Dark and Luminous Matter in Bright Spiral Galaxies

Total Page:16

File Type:pdf, Size:1020Kb

Dark and Luminous Matter in Bright Spiral Galaxies Dark and Luminous Matter in Bright Spiral Galaxies DISSERTATION Presented in Partial Ful¯llment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Susan Alice Joan Kassin ***** The Ohio State University 2004 Dissertation Committee: Approved by Professor Richard Pogge, Adviser Professor Bradley Peterson Adviser Astronomy Graduate Program Professor Christopher Kochanek Professor Jay Frogel ABSTRACT I present photometrically calibrated images and surface photometry in the B; V; R; J; H; and K-bands of 26, and in the g, r, and K-bands of 5 nearby bright o (BT < 12:5 mag) spiral galaxies with inclinations between 30{65 degrees spanning the Hubble Sequence from Sa to Scd. Data are from The Ohio State University Bright Spiral Galaxy Survey, the Two Micron All Sky Survey, and the Sloan Digital Sky Survey Second Data Release. Radial surface brightness pro¯les are extracted, and integrated magnitudes are measured from the pro¯les. Axis ratios, position angles, and scale lengths are measured from the near-infrared. A 1-dimensional bulge/disk decomposition is performed on galaxies with a non-negligable bulge component. Radial stellar mass distributions are estimated by applying color-M=L relations derived from spectrophotometric spiral galaxy evolution models to the photometry. When available, radial gas masses are added to the radial stellar mass distributions to produce radial baryonic mass distributions. For each galaxy, a rotation curve due to its radial baryonic mass distribution is calculated, taking into account both the bulge and disk components when necessary. All of the galaxies have high-quality ii rotation curves available in the literature which allows us to calculate radial dark matter distributions for each galaxy by comparison with the baryonic mass rotation curves. Most galaxies are found to have maximal stellar disks, but seven are found to be submaximal in their inner parts (inner ¯ve scale radii). The following quantities are derived to characterize the radial baryonic and dark matter content of galaxies, and are found to correlate with Hubble Type: the peak velocity of the baryonic rotation curve (V¤;max), the radius at which the dark matter contributes 10% to the observed rotation curve (R10), and the radius at which dark matter contributes 50% 2 2 (RX ). From the radial distribution of ¯(r) ´ V¤ (r)=Vtot(r), I ¯nd that although the behavior of the dark matter distributions are qualitatively similar from galaxy to galaxy, there is systematic scatter among them to argue against a universal rotation curve. The general qualitative shape the ¯(r) curves is what is expected from an exponential baryonic disk and a rotation curve that is nearly flat at large radii. iii Dedicated to Prof. Joe Patterson who knew enough to send a freshman to Chile. iv ACKNOWLEDGMENTS I would like to thank my adviser Dr. Richard Pogge for his untiring advice, patience, and, of course, computer support. I would also like to thank Dr. Roelof de Jong for his advice, patience, productive collaboration in Baltimore, and for that memorable dinner with N, F, and W. Thank you Dr. Jay Frogel for creating the Ohio State University Bright Spiral Galaxy Survey, for providing me with some good scotch to make it go down easier, and for marrying Dr. Susana Deustua who made me visit the AAS Job Center in Atlanta which ultimately got me my job at UCSC (thanks Susanna). I would like to thank my closest friends for their untiring love and support: the Rasta Chimweme \Silver Bullet" Mphande, Robert \Laphroaig 20-yr" Farrell, Geraldine \Barbie" O'Brien, the one and only Brad Neuberg, and Mme. Louise Powers (in order of response time to my phone-mail messages-ha!). Thanks to Drs. Joe Patterson and Marc Kamionkowski for your inspiration at Columbia. I would also like to thank The Ohio State University Department of Astronomy, especially Dr. Brad Peterson and James Pizagno for their support and encouragement v and Dr. Andy Gould for admitting me to the graduate program. Thank you Benne Holwerda for your friendship, encouragement, and Benne-breaks. I wouldn't have survived Baltimore without you! Thanks to Dr. Carol Christian, Prof. C.D., and Sra. Summer for letting me stay at the \resort" in Baltimore. Thank you Nicole Marie for letting me watch Sibyl in your beautiful apartment! Thank you Yoni Hucke Atan and of course Mahina. And, thank you Blackie's chai and the gang at Shi-sha for keeping me out of trouble. I would like to thank the astronomers who provided copies of their galaxy rotation curves in tabular form via email: Kor Begeman, Gianfranco Gentile, Thilo Kranz, Povilas Palunas, Stuart Ryder, Michele Thornley, and Wilfred Walsh. I would also like to thank Marc Verheijen for making available his high-quality imaging and rotation curves of galaxies in the Ursa Major cluster. I thank the CTIO TAC for generous allocation of time for the OSU Galaxy Survey and the many people over the years who helped collect these observations. Funding for the OSU Bright Spiral Galaxy Survey was provided by grants from The National Science Foundation (grants AST-9217716 and AST-9617006), with additional funding by The Ohio State University. I would like to acknowledge ¯nancial support from The Space Telescope Science Institute Director's Discretionary Research Fund (DDRF) which was invaluable in allowing me to study with Roelof de Jong at Space Telescope. vi This research makes use of data from both the Sloan Digital Sky Survey and the Two Micron All Sky Survey. The Two Micron All Sky Survey was a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. Funding for the creation and distribution of the SDSS Archive has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Aeronautics and Space Administration, the National Science Foundation, the U.S. Department of Energy, the Japanese Monbukagakusho, and the Max Planck Society. SDSS is managed by the Astrophysical Research Consortium (ARC) for the Participating Institutions: The University of Chicago, Fermilab, the Institute for Advanced Study, the Japan Participation Group, The Johns Hopkins University, Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, University of Pittsburgh, Princeton University, the United States Naval Observatory, and the University of Washington. I also made use of NASA's Astrophysics Data System, the NASA/IPAC Extragalactic Database (NED), the HyperLeda database, and the VizieR catalog. NED is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA, and HyperLeda database and VizieR are operated by the CDS in Strasbourg, France. vii VITA November 18, 1977 . Born { Manhasset, New York 1999 . B.A. Physics, Columbia College, Columbia University 1999 { 2000 . Distinguished University Graduate Fellow, The Ohio State University 2002 . M.S. Astronomy, The Ohio State University 2000 { 2004 . Graduate Teaching and Research Associate, The Ohio State University PUBLICATIONS Research Publications 1. S. A. Kassin, J. A. Frogel, R. W. Pogge, G. P. Tiede, and K. Sellgren, \Stellar Populations in NGC 4038/39 (the Antennae): Exploring a Galaxy Merger Pixel by Pixel", AJ, 126, 1276, (2003). 2. J. P. Halpern, R. Uglesich, N. Mirabal, S. Kassin, J. Thorstensen, W. C. Keel, A. Diercks, J. S. Bloom, F. Harrison, J. Mattox, and M. Eracleous, \GRB 991216 Joins the Jet Set: Discovery and Monitoring of Its Optical Afterglow", ApJ, 543, 697, (2000). FIELDS OF STUDY Major Field: Astronomy viii Table of Contents Abstract . ii Dedication . iv Acknowledgments . v Vita . viii List of Tables . x List of Figures . xii 1 Introduction 1 1.1 Dark and Luminous Matter in Galaxies . 1 1.2 Relation to Previous Work . 5 1.3 Scope of the Dissertation . 8 2 Data Sample and Analysis 9 2.1 Data Sets . 9 2.2 Observation and Reduction of the OSUBSGS Galaxies . 11 2.3 Photometric Calibration . 13 2.3.1 OSUBSGS & 2MASS Galaxies . 13 2.3.2 SDSS DR2 Galaxies . 16 3 Surface Brightness Pro¯les and Physical Properties of the Galaxies 22 ix 3.1 Axis Ratios & Position Angles . 22 3.2 Radial Surface Brightness Pro¯les . 23 3.2.1 Bulge/Disk Decompositions . 25 3.3 Distances . 26 4 Radial Distributions of Baryonic and Dark Matter in Galaxies 43 4.1 Baryonic Matter . 44 4.1.1 Radial Baryonic Surface Mass-Density Distributions . 44 4.1.2 Baryonic Rotation Curves . 46 4.1.3 Uncertainties in Baryonic Rotation Curves . 47 4.1.4 E®ects Due to Dust . 48 4.2 Dark Matter . 51 4.2.1 Observed Rotation Curves . 51 4.2.2 Dark Matter Rotation Curves . 53 4.2.3 Uncertainties in Dark Matter Rotation Curves . 53 5 Baryonic and Dark Matter Properties 68 5.1 Maximal and Non-Maximal Disks . 68 5.2 Dark and Baryonic Matter Correlations . 70 5.3 Radial Behavior of Dark Matter . 72 6 Conclusions 81 Bibliography 82 x List of Tables 2.1 Basic parameters of the sample galaxies. 17 2.1 Basic parameters of the sample galaxies. 18 2.2 Observational Details for the OSUBSGS Galaxies . 19 2.2 Observational Details for the OSUBSGS Galaxies . 20 2.2 Observational Details for the OSUBSGS Galaxies . 21 3.1 Measured Galaxy Parameters . 34 3.1 Measured Galaxy Parameters . 35 3.1 Measured Galaxy Parameters . 36 3.1 Measured Galaxy Parameters . 37 3.1 Measured Galaxy Parameters . 38 3.1 Measured Galaxy Parameters . 39 3.1 Measured Galaxy Parameters . 40 3.2 Bulge/Disk Parameters for K-band Images . 41 3.2 Bulge/Disk Parameters for K-band Images .
Recommended publications
  • Near-Infrared Luminosity Relations and Dust Colors L
    A&A 578, A47 (2015) Astronomy DOI: 10.1051/0004-6361/201525817 & c ESO 2015 Astrophysics Obscuration in active galactic nuclei: near-infrared luminosity relations and dust colors L. Burtscher1, G. Orban de Xivry1, R. I. Davies1, A. Janssen1, D. Lutz1, D. Rosario1, A. Contursi1, R. Genzel1, J. Graciá-Carpio1, M.-Y. Lin1, A. Schnorr-Müller1, A. Sternberg2, E. Sturm1, and L. Tacconi1 1 Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, Gießenbachstr., 85741 Garching, Germany e-mail: [email protected] 2 Raymond and Beverly Sackler School of Physics & Astronomy, Tel Aviv University, 69978 Ramat Aviv, Israel Received 5 February 2015 / Accepted 5 April 2015 ABSTRACT We combine two approaches to isolate the AGN luminosity at near-IR wavelengths and relate the near-IR pure AGN luminosity to other tracers of the AGN. Using integral-field spectroscopic data of an archival sample of 51 local AGNs, we estimate the fraction of non-stellar light by comparing the nuclear equivalent width of the stellar 2.3 µm CO absorption feature with the intrinsic value for each galaxy. We compare this fraction to that derived from a spectral decomposition of the integrated light in the central arcsecond and find them to be consistent with each other. Using our estimates of the near-IR AGN light, we find a strong correlation with presumably isotropic AGN tracers. We show that a significant offset exists between type 1 and type 2 sources in the sense that type 1 MIR X sources are 7 (10) times brighter in the near-IR at log LAGN = 42.5 (log LAGN = 42.5).
    [Show full text]
  • 1 Introduction
    Iranian Journal of Astronomy and Astrophysics Iranian Journal of Vol. 1, No. 1, 2013 Astronomy and © Available online at http://journals.du.ac.ir Astrophysics Evaluation of New MOND Interpolating Function with Rotation Curves of Galaxies Hosein Haghi1 ·Hamed Ghasemi2 ·HongSheng Zhao3 1 Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), P.O. Box 11365-9161, Zanjan, Iran; email: [email protected] 2 Department of Physics, Zanjan University, Zanjan, Iran 3 SUPA, School of Physics and Astronomy, University of St. Andrews, KY16 9SS, UK Abstract. The rotation curves of a sample of 46 low- and high-surface brightness galaxies are considered in the context of Milgrom's modified dynamics (MOND) to test a new interpolating function proposed by Zhao et al. (2010) [1] and compare with the results of simple interpolating function. The predicted rotation curves are calculated from the total baryonic matter based on the B-band surface photometry, and the observed distribution of neutral hydrogen, in which the one adjustable parameter is the stellar mass-to-light ratio. The predicted rotation curves generally agree with the observed curves for both interpolating functions. We show that the fitted M=L in the B-band correlates with B-V color in the sense expected from what we know about stellar population synthesis models. Moreover, the mass-to-light ratios of MOND with new interpolating function is in consistent with scaled Salpeter's initial mass function of the SPS scheme, while those of MOND with simple interpolating function favor Kroupa IMF. Keywords: ISM: molecules, ISM: structure, instabilities 1 Introduction The rotation curves of spiral galaxies provide an accurate determination of the radial force distribution in spiral galaxies.
    [Show full text]
  • CO Multi-Line Imaging of Nearby Galaxies (COMING) IV. Overview Of
    Publ. Astron. Soc. Japan (2018) 00(0), 1–33 1 doi: 10.1093/pasj/xxx000 CO Multi-line Imaging of Nearby Galaxies (COMING) IV. Overview of the Project Kazuo SORAI1, 2, 3, 4, 5, Nario KUNO4, 5, Kazuyuki MURAOKA6, Yusuke MIYAMOTO7, 8, Hiroyuki KANEKO7, Hiroyuki NAKANISHI9 , Naomasa NAKAI4, 5, 10, Kazuki YANAGITANI6 , Takahiro TANAKA4, Yuya SATO4, Dragan SALAK10, Michiko UMEI2 , Kana MOROKUMA-MATSUI7, 8, 11, 12, Naoko MATSUMOTO13, 14, Saeko UENO9, Hsi-An PAN15, Yuto NOMA10, Tsutomu, T. TAKEUCHI16 , Moe YODA16, Mayu KURODA6, Atsushi YASUDA4 , Yoshiyuki YAJIMA2 , Nagisa OI17, Shugo SHIBATA2, Masumichi SETA10, Yoshimasa WATANABE4, 5, 18, Shoichiro KITA4, Ryusei KOMATSUZAKI4 , Ayumi KAJIKAWA2, 3, Yu YASHIMA2, 3, Suchetha COORAY16 , Hiroyuki BAJI6 , Yoko SEGAWA2 , Takami TASHIRO2 , Miho TAKEDA6, Nozomi KISHIDA2 , Takuya HATAKEYAMA4 , Yuto TOMIYASU4 and Chey SAITA9 1Department of Physics, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 2Department of Cosmosciences, Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 3Department of Physics, School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan 4Division of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 5Tomonaga Center for the History of the Universe (TCHoU), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan 6Department of Physical Science, Osaka Prefecture University, Gakuen 1-1,
    [Show full text]
  • N6l0-Aistralian Observatory
    ^^—^^r N6L0-AISTRALIAN OBSERVATORY GAS DYNAMICS IN BARRED SPIRALS, II: NGC 7496 AND 289 V.D. Pence and C.P. BlackMn AAO PP 194 * Suonitted to: Mon.Not.R.astr.Soc. Distribution date: February, 1984 P.O. BOX 296. EPPING. N.S.W.. 2121 PHONE 868-1666. TELEX ASTRO 26230 „. *u~ - .*.SÄ._TNW. - Afto-<?(*-- ^M GAS DYNAMICS IN BARRED SPIRALS, II: NGC 7496 AND 289 W.D.Pence. Anglo-Australian Observatory. P.O. Box 296. Epplng. NSW. Australia. C.P.Blactanan. Department of Astronomy. Edinburgh University. Received t SUMMAKT - The gas velocity fields in the barred spiral galaxies NGC 7496 and 289 have been measured by means of long-slit spectra obtained with the Anglo-Australian Telescope. Pronounced deviations fro« circular motion of the type predicted by recent theoretical mooels are seen in NGC 74961 the isovelocity contours are distorted into a characteristic S-shaped pattern and there is a large velocity gradient across the bar. The velocity field is virtually identical to that of a previously observed barred spiral, NGC 5383 for which a number of models have been published. The nuclear [OUI] emission lines are very asymmetric with a wing extending to about 1000 km s-1 to the blue of the systemic velocity; this wing is only faintly seen in the Balmer lines. NGC 289 has a much smaller bar *nd consequently the noncircular motions are less pronounced. The most obvious effect is that the Xinematic major and minor axes are not perpendicular which is a signature of oval distortions. Both galaxies have a mass (within the 10 outermost velocity measurement) of 9 x iO M0 and M/Lß » 6.
    [Show full text]
  • 1. Introduction
    THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 122:109È150, 1999 May ( 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. GALAXY STRUCTURAL PARAMETERS: STAR FORMATION RATE AND EVOLUTION WITH REDSHIFT M. TAKAMIYA1,2 Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637; and Gemini 8 m Telescopes Project, 670 North Aohoku Place, Hilo, HI 96720 Received 1998 August 4; accepted 1998 December 21 ABSTRACT The evolution of the structure of galaxies as a function of redshift is investigated using two param- eters: the metric radius of the galaxy(Rg) and the power at high spatial frequencies in the disk of the galaxy (s). A direct comparison is made between nearby (z D 0) and distant(0.2 [ z [ 1) galaxies by following a Ðxed range in rest frame wavelengths. The data of the nearby galaxies comprise 136 broad- band images at D4500A observed with the 0.9 m telescope at Kitt Peak National Observatory (23 galaxies) and selected from the catalog of digital images of Frei et al. (113 galaxies). The high-redshift sample comprises 94 galaxies selected from the Hubble Deep Field (HDF) observations with the Hubble Space Telescope using the Wide Field Planetary Camera 2 in four broad bands that range between D3000 and D9000A (Williams et al.). The radius is measured from the intensity proÐle of the galaxy using the formulation of Petrosian, and it is argued to be a metric radius that should not depend very strongly on the angular resolution and limiting surface brightness level of the imaging data. It is found that the metric radii of nearby and distant galaxies are comparable to each other.
    [Show full text]
  • Strong Evidence for the Density-Wave Theory of Spiral Structure from a Multi-Wavelength Study of Disk Galaxies Hamed Pour-Imani University of Arkansas, Fayetteville
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 8-2018 Strong Evidence for the Density-wave Theory of Spiral Structure from a Multi-wavelength Study of Disk Galaxies Hamed Pour-Imani University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Physical Processes Commons, and the Stars, Interstellar Medium and the Galaxy Commons Recommended Citation Pour-Imani, Hamed, "Strong Evidence for the Density-wave Theory of Spiral Structure from a Multi-wavelength Study of Disk Galaxies" (2018). Theses and Dissertations. 2864. http://scholarworks.uark.edu/etd/2864 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Strong Evidence for the Density-wave Theory of Spiral Structure from a Multi-wavelength Study of Disk Galaxies A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics by Hamed Pour-Imani University of Isfahan Bachelor of Science in Physics, 2004 University of Arkansas Master of Science in Physics, 2016 August 2018 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. Daniel Kennefick, Ph.D. Dissertation Director Vincent Chevrier, Ph.D. Claud Lacy, Ph.D. Committee Member Committee Member Julia Kennefick, Ph.D. William Oliver, Ph.D. Committee Member Committee Member ABSTRACT The density-wave theory of spiral structure, though first proposed as long ago as the mid-1960s by C.C.
    [Show full text]
  • The Extragalactic Distance Scale
    The Extragalactic Distance Scale Published in "Stellar astrophysics for the local group" : VIII Canary Islands Winter School of Astrophysics. Edited by A. Aparicio, A. Herrero, and F. Sanchez. Cambridge ; New York : Cambridge University Press, 1998 Calibration of the Extragalactic Distance Scale By BARRY F. MADORE1, WENDY L. FREEDMAN2 1NASA/IPAC Extragalactic Database, Infrared Processing & Analysis Center, California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA 91125, USA 2Observatories, Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena CA 91101, USA The calibration and use of Cepheids as primary distance indicators is reviewed in the context of the extragalactic distance scale. Comparison is made with the independently calibrated Population II distance scale and found to be consistent at the 10% level. The combined use of ground-based facilities and the Hubble Space Telescope now allow for the application of the Cepheid Period-Luminosity relation out to distances in excess of 20 Mpc. Calibration of secondary distance indicators and the direct determination of distances to galaxies in the field as well as in the Virgo and Fornax clusters allows for multiple paths to the determination of the absolute rate of the expansion of the Universe parameterized by the Hubble constant. At this point in the reduction and analysis of Key Project galaxies H0 = 72km/ sec/Mpc ± 2 (random) ± 12 [systematic]. Table of Contents INTRODUCTION TO THE LECTURES CEPHEIDS BRIEF SUMMARY OF THE OBSERVED PROPERTIES OF CEPHEID
    [Show full text]
  • Chapter 1 Inventory of the Local Universe
    Chapter 1 Inventory of the Local Universe 1 CHAPTER 1. INVENTORY OF THE LOCAL UNIVERSE 1.1 The major types of galaxies: Hubble-Sandage system Hubble-Sandage Tuning Fork: Kormendy & Bender, ApJ 464, L119 (1996), revised for ellipticals. Other classification schemes: e.g. de Vaucouleurs (1959), van den Bergh (1960/66), Yerkes (Morgan, 1957 ff) 2 CHAPTER 1. INVENTORY OF THE LOCAL UNIVERSE Primary classification criteria of commonly used Hubble-Sandage system: Bulge-to-disk ratio (S0/Sa: 5 to 0.3, Sb: 1 to 0.1, Sc/Irr: 0.2 to 0) Opening angle of spiral arms (Sa: 0 to 10, Sb: 5 to 20, Sc: 10 to 30 degrees) Bars Physical parameters varying along the Hubble-Sandage system: Stellar mass M increases from irregulars (108M ) to ellipticals (1012M ) Specific Angular Momentum J=M of baryons increases from ellipticals to spirals Mean age increases from irregulars through spirals to ellipticals (B-V increases from 0.3 to 1.0, mass-to-light M=LB ratio increases from about 2 to 10) Mean stellar density of spheroids increases with decreasing spheroid luminosity Mean surface brightness of disks increases with luminosity cold gas content increases along Hubble sequence (fraction of baryonic mass: 0 in E/S0, 0.1 to 0.3 in Sa to Sc, up to 0.9 in Irr) hot gas content only significant in massive E (few percent of baryonic mass) 3 CHAPTER 1. INVENTORY OF THE LOCAL UNIVERSE Examples for Normal Galaxies: Elliptical (E) Galaxies: The ellipticals M 84 (right) and M 86 (middle) in the Virgo cluster (NOAO).
    [Show full text]
  • Disk Mass and Disk Heating in the Spiral Galaxy NGC 3223?
    A&A 576, A57 (2015) Astronomy DOI: 10.1051/0004-6361/201425279 & c ESO 2015 Astrophysics Disk mass and disk heating in the spiral galaxy NGC 3223? G. Gentile1;2, C. Tydtgat1;3, M. Baes1, G. De Geyter1, M. Koleva1, G. W. Angus2, W. J. G. de Blok4;5;6, W. Saftly1, and S. Viaene1 1 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, 9000 Gent, Belgium e-mail: [email protected] 2 Department of Physics and Astrophysics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium 3 Department of Solid State Sciences, Krijgslaan 281, 9000 Gent, Belgium 4 Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo, The Netherlands 5 Astrophysics, Cosmology and Gravity Centre, Department of Astronomy, University of Cape Town, Private Bag X3, 7701 Rondebosch, South Africa 6 Kapteyn Astronomical Institute, University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands Received 5 November 2014 / Accepted 11 February 2015 ABSTRACT We present the stellar and gaseous kinematics of an Sb galaxy, NGC 3223, with the aim of determining the vertical and radial stellar velocity dispersion as a function of radius, which can help to constrain disk heating theories. Together with the observed NIR photometry, the vertical velocity dispersion is also used to determine the stellar mass-to-light (M=L) ratio, typically one of the largest uncertainties when deriving the dark matter distribution from the observed rotation curve. We find a vertical-to-radial velocity dispersion ratio of σz/σR = 1:21 ± 0:14, significantly higher than expectations from known correlations, and a weakly-constrained Ks-band stellar M=L ratio in the range 0.5–1.7, which is at the high end of (but consistent with) the predictions of stellar population synthesis models.
    [Show full text]
  • Warm Ionized Medium.Pdf
    IVie. UJc^u-^ -Xo^^hl^ M^ckovx^ (covWVJ i- (o l<-) y SL-ock, io-^.lc^Vv^v A^-3 5"2?>, 2-Z3 \truvi A ^ TV, ^"4? (^ ^& ^^^ . Xr v^^ cU^c^^ £ cuTU. T- •*_. <r**VZ lfcS<B3 _\.fcS*i° ? \ i>\ \ ^-QA vv£W >jirv 3 <QD o ck: o-A- \^ cL^tv^*> c ^O - i. ; &*&>} ;w*.o _- _e^ - \r*e ^ 6t^M^^^ ^ tm t* ^*si**o uor^c- 2.\<^c c^.-vw^— <r*,> « O.C25 V O.ovb <a o— ^^-, LOvH E. K^ ', -»i -^ K^Qj&ff**'^ V"W. £^Q V^ J»S^\ C/V^ C,awvXv^^ >jl!laa.<A To oq ~TW ReM a^<£A* GLg>^ rto^wu^ C*o*«0 ; c^^rf^ , tV*\V^ ^"T^V^- ^^ z/zrr^ Lo^ (VV°'Z' AA o = e.fnA>«-1 » eV% i-'l »t- <T^ <r"° CJL. s"L^ »Wa4^ ^ A-»^f\JCL p-^OOe^ ©aj<oa(2o c^L 4-cJ5t^^ CI) <^©a^ • #0 ^T^a_j f^TU ^e^^cy <-(\eJU.s ~ ^^1 ;^.*pU£w^__ S~\ - 2 ^ /u^ lA erf T^ T^ *occ^fL HlT^^ T- <Lx^«^ 3Xj^ WoT A<S^7 "^v*-*-^^*&b ^vx.cUv-c^CA^ ^TW*n ^^ %^^>^e^s^N.^ . VW^ C^^o) Jh*~** C«^j ,vc Qa-^j—^JT '. 'p'^a-^^ovAJL VQ©£-4>>~-Cc . oJ vTtv &-a^ < 1i s 2T- t^H ^%U= o.ofe cm!3 = Woo K <u^ } ^^r A- uio^ -^ojt-v. Haj&la, OKiK CotOH , TUcis is* puAcT^i To occcaw. (—- TUa_ HeVc^-GV^VU^ CO\f\ at the UR des an distri- ^dium, 5 basic those atures solar *ate is stend- •out I , e.g., )f ion- log Ih.
    [Show full text]
  • Classification of Galaxies Using Fractal Dimensions
    UNLV Retrospective Theses & Dissertations 1-1-1999 Classification of galaxies using fractal dimensions Sandip G Thanki University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds Repository Citation Thanki, Sandip G, "Classification of galaxies using fractal dimensions" (1999). UNLV Retrospective Theses & Dissertations. 1050. http://dx.doi.org/10.25669/8msa-x9b8 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Lopsided Spiral Galaxies: Evidence for Gas Accretion
    A&A 438, 507–520 (2005) Astronomy DOI: 10.1051/0004-6361:20052631 & c ESO 2005 Astrophysics Lopsided spiral galaxies: evidence for gas accretion F. Bournaud1, F. Combes1,C.J.Jog2, and I. Puerari3 1 Observatoire de Paris, LERMA, 61 Av. de l’Observatoire, 75014 Paris, France e-mail: [email protected] 2 Department of Physics, Indian Institute of Science, Bangalore 560012, India 3 Instituto Nacional de Astrofísica, Optica y Electrónica, Calle Luis Enrique Erro 1, 72840 Tonantzintla, Puebla, Mexico Received 3 January 2005 / Accepted 15 March 2005 Abstract. We quantify the degree of lopsidedness for a sample of 149 galaxies observed in the near-infrared from the OSUBGS sample, and try to explain the physical origin of the observed disk lopsidedness. We confirm previous studies, but for a larger sample, that a large fraction of galaxies have significant lopsidedness in their stellar disks, measured as the Fourier amplitude of the m = 1 component normalised to the average or m = 0 component in the surface density. Late-type galaxies are found to be more lopsided, while the presence of m = 2 spiral arms and bars is correlated with disk lopsidedness. We also show that the m = 1 amplitude is uncorrelated with the presence of companions. Numerical simulations were carried out to study the generation of m = 1viadifferent processes: galaxy tidal encounters, galaxy mergers, and external gas accretion with subsequent star formation. These simulations show that galaxy interactions and mergers can trigger strong lopsidedness, but do not explain several independent statistical properties of observed galaxies. To explain all the observational results, it is required that a large fraction of lopsidedness results from cosmological accretion of gas on galactic disks, which can create strongly lopsided disks when this accretion is asymmetrical enough.
    [Show full text]