/gcr.2701.07 This Short Communication is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. VOLUME 25 VOLUME GULF AND CARIBBEAN Volume 25 RESEARCH March 2013 TABLE OF CONTENTS GULF AND CARIBBEAN SAND BOTTOM MICROALGAL PRODUCTION AND BENTHIC NUTRIENT FLUXES ON THE NORTHEASTERN GULF OF MEXICO NEARSHORE SHELF RESEARCH Jeffrey G. Allison, M. E. Wagner, M. McAllister, A. K. J. Ren, and R. A. Snyder....................................................................................1—8 WHAT IS KNOWN ABOUT SPECIES RICHNESS AND DISTRIBUTION ON THE OUTER—SHELF SOUTH TEXAS BANKS? Harriet L. Nash, Sharon J. Furiness, and John W.
    [Show full text]