APRES 29-6 (11-12) for Pdf.Indd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
False Black Widows and Other Household Spiders
False Black Widows and Other Household Spiders Spiders can quite unnecessarily evoke all kinds of dread and fear. The Press does not help by publishing inaccurate and often alarmist stories about them. Spiders are in fact one of our very important beneficial creatures. Spiders in the UK devour a weight of insect 'pests' equivalent to that of the nation's human population! During the mid-late summer, many spiders mature and as a result become more obvious as they have then grown to their full size. One of these species is Steatoda nobilis. It came from the Canary and Madeiran Islands into Devon over a 100 years ago, being first recorded in Britain near Torquay in 1879! However it was not described from Britain until 1993, when it was known to have occurred since at least 1986 and 1989 as flourishing populations in Portsmouth (Hampshire) and Swanage (Dorset). There was also a population in Westcliff-on-Sea (Essex) recorded in 1990, and another in Littlehampton and Worthing (West Sussex). Its distribution is spreading more widely along the coast in the south and also inland, with confirmed records from South Devon, East Sussex, Kent, Surrey and Warwick. The large, grape-like individuals are the females and the smaller, more elongate ones, the males. These spiders are have become known as False Widows and, because of their colour, shape and size, are frequently mistaken for the Black Widow Spider that are found in warmer climes, but not in Britain (although some occasionally come into the country in packaged fruit and flowers). Black Widow Spiders belong to the world-wide genus Latrodectus. -
The Behavioural Ecology of Latrodectus Hasselti (Thorell), the Australian Redback Spider (Araneae: Theridiidae): a Review
Records of the Western Australian MIISellnl Supplement No. 52: 13-24 (1995). The behavioural ecology of Latrodectus hasselti (Thorell), the Australian Redback Spider (Araneae: Theridiidae): a review Lyn Forster McMasters Road, RD 1, Saddle Hill, Dunedin, New Zealand Abstract - Aspects of the biogeographical history and behavioural ecology of the AustralIan Latrodectus hasseIti provide support for the endemic status of this species. Cannibalism, prey stealing and short instar lengths are growth strategies for. female spiders whereas early maturation, small size, hiding and scavengmg are useful survival tactics for males. Moreover male complicity is an important component of sexual cannibalism which is ~hown to be a highly predictable event. Latrodectus hasseIti males hybridize with female L. katlpo (a New Zealand species) and fertile Fl and F2 generations Imply genetic relatedness. Hence, it is likely that L. hasselti and L. katipo evolv~d from a common ancestor in ancient Pangaea, a feasible explanation only If L. hasseItl IS endemic to Australia. It is concluded that L. hasseIti would have been able to persist in outback Australia for millions of years, with ItS mtraspeClfJc predatory habits aiding subsistence and the evolution of sexual cannibalism providing a way of coping with infrequent meeting and matmg opportunities. INTRODUCTION indigenous status, Main (1993) notes that, (as a Many stories and articles have been written consequence of its supposed introduction), "the about the redback spider (McKeown 1963; Raven absence of Latrodectus in the Australian region, 1992) with considerable attention being devoted to prior to human habitation, poses a curious its venomous nature (Southcott 1978; Sutherland zoogeographic dilemma". This comment raises an and Trinca 1978). -
615.9Barref.Pdf
INDEX Abortifacient, abortifacients bees, wasps, and ants ginkgo, 492 aconite, 737 epinephrine, 963 ginseng, 500 barbados nut, 829 blister beetles goldenseal blister beetles, 972 cantharidin, 974 berberine, 506 blue cohosh, 395 buckeye hawthorn, 512 camphor, 407, 408 ~-escin, 884 hypericum extract, 602-603 cantharides, 974 calamus inky cap and coprine toxicity cantharidin, 974 ~-asarone, 405 coprine, 295 colocynth, 443 camphor, 409-411 ethanol, 296 common oleander, 847, 850 cascara, 416-417 isoxazole-containing mushrooms dogbane, 849-850 catechols, 682 and pantherina syndrome, mistletoe, 794 castor bean 298-302 nutmeg, 67 ricin, 719, 721 jequirity bean and abrin, oduvan, 755 colchicine, 694-896, 698 730-731 pennyroyal, 563-565 clostridium perfringens, 115 jellyfish, 1088 pine thistle, 515 comfrey and other pyrrolizidine Jimsonweed and other belladonna rue, 579 containing plants alkaloids, 779, 781 slangkop, Burke's, red, Transvaal, pyrrolizidine alkaloids, 453 jin bu huan and 857 cyanogenic foods tetrahydropalmatine, 519 tansy, 614 amygdalin, 48 kaffir lily turpentine, 667 cyanogenic glycosides, 45 lycorine,711 yarrow, 624-625 prunasin, 48 kava, 528 yellow bird-of-paradise, 749 daffodils and other emetic bulbs Laetrile", 763 yellow oleander, 854 galanthamine, 704 lavender, 534 yew, 899 dogbane family and cardenolides licorice Abrin,729-731 common oleander, 849 glycyrrhetinic acid, 540 camphor yellow oleander, 855-856 limonene, 639 cinnamomin, 409 domoic acid, 214 rna huang ricin, 409, 723, 730 ephedra alkaloids, 547 ephedra alkaloids, 548 Absorption, xvii erythrosine, 29 ephedrine, 547, 549 aloe vera, 380 garlic mayapple amatoxin-containing mushrooms S-allyl cysteine, 473 podophyllotoxin, 789 amatoxin poisoning, 273-275, gastrointestinal viruses milk thistle 279 viral gastroenteritis, 205 silibinin, 555 aspartame, 24 ginger, 485 mistletoe, 793 Medical Toxicology ofNatural Substances, by Donald G. -
Question of the Day Archives: Monday, December 5, 2016 Question: Calcium Oxalate Is a Widespread Toxin Found in Many Species of Plants
Question Of the Day Archives: Monday, December 5, 2016 Question: Calcium oxalate is a widespread toxin found in many species of plants. What is the needle shaped crystal containing calcium oxalate called and what is the compilation of these structures known as? Answer: The needle shaped plant-based crystals containing calcium oxalate are known as raphides. A compilation of raphides forms the structure known as an idioblast. (Lim CS et al. Atlas of select poisonous plants and mushrooms. 2016 Disease-a-Month 62(3):37-66) Friday, December 2, 2016 Question: Which oral chelating agent has been reported to cause transient increases in plasma ALT activity in some patients as well as rare instances of mucocutaneous skin reactions? Answer: Orally administered dimercaptosuccinic acid (DMSA) has been reported to cause transient increases in ALT activity as well as rare instances of mucocutaneous skin reactions. (Bradberry S et al. Use of oral dimercaptosuccinic acid (succimer) in adult patients with inorganic lead poisoning. 2009 Q J Med 102:721-732) Thursday, December 1, 2016 Question: What is Clioquinol and why was it withdrawn from the market during the 1970s? Answer: According to the cited reference, “Between the 1950s and 1970s Clioquinol was used to treat and prevent intestinal parasitic disease [intestinal amebiasis].” “In the early 1970s Clioquinol was withdrawn from the market as an oral agent due to an association with sub-acute myelo-optic neuropathy (SMON) in Japanese patients. SMON is a syndrome that involves sensory and motor disturbances in the lower limbs as well as visual changes that are due to symmetrical demyelination of the lateral and posterior funiculi of the spinal cord, optic nerve, and peripheral nerves. -
First Case of Human Latrodectism in Venezuela
RELATO DE CASO/CASEM REPORT Revista da Sociedade Brasileira de Medicina Tropical 41(2):202-204, mar-abr, 2008 First case of human latrodectism in Venezuela Primeiro caso de latrodectismo humano na Venezuela Demetrio Kiriakos1, 2, 3, Paola Núñez1, 2, Yasmely Parababire1, 2, Marianne García1, 2, Jenny Medina1, 2 and Leonardo De Sousa1, 2, 3 ABSTRACT The first case of envenoming by Latrodectus geometricus in Venezuela is described. The accident occurred at the victim’s home, in Aragua de Barcelona, Anzoátegui State. The 31-year-old female victim was bitten twice on the left scapular region, in quick succession (within seconds). She developed a hyperactive state of the central, autonomic and peripheral nervous systems with minor local symptoms. Key-words: Latrodectus geometricus. Araneae. Theridiidae. Latrodectism. Venezuela. RESUMO Descreve-se o primeiro caso de envenenamento por Latrodectus geometricus na Venezuela. O acidente ocorreu na residência, em Aragua de Barcelona, Estado Anzoátegui. A paciente de 31 anos de idade foi picada, consecutivamente duas vezes, em segundos, na região escapular esquerda. Ela desenvolveu um quadro de hiperatividade do sistema nervoso central, autonômico e periférico com escassa sintomatologia local. Palavras-chaves: Latrodectus geometricus. Araneae. Theridiidae. Latrodectismo. Venezuela. Latrodectism is the result from envenoming by species on a metal chair. The patient immediately developed pain (of a belonging to the genus Latrodectus8 13 (Araneae: Theridiidae) burning nature) at the envenoming site, but she underestimated and is associated with neurotransmitter discharge, particularly its importance. She caught the specimen, placed it inside a glass in the autonomic system6 11. A number of Latrodectus species jar and sprayed the chair with insecticide, which allowed her to are responsible for severe arachnidism around the world12, due collect two additional spiders. -
Spider Bite in Southern Africa: Diagnosis and Management the Diagnosis of Spider Bite, Especially When the Patient Is Unaware of Having Been Bitten, Can Be Difficult
Spider bite in southern Africa: diagnosis and management The diagnosis of spider bite, especially when the patient is unaware of having been bitten, can be difficult. G J Müller, BSc, MB ChB, Hons BSc (Pharm), MMed (Anaes), PhD (Tox) Dr Müller is part-time consultant in the Division of Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University. He is the founder of the Tygerberg Poison Information Centre. C A Wium, MSc Medical Sciences Ms Wium is a principal medical scientist employed as a toxicologist in the Tygerberg Poison Information Centre, Division of Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University. C J Marks, BSc Pharmacy, MSc Medical Sciences Ms Marks is the director of the Tygerberg Poison Information Centre, Division of Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University. C E du Plessis, BSc Microbiology and Genetics Ms Du Plessis is a medical technologist. She is a staff member of the Tygerberg Poison Information Centre and the Therapeutic Drug Monitoring Laboratory, Division of Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University. D J H Veale, PhD Pharmacology Dr Veale is the former director of the Tygerberg Poison Information Centre and currently a consultant clinical pharmacist and lecturer in pharmacology and toxicology. Correspondence to: G Müller ([email protected]) The medically important spiders of southern Africa can be divided completely. The legs are evenly black. The globular or pear-shaped into neurotoxic and cytotoxic groups. The neurotoxic spiders belong egg sacs, which measure 10 - 15 mm in diameter, are white to to the genus Latrodectus (button or widow spiders) and the cytotoxic greyish yellow with a smooth silky surface. -
2021 ACMT Annual Scientific Meeting Abstracts—Virtual
Journal of Medical Toxicology https://doi.org/10.1007/s13181-021-00832-9 ANNUAL MEETING ABSTRACTS 2021 ACMT Annual Scientific Meeting Abstracts—Virtual Abstract: These are the abstracts of the 2021 American College of 001. Gender-Based Production of N-Acetyl-P-Benzoquinone Imine Medical Toxicology (ACMT) Annual Scientific Meeting. Included here Protein Adduct Formation With Therapeutic Acetaminophen are 178 abstracts that will be presented in April 2021, including research Administration studies from around the globe and the ToxIC collaboration, clinically significant case reports describing toxicologic phenomena, and encore Brandon J Sonn1, Kennon J Heard1,2, Susan M Heard2,Angelo research presentations from other scientific meetings. D'Alessandro1, Kate M Reynolds2, Richard C Dart2, Barry H Rumack1,2,AndrewAMonte1,2 Keywords: Abstracts - Annual Scientific Meeting - Toxicology 1University of Colorado Denver, Aurora, Colorado, USA. 2Rocky Investigators Consortium - Medical Toxicology Foundation Mountain Poison and Drug Center, Denver, Colorado, USA Correspondence: American College of Medical Toxicology (ACMT) Background: Acetaminophen (APAP)-associated transaminase elevation, 10645 N. Tatum Blvd Phoenix, AZ; [email protected] induced by N-acetyl-p-benzoquinone imine (NAPQI) protein adduction, re- mains a global concern. Distinct from known genetic, physiologic, and dos- Introduction: The American College of Medical Toxicology (ACMT) age associations dictating severity of hepatic injury, no known factors predict received 188 eligible research abstracts for consideration for presentation an absence of NAPQI protein adduct formation at therapeutic APAP dosing. at the 2021 Annual Scientific Meeting (ASM), including 85 research Hypothesis: Gender-based physiologies are predictive of APAP-induced studies and 103 case reports. Each abstract was reviewed in a blinded protein adduct formation at therapeutic doses. -
Common Spiders in the Darwin Area D
Agnote No: I63 July 2014 Common Spiders in the Darwin Area D. Chin*, G. R. Brown*, T. Churchill2, J. Webber3 and H. Brown, Plant Industries, Darwin * Formerly DPIF 2 Formerly with the Tropical Ecosystems Research Centre, CSIRO, Darwin 3 Formerly with the CRC for Tropical Savannas Management, CDU, Darwin items that have been left undisturbed for long INTRODUCTION periods. The webs are loosely structured, strong and Spiders are invertebrate animals belonging to a have sticky basal strands. group called arachnids (which includes mites, ticks and scorpions). All spiders are predators and feed The female spiders rarely bite unless they are on insects, or other invertebrates, and may touched or handled. Although no fatalities due to sometimes capture small frogs or lizards. Spiders bites have been recorded since the introduction of have a variety of habits depending on where they anti-venom in 1956, bites are painful and must be live and how they feed. Some spiders build webs to treated as potentially dangerous. The male spider is capture flying insects while others may actively hunt much smaller and is not considered dangerous. for prey. Amongst ground-dwelling spiders, some Redbacks have a spherical abdomen, black legs live in burrows where they ambush crawling insects, and a black cephalothorax (where the legs are whereas others may hide under rocks and leaf litter attached). The female usually has a red stripe on the and search for prey at night. Spiders living on plants top side (dorsal side) of the abdomen and an have a variety of ways to catch insects and other hourglass shaped red mark on the underside prey and are useful in agriculture where they help in (ventral side) of the abdomen. -
Antivenoms for the Treatment of Spider Envenomation
† Antivenoms for the Treatment of Spider Envenomation Graham M. Nicholson1,* and Andis Graudins1,2 1Neurotoxin Research Group, Department of Heath Sciences, University of Technology, Sydney, New South Wales, Australia 2Departments of Emergency Medicine and Clinical Toxicology, Westmead Hospital, Westmead, New South Wales, Australia *Correspondence: Graham M. Nicholson, Ph.D., Director, Neurotoxin Research Group, Department of Heath Sciences, University of Technology, Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia; Fax: 61-2-9514-2228; E-mail: Graham. [email protected]. † This review is dedicated to the memory of Dr. Struan Sutherland who’s pioneering work on the development of a funnel-web spider antivenom and pressure immobilisation first aid technique for the treatment of funnel-web spider and Australian snake bites will remain a long standing and life-saving legacy for the Australian community. ABSTRACT There are several groups of medically important araneomorph and mygalomorph spiders responsible for serious systemic envenomation. These include spiders from the genus Latrodectus (family Theridiidae), Phoneutria (family Ctenidae) and the subfamily Atracinae (genera Atrax and Hadronyche). The venom of these spiders contains potent neurotoxins that cause excessive neurotransmitter release via vesicle exocytosis or modulation of voltage-gated sodium channels. In addition, spiders of the genus Loxosceles (family Loxoscelidae) are responsible for significant local reactions resulting in necrotic cutaneous lesions. This results from sphingomyelinase D activity and possibly other compounds. A number of antivenoms are currently available to treat envenomation resulting from the bite of these spiders. Particularly efficacious antivenoms are available for Latrodectus and Atrax/Hadronyche species, with extensive cross-reactivity within each genera. -
Conservation Status of New Zealand Araneae (Spiders), 2020
2021 NEW ZEALAND THREAT CLASSIFICATION SERIES 34 Conservation status of New Zealand Araneae (spiders), 2020 Phil J. Sirvid, Cor J. Vink, Brian M. Fitzgerald, Mike D. Wakelin, Jeremy Rolfe and Pascale Michel Cover: A large sheetweb sider, Cambridgea foliata – Not Threatened. Photo: Jeremy Rolfe. New Zealand Threat Classification Series is a scientific monograph series presenting publications related to the New Zealand Threat Classification System (NZTCS). Most will be lists providing NZTCS status of members of a plant or animal group (e.g. algae, birds, spiders). There are currently 23 groups, each assessed once every 5 years. From time to time the manual that defines the categories, criteria and process for the NZTCS will be reviewed. Publications in this series are considered part of the formal international scientific literature. This report is available from the departmental website in pdf form. Titles are listed in our catalogue on the website, refer www.doc.govt.nz under Publications. The NZTCS database can be accessed at nztcs.org.nz. For all enquiries, email [email protected]. © Copyright August 2021, New Zealand Department of Conservation ISSN 2324–1713 (web PDF) ISBN 978–1–99–115291–6 (web PDF) This report was prepared for publication by Te Rōpū Ratonga Auaha, Te Papa Atawhai/Creative Services, Department of Conservation; editing and layout by Lynette Clelland. Publication was approved by the Director, Terrestrial Ecosystems Unit, Department of Conservation, Wellington, New Zealand Published by Department of Conservation Te Papa Atawhai, PO Box 10420, Wellington 6143, New Zealand. This work is licensed under the Creative Commons Attribution 4.0 International licence. -
Safe Laboratory Management for Arachnids of Medical Importance
August 2011 Animal Technology and Welfare Safe laboratory management for arachnids of medical importance SARAH REED, MIKAELLA LOCK and STEVEN TRIM* Venomtech Ltd, PO Box 468, Ramsgate, Kent CT11 1BD *Corresponding author [email protected] (Presented at Institute of Animal Technology Congress 2011) Summary understanding of the species’ “normal” behaviour and Safe animal management is key to any facility; this is frequent, careful observation to identify any deviation especially true of those housing animals of significant from that normal behaviour. In addition, the husbandry medical importance. Procedures detailed here of arachnids of medical importance poses more demonstrate how dangerous arachnids including significant challenges in containment and safe handling scorpions (Family Buthidae ), wandering spiders (Family (for both animal and technician) due to the size, speed, Ctenidae ), recluse spiders (Family Sicariidae ) and the aggression and venomous characteristics of many Theridiidae family containing the widow spiders can be species. safely managed in the laboratory environment. This dramatically reduces the risk of envenomation during This paper describes a method of performing routine husbandry and experimental procedures. Risks are husbandry by which risk of envenomation is reduced with modified enclosures that allow separation significantly reduced along with risk of escape or injury from the animals during most husbandry procedures of the animals and was originally presented as a poster and use of anaesthesia where contact is inevitable. at the Laboratory Animal Science Association (LASA) The equipment and techniques presented here thus Winter Meeting and an oral presentation at the Institute allow for greatly improved safety when working with of Animal Technology (IAT) Congress 2011. -
The Second Redback Antivenom Evaluation (RAVE-II) Study
TOXICOLOGY/ORIGINAL RESEARCH Randomized Controlled Trial of Intravenous Antivenom Versus Placebo for Latrodectism: The Second Redback Antivenom Evaluation (RAVE-II) Study Geoffrey K. Isbister, FACEM, MD*; Colin B. Page, MBChB, FACEM; Nicholas A. Buckley, FRACP, MD; Daniel M. Fatovich, MBBS, FACEM; Ovidiu Pascu, MBBS, FACEM; Stephen P. J. MacDonald, MBChB, FACEM; Leonie A. Calver; Simon G. A. Brown, FACEM, PhD; on behalf of the RAVE Investigators *Corresponding Author. E-mail: [email protected]. Study objective: Latrodectism is the most important spider envenomation syndrome worldwide. There remains considerable controversy over antivenom treatment. We aimed to investigate whether antivenom resulted in resolution of pain and systemic effects in patients with latrodectism who received standardized analgesia. Methods: In a multicenter randomized placebo-controlled trial of redback spider antivenom for latrodectism, 224 patients (>7 years) with a redback spider bite and severe pain, with or without systemic effects, were randomized to receive normal saline solution (placebo) or antivenom after receiving standardized analgesia. The primary outcome was a clinically significant reduction in pain 2 hours after trial medication compared with baseline. A second primary outcome for the subgroup with systemic features of envenomation was resolution of systemic features at 2 hours. Secondary outcomes were improved pain at 4 and 24 hours, resolution of systemic features at 4 hours, administration of opioid analgesics or unblinded antivenom after 2 hours, and adverse reactions. Results: Two hours after treatment, 26 of 112 patients (23%) from the placebo arm had a clinically significant improvement in pain versus 38 of 112 (34%) from the antivenom arm (difference in favor of antivenom 10.7%; 95% confidence interval 1.1% to 22.6%; P .10).