SCIENCE CHINA Ecological Restoration and Recovery in the Wind
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
中國中鐵股份有限公司 CHINA RAILWAY GROUP LIMITED (A Joint Stock Limited Company Incorporated in the People’S Republic of China with Limited Liability) (Stock Code: 390)
Hong Kong Exchanges and Clearing Limited and The Stock Exchange of Hong Kong Limited take no responsibility for the contents of this announcement, make no representation as to its accuracy or completeness and expressly disclaim any liability whatsoever for any loss howsoever arising from or in reliance upon the whole or any part of the contents of this announcement. 中國中鐵股份有限公司 CHINA RAILWAY GROUP LIMITED (A joint stock limited company incorporated in the People’s Republic of China with limited liability) (Stock Code: 390) This overseas regulatory announcement is made pursuant to Rule 13.10B of the Rules Governing the Listing of Securities on The Stock Exchange of Hong Kong Limited. Please refer to the attached “Announcement of China Railway Group Limited on Winning of Bids for Material Projects” published by China Railway Group Limited on the Shanghai Stock Exchange website on 24 October 2019 for your information. By Order of the Board China Railway Group Limited Zhang Zongyan Chairman 24 October 2019 As at the date of this announcement, the executive directors of the Company are ZHANG Zongyan (Chairman) and ZHANG Xian; the independent non-executive directors are GUO Peizhang, WEN Baoman, ZHENG Qingzhi and CHUNG Shui Ming Timpson; and the non-executive director is MA Zonglin. A Shares Stock Code: 601390 A Shares Stock Name: China Railway Announcement No.: H Shares Stock Code: 00390 H Shares Stock Name: China Railway Lin 2019-072 Announcement of China Railway Group Limited on Winning of Bids for Material Projects The board of directors of China Railway Group Limited (the “Company”) and all the directors hereby undertake that this announcement does not have any false or misleading statements or any material omissions, and assume the joint and several liabilities for the truthfulness, accuracy and completeness of the contents. -
Multi-Scale Analysis of Green Space for Human Settlement Sustainability in Urban Areas of the Inner Mongolia Plateau, China
sustainability Article Multi-Scale Analysis of Green Space for Human Settlement Sustainability in Urban Areas of the Inner Mongolia Plateau, China Wenfeng Chi 1,2, Jing Jia 1,2, Tao Pan 3,4,5,* , Liang Jin 1,2 and Xiulian Bai 1,2 1 College of resources and Environmental Economics, Inner Mongolia University of Finance and Economics, Inner Mongolia, Hohhot 010070, China; [email protected] (W.C.); [email protected] (J.J.); [email protected] (L.J.); [email protected] (X.B.) 2 Resource Utilization and Environmental Protection Coordinated Development Academician Expert Workstation in the North of China, Inner Mongolia University of Finance and Economics, Inner Mongolia, Hohhot 010070, China 3 College of Geography and Tourism, Qufu Normal University, Shandong, Rizhao 276826, China 4 Department of Geography, Ghent University, 9000 Ghent, Belgium 5 Land Research Center of Qufu Normal University, Shandong, Rizhao 276826, China * Correspondence: [email protected]; Tel.: +86-1834-604-6488 Received: 19 July 2020; Accepted: 18 August 2020; Published: 21 August 2020 Abstract: Green space in intra-urban regions plays a significant role in improving the human habitat environment and regulating the ecosystem service in the Inner Mongolian Plateau of China, the environmental barrier region of North China. However, a lack of multi-scale studies on intra-urban green space limits our knowledge of human settlement environments in this region. In this study, a synergistic methodology, including the main process of linear spectral decomposition, vegetation-soil-impervious surface area model, and artificial digital technology, was established to generate a multi-scale of green space (i.e., 15-m resolution intra-urban green components and 0.5-m resolution park region) and investigate multi-scale green space characteristics as well as its ecological service in 12 central cities of the Inner Mongolian Plateau. -
Download from Related Websites (For Example
sustainability Article Efficiency Loss and Intensification Potential of Urban Industrial Land Use in Three Major Urban Agglomerations in China Xiangdong Wang 1,2,3,* , Xiaoqiang Shen 1,2 and Tao Pei 3 1 College of Management, Lanzhou University, Lanzhou 730000, China; [email protected] 2 Institute for Studies in County Economy Development, Lanzhou University, Lanzhou 730000, China 3 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; [email protected] * Correspondence: [email protected] Received: 24 December 2019; Accepted: 20 February 2020; Published: 22 February 2020 Abstract: In recent decades, efficiency and intensification have emerged as hot topics within urban industrial land use (UILU) studies in China. However, the measurement and analysis of UILU efficiency and intensification are not accurate and in-depth enough. The study of UILU efficiency loss and intensification potential and their relationship is still lacking, and the application of parametric methods with clearer causal mechanisms is insufficient. This paper argued that the intensification potential of UILU could be defined as the amount of saved land or output growth resulting from reduced efficiency loss of UILU. Accordingly, we constructed quantitative models for measuring and evaluating the intensification potential of UILU, using the stochastic frontier analysis (SFA) method to calculate efficiency loss in three major urban agglomerations (38 cities) in China. Our results revealed a large scale and an expanding trend in the efficiency loss and intensification potential of UILU in three major urban agglomerations in China. From 2003 to 2016, the annual efficiency loss of UILU was 31.56%, the annual land-saving potential was 979.98 km2, and the annual output growth potential was 8775.23 billion Yuan (referring to the constant price for 2003). -
Spatial Heterogeneous of Ecological Vulnerability in Arid and Semi-Arid Area: a Case of the Ningxia Hui Autonomous Region, China
sustainability Article Spatial Heterogeneous of Ecological Vulnerability in Arid and Semi-Arid Area: A Case of the Ningxia Hui Autonomous Region, China Rong Li 1, Rui Han 1, Qianru Yu 1, Shuang Qi 2 and Luo Guo 1,* 1 College of the Life and Environmental Science, Minzu University of China, Beijing 100081, China; [email protected] (R.L.); [email protected] (R.H.); [email protected] (Q.Y.) 2 Department of Geography, National University of Singapore; Singapore 117570, Singapore; [email protected] * Correspondence: [email protected] Received: 25 April 2020; Accepted: 26 May 2020; Published: 28 May 2020 Abstract: Ecological vulnerability, as an important evaluation method reflecting regional ecological status and the degree of stability, is the key content in global change and sustainable development. Most studies mainly focus on changes of ecological vulnerability concerning the temporal trend, but rarely take arid and semi-arid areas into consideration to explore the spatial heterogeneity of the ecological vulnerability index (EVI) there. In this study, we selected the Ningxia Hui Autonomous Region on the Loess Plateau of China, a typical arid and semi-arid area, as a case to investigate the spatial heterogeneity of the EVI every five years, from 1990 to 2015. Based on remote sensing data, meteorological data, and economic statistical data, this study first evaluated the temporal-spatial change of ecological vulnerability in the study area by Geo-information Tupu. Further, we explored the spatial heterogeneity of the ecological vulnerability using Getis-Ord Gi*. Results show that: (1) the regions with high ecological vulnerability are mainly concentrated in the north of the study area, which has high levels of economic growth, while the regions with low ecological vulnerability are mainly distributed in the relatively poor regions in the south of the study area. -
Appendix 1: Rank of China's 338 Prefecture-Level Cities
Appendix 1: Rank of China’s 338 Prefecture-Level Cities © The Author(s) 2018 149 Y. Zheng, K. Deng, State Failure and Distorted Urbanisation in Post-Mao’s China, 1993–2012, Palgrave Studies in Economic History, https://doi.org/10.1007/978-3-319-92168-6 150 First-tier cities (4) Beijing Shanghai Guangzhou Shenzhen First-tier cities-to-be (15) Chengdu Hangzhou Wuhan Nanjing Chongqing Tianjin Suzhou苏州 Appendix Rank 1: of China’s 338 Prefecture-Level Cities Xi’an Changsha Shenyang Qingdao Zhengzhou Dalian Dongguan Ningbo Second-tier cities (30) Xiamen Fuzhou福州 Wuxi Hefei Kunming Harbin Jinan Foshan Changchun Wenzhou Shijiazhuang Nanning Changzhou Quanzhou Nanchang Guiyang Taiyuan Jinhua Zhuhai Huizhou Xuzhou Yantai Jiaxing Nantong Urumqi Shaoxing Zhongshan Taizhou Lanzhou Haikou Third-tier cities (70) Weifang Baoding Zhenjiang Yangzhou Guilin Tangshan Sanya Huhehot Langfang Luoyang Weihai Yangcheng Linyi Jiangmen Taizhou Zhangzhou Handan Jining Wuhu Zibo Yinchuan Liuzhou Mianyang Zhanjiang Anshan Huzhou Shantou Nanping Ganzhou Daqing Yichang Baotou Xianyang Qinhuangdao Lianyungang Zhuzhou Putian Jilin Huai’an Zhaoqing Ningde Hengyang Dandong Lijiang Jieyang Sanming Zhoushan Xiaogan Qiqihar Jiujiang Longyan Cangzhou Fushun Xiangyang Shangrao Yingkou Bengbu Lishui Yueyang Qingyuan Jingzhou Taian Quzhou Panjin Dongying Nanyang Ma’anshan Nanchong Xining Yanbian prefecture Fourth-tier cities (90) Leshan Xiangtan Zunyi Suqian Xinxiang Xinyang Chuzhou Jinzhou Chaozhou Huanggang Kaifeng Deyang Dezhou Meizhou Ordos Xingtai Maoming Jingdezhen Shaoguan -
Journal Pre-Proof
Journal Pre-proof Optimal temperature zone for the dispersal of COVID-19 Zhongwei Huang, Jianping Huang, Qianqing Gu, Pengyue Du, Hongbin Liang, Qing Dong PII: S0048-9697(20)33004-7 DOI: https://doi.org/10.1016/j.scitotenv.2020.139487 Reference: STOTEN 139487 To appear in: Science of the Total Environment Received date: 1 May 2020 Revised date: 9 May 2020 Accepted date: 15 May 2020 Please cite this article as: Z. Huang, J. Huang, Q. Gu, et al., Optimal temperature zone for the dispersal of COVID-19, Science of the Total Environment (2020), https://doi.org/ 10.1016/j.scitotenv.2020.139487 This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2020 Published by Elsevier. Journal Pre-proof Optimal temperature zone for the dispersal of COVID-19 Zhongwei Huang, Jianping Huang*, Qianqing Gu, Pengyue Du, Hongbin Liang, and Qing Dong Collaborative Innovation Center for West Ecological Safety (CIWES), College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China. *Corresponding author: Jiangping Huang ([email protected]). ABSTRACT It is essential to know the environmental parameters within which the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can survive to understand its global dispersal pattern.Journal We found that 60.0%Pre-proof of the confirmed cases of coronavirus disease 2019 (COVID-19) occurred in places where the air temperature ranged from 5°C to 15°C, with a peak in cases at 11.54°C. -
Continuing Crackdown in Inner Mongolia
CONTINUING CRACKDOWN IN INNER MONGOLIA Human Rights Watch/Asia (formerly Asia Watch) CONTINUING CRACKDOWN IN INNER MONGOLIA Human Rights Watch/Asia (formerly Asia Watch) Human Rights Watch New York $$$ Washington $$$ Los Angeles $$$ London Copyright 8 March 1992 by Human Rights Watch All rights reserved. Printed in the United States of America. ISBN 1-56432-059-6 Human Rights Watch/Asia (formerly Asia Watch) Human Rights Watch/Asia was established in 1985 to monitor and promote the observance of internationally recognized human rights in Asia. Sidney Jones is the executive director; Mike Jendrzejczyk is the Washington director; Robin Munro is the Hong Kong director; Therese Caouette, Patricia Gossman and Jeannine Guthrie are research associates; Cathy Yai-Wen Lee and Grace Oboma-Layat are associates; Mickey Spiegel is a research consultant. Jack Greenberg is the chair of the advisory committee and Orville Schell is vice chair. HUMAN RIGHTS WATCH Human Rights Watch conducts regular, systematic investigations of human rights abuses in some seventy countries around the world. It addresses the human rights practices of governments of all political stripes, of all geopolitical alignments, and of all ethnic and religious persuasions. In internal wars it documents violations by both governments and rebel groups. Human Rights Watch defends freedom of thought and expression, due process and equal protection of the law; it documents and denounces murders, disappearances, torture, arbitrary imprisonment, exile, censorship and other abuses of internationally recognized human rights. Human Rights Watch began in 1978 with the founding of its Helsinki division. Today, it includes five divisions covering Africa, the Americas, Asia, the Middle East, as well as the signatories of the Helsinki accords. -
Development of Bacterial Communities in Biological Soil Crusts Along
1 Development of bacterial communities in biological soil crusts along 2 a revegetation chronosequence in the Tengger Desert, northwest 3 China 4 5 Author names and affiliations: 6 Lichao Liu1, Yubing Liu1, 2 *, Peng Zhang1, Guang Song1, Rong Hui1, Zengru Wang1, Jin Wang1, 2 7 1Shapotou Desert Research & Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese 8 Academy of Sciences, Lanzhou, 730000, China 9 2Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute 10 of Eco–Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China 11 12 * Corresponding author: Yubing Liu 13 Address: Donggang West Road 320, Lanzhou 730000, P. R. China. 14 Tel: +86 0931 4967202. 15 E-mail address: [email protected] 16 17 Abstract. Knowledge of structure and function of microbial communities in different 18 successional stages of biological soil crusts (BSCs) is still scarce for desert areas. In this study, 19 Illumina MiSeq sequencing was used to assess the composition changes of bacterial communities 20 in different ages of BSCs in the revegetation of Shapotou in the Tengger Desert. The most dominant 21 phyla of bacterial communities shifted with the changed types of BSCs in the successional stages, 22 from Firmicutes in mobile sand and physical crusts to Actinobacteria and Proteobacteria in BSCs, 23 and the most dominant genera shifted from Bacillus, Enterococcus and Lactococcus to 24 RB41_norank and JG34-KF-361_norank. Alpha diversity and quantitative real-time PCR analysis 25 indicated that bacteria richness and abundance reached their highest levels after 15 years of BSC 26 development. -
Chinacoalchem
ChinaCoalChem Monthly Report Issue May. 2019 Copyright 2019 All Rights Reserved. ChinaCoalChem Issue May. 2019 Table of Contents Insight China ................................................................................................................... 4 To analyze the competitive advantages of various material routes for fuel ethanol from six dimensions .............................................................................................................. 4 Could fuel ethanol meet the demand of 10MT in 2020? 6MTA total capacity is closely promoted ....................................................................................................................... 6 Development of China's polybutene industry ............................................................... 7 Policies & Markets ......................................................................................................... 9 Comprehensive Analysis of the Latest Policy Trends in Fuel Ethanol and Ethanol Gasoline ........................................................................................................................ 9 Companies & Projects ................................................................................................... 9 Baofeng Energy Succeeded in SEC A-Stock Listing ................................................... 9 BG Ordos Started Field Construction of 4bnm3/a SNG Project ................................ 10 Datang Duolun Project Created New Monthly Methanol Output Record in Apr ........ 10 Danhua to Acquire & -
SCIENCE CHINA Underestimated 14C-Based Chronology of Late Pleistocene High Lake-Level Events Over the Tibetan Plateau and Adjace
SCIENCE CHINA Earth Sciences • RESEARCH PAPER • doi: 10.1007/s11430-014-4993-2 Underestimated 14C-based chronology of late Pleistocene high lake-level events over the Tibetan Plateau and adjacent areas: Evidence from the Qaidam Basin and Tengger Desert LONG Hao1,2* & SHEN Ji1† 1 State Key Laboratory of Lake Sciences and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; 2 State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710075, China Received April 23, 2014; accepted September 25, 2014 The palaeolake evolution across the Tibetan Plateau and adjacent areas has been extensively studied, but the timing of late Pleistocene lake highstands remains controversial. Robust dating of lacustrine deposits is of importance in resolving this issue. This paper presents 14C or optically stimulated luminescence (OSL) age estimates from two sets of late Quaternary lacustrine sequences in the Qaidam Basin and Tengger Desert (northeastern Tibetan Plateau). The updated dating results show: (1) the radiocarbon dating technique apparently underestimated the age of the strata of >30 ka BP in Qaidam Basin; (2) although OSL and 14C dating agreed with each other for Holocene age samples in the Tengger Desert area, there was a significant offset in dating results of sediments older than ~30 ka BP, largely resulting from radiocarbon dating underestimation; (3) both cases imply that most of the published radiocarbon ages (e.g., older than ~30 ka BP) should be treated with caution and perhaps its geological implication should be revaluated; and (4) the high lake events on the Tibetan Plateau and adjacent areas, tradition- ally assigned to MIS 3a based on 14C dating, are likely older than ~80 ka based on OSL chronology. -
1 China Xi'an-Ankang Railway Construction Project
China Xi’an-Ankang Railway Construction Project (1)-(3) (CXVII-P73, CXVIII-P73, CXIX-P73) External Evaluator: Mitsue Mishima (OPMAC) Field Survey: October 2004 1. Project Profile and Japan’s ODA Loan Mongolia Beijing North Korea China South Korea Project site Xian Nepal Ankang Bhutan India Taiwan Myanmar Vietnam Laos Project site location map (Xian-Ankang, Shannxi Province) Qingcha Tunnel 1.1 Background The project site (Xian- Ankang) is located in the southern part of Shaanxi Province where the 3000-meter high Qinling Mountains extend over 1500 kilometers, and was therefore undeveloped due to difficulties in transportation and remoteness from cities. Southwest of the project site is Sichuan Province, the largest province with a population of 110 million accounting for 10% of the population of China. However, as there is no other transport route to Sichuan Province than taking a detour around the Qinling Mountains, there were only limited routes to transport energy and everyday commodities from the north. Railway transport from other regions to Sichuan Province depended on Baoching Line (Baoji-Chengdu) from the north and Xiangyu Line (Xiangfan-Ankang-Chongquing) from the east, and both lines were operating to full capacity. It was particularly difficult to double-track Baoching Line, which takes a detour to avoid the Qinling Mountains because of 1) long distance of transport, 2) large cost to transport on a gradient at an angel of 3%, and 3) the topographical problem. The opening of the electrified single track of Xian-Ankang Line not only helped increase the transport capacity within Shaanxi Province but also shortened the traveling distance to Chongquing and eased the transportation load on Baoching Line. -
Research Focus on Supply-Side Structural
2017 4th International Conference on Economics and Management (ICEM 2017) ISBN: 978-1-60595-467-7 Research Focus on Supply-side Structural Reform in Northwestern Industrial City of China: Taking Baotou as an Example Hui-lin AN1,a,* and Li-na ZHOU2,b 1Humanities and Social Science School, Baotou Medical College, Inner Mongolia, China 2The Department of Foreign Language, Batou Medical College, Inner Mongolia, China [email protected], [email protected] *Corresponding author Keywords: The Northwestern Region, Industrial City, Supply-Side Structural Reform, Factor Analysis. Abstract. Economy in China has been transformed from rapid growth to high-speed growth stage. Under the background of the new normal, China’s economic structure is in the situation of mismatch between supply and demand. President Xi put forward at the end of 2015: when moderately expand demand by following methods—decreasing productivity, destocking as well as deleveraging, deleting ineffective supply and reducing cost, we should strengthen supply-side structural reform at the same time. The quality and efficiency in supply-side structure are the power of sustainable economic growth. Thus, as the core of supply-side structural reform, cities are transforming supply-side structural reform from word to reality. 1. Introduction With the development of reform and opening up, there are great changes in the patterns of demand and supply which make the structural contradiction increasingly outstanding. Due to the overproduction of low-end product and undersupplying of high-end product, the development of emerging industry and the technology innovation of product can’t satisfy the growing customer requirement. Consequently, “overseas purchase” and “global purchase” become more and more popular among people, which slow down the growth of domestic economy and industrial economy.