Saxicolous Lichen and Bryophyte Communities in Upland Britain

Total Page:16

File Type:pdf, Size:1020Kb

Saxicolous Lichen and Bryophyte Communities in Upland Britain - JNCC Report No. 404 Saxicolous lichen and bryophyte communities in Upland Britain Alan Orange1 January 2009 1Department of Biodiversity and Systematic Biology, National Museum of Wales, Cardiff CF10 3NP. Saxicolous lichen and bryophyte communities in Upland Britain For further information please contact: Alistair Crowle Natural England Northminster House Northminster Road Peterborough PE1 1UA, UK [email protected] Barbara Jones Countryside Council for Wales Maes-y-Ffynnon Penrhosgarnedd Bangor Gwynedd, LL57 2DW, UK [email protected] David Horsfield Scottish Natural Heritage Silvan House 231 Corstorphine Road Edinburgh EH12 7AT, UK [email protected] This report should be cited as: Orange, A., (2008) Saxicolous lichen and bryophyte communities in Upland Britain. JNCC Report No: 404. This report has been published under the auspices of the JNCC Uplands Lead Co-ordination Network on behalf of the country nature conservation agencies involved. It makes an important contribution to our knowledge and classification of lichen and bryophyte communities found in the Uplands of the UK and complements 'An Illustrated Guide to British Upland Vegetation' (Averis et al, 2004) JNCC, Peterborough. The project work, under the title “Survey and Evaluation of the Status and Importance of Saxicolous Lichens and Bryophyte Assemblages Associated with N2K Chasmophytic and Scree Habitats on cSAC” (Contract No KI0106), was jointly funded by Natural England, Countryside Council for Wales and Scottish Natural Heritage. 2 Saxicolous Lichen and Bryophyte Communities in Upland Britain Contents 1. Introduction ........................................................................................................ 7 1.1 Annex I habitats .................................................................................................... 8 2. Methods ............................................................................................................... 9 2.1 Site selection ......................................................................................................... 9 2.2 Field methods ..................................................................................................... 12 2.3 Analysis .............................................................................................................. 13 2.4 Data archive ........................................................................................................ 51 3. Results ................................................................................................................ 52 3.1 General ................................................................................................................ 52 3.2 Key to saxicolous lichen and bryophyte communities ....................................... 60 3.3 Communities on siliceous rock ........................................................................... 76 3.3.1 SS A1 Rhizocarpon geographicum-Fuscidea lygaea community (Table 6) ...... 76 3.3.2 SS A2 Rhizocarpon geographicum-Miriquidica leucophaea community (Table 7) ......................................................................................................................... 80 3.3.3 SS A3 Lecanora gangaleoides-Fuscidea cyathoides community (Table 8) ...... 83 3.3.4 SS B1 Fuscidea kochiana-F. intercincta community (Table 9) ......................... 85 3.4.5 SS B2 Fuscidea praeruptorum-F. cyathoides community (Table 10) ............... 88 3.3.6 SS B3 Fuscidea lygaea-Porpidia tuberculosa community (Table 11) .............. 90 3.3.7 SS C1 Pertusaria corallina-P. pseudocorallina community (Table 12) ............ 92 3.3.8 SS D1 Porpidia tuberculosa-Rhizocarpon reductum community (Table 13) .... 96 3.3.9 SS D2 Acarospora sinopica-Rhizocarpon oederi community (Table 14) ....... 100 3.3.10 SS D3 Acarospora fuscata-A. nitrophila community (Table 15) ..................... 102 3.3.11 SS D4 Lecidea lithophila community (Table 16) ............................................. 103 3.3.12 SS D5 Porpidia macrocarpa-P. striata community (Table 17) ....................... 105 3.3.13 SS D6 Porpidia irrigua-Rhizocarpon lavatum community (Table 18) ............ 106 3.3.14 SS D7 Ainoa mooreana-Marsupella emarginata community (Table 19) ........ 108 3.3.15 SS D8 Porpidia tuberculosa community (Table 20) ........................................ 110 3.3.16 SS D9 Lecidea promixta-Trapelia involuta community (Table 21) ................. 112 3.3.17 SS E1 Andreaea rupestris-Ionaspis odora community (Table 22) .................. 113 3.3.18 SS E2 Andreaea rupestris-Stereocaulon vesuvianum community (Table 23) . 118 3.3.19 SS E3 Andreaea rupestris-Gymnomitrion community (Table 24) ................... 122 3.3.20 SS F1 Rhizocarpon geographicum-Umbilicaria cylindrica community (Table 25) ..................................................................................................................... 125 3.3.21 SS F2 Parmelia saxatilis-P. omphalodes community (Table 26) .................... 128 3.3.22 SS F3 Xanthoparmelia conspersa community (Table 27) ............................... 132 3.3.23 SS F4 Lasallia pustulata community (Table 28) .............................................. 134 3.3.24 SS F5 Umbilicaria deusta community (Table 29) ............................................ 136 3.3.25 SS F6 Campylopus flexuosus-Barbilophozia floerkei community (Table 30) . 138 3.3.26 SS F7 Racomitrium fasciculare-R. heterostichum community (Table 31) ...... 140 3.3.27 SS F8 Frullania tamarisci-Schistidium strictum community (Table 32) ......... 143 3.3.28 SS H1 Candelariella coralliza-Aspicilia caesiocinerea community (Table 33) .......................................................................................................................... 147 3.3.29 SS I1 Trentepohlia iolithus community (Table 34) .......................................... 149 3.3.30 SS K1 Lecanora ecorticata community (Table 35) ......................................... 150 3.3.31 SS K2 Lepraria incana-Cystocoleus ebeneus community (Table 36) ............. 152 3.3.32 SS K3 Lecanactis latebrarum community (Table 37) ...................................... 154 3.3.33 SS K4 Lepraria humida-Diplophyllum albicans community (Table 38) ......... 155 3.3.34 SS K5 Opegrapha gyrocarpa-Enterographa zonata community (Table 39) ... 158 3 Saxicolous Lichen and Bryophyte Communities in Upland Britain 3.3.35 SS K6 Tylothallia biformigera-Opegrapha gyrocarpa community (Table 40) .......................................................................................................................... 160 3.3.36 SS K7 Coccotrema citrinescens-Porpidia tuberculosa community (Table 41) 164 3.3.37 SS K8 Lecanora orosthea-Enterographa zonata community (Table 42) ........ 165 3.3.38 SS K9 Lecanora epanora-Lepraria elobata community (Table 43) ................ 167 3.3.39 SS K10 Psilolechia leprosa community (Table 44) ......................................... 168 3.3.40 SS L1 Andreaea rothii-Porpidia irrigua community (Table 45) ..................... 170 3.3.41 SS L2 Racomitrium aquaticum community (Table 46) .................................... 174 3.3.42 SS M1 Andreaea alpina-Marsupella emarginata community (Table 47) ....... 175 3.3.43 SS N1 Amphidium mougeotii-Anoectangium aestivum community (Table 48) .......................................................................................................................... 180 3.3.44 SS N2 Blindia acuta-Amphidium mougeotii community (Table 49) ............... 187 3.3.45 SS N3 Grimmia torquata community (Table 50) ............................................. 189 3.3.46 SS O1 Pellia epiphylla-Mnium hornum community (Table 51) ...................... 190 3.3.47 SS O2 Philonotis fontana-Scapania undulata community (Table 52) ............. 193 3.3.48 SS P1 Diplophyllum albicans-Hypnum jutlandicum community (Table 53) ... 195 3.3.49 SS P2 Hypnum jutlandicum-Mnium hornum community (Table 54) ............... 200 3.3.50 SS P3 Mylia taylorii-Racomitrium lanuginosum community (Table 55) ......... 201 3.3.51 SS Q1 Racomitrium lanuginosum community (Table 56)................................... 203 3.3.52 SS T1 Ramalina siliquosa-R. subfarinacea community (Table 57) ................. 205 3.3.53 SS U1 Isothecium myosuroides-Sphaerophorus globosus community (Table 58) .......................................................................................................................... 206 3.3.54 SS V1 Staurothele succedens-Thelidium papulare community (Table 59) ..... 209 3.3.55 SS W1 Dermatocarpon intestiniforme-Collema flaccidum community (Table 60) ..................................................................................................................... 211 3.3.56 SS X1 Blindia acuta-Racomitrium ellipticum community (Table 61) ............. 214 3.4 Communities on limestone and highly calcareous siliceous rock .................... 216 3.4.1 SL 1 Caloplaca saxicola-Lecanora albescens community (Table 62).................. 216 3.4.2 SL 2 Dirina massiliensis-Caloplaca saxicola community (Table 63) ............. 218 3.4.3 SL 3 Botryolepraria lesdainii-Leproplaca chrysodeta community (Table 64) 219 3.4.4 SL 4 Lepraria nivalis community (Table 65) ................................................... 221 3.4.5 SL 5 Aspicilia calcarea-Caloplaca citrina agg. community (Table 66) .......... 223 3.4.6 SL 6 Aspicilia calcarea-Caloplaca flavescens community (Table 67) ............ 224 3.4.7 SL 7 Caloplaca citrina community (Table 68) ...............................................
Recommended publications
  • Opuscula Philolichenum, 6: 1-XXXX
    Opuscula Philolichenum, 15: 56-81. 2016. *pdf effectively published online 25July2016 via (http://sweetgum.nybg.org/philolichenum/) Lichens, lichenicolous fungi, and allied fungi of Pipestone National Monument, Minnesota, U.S.A., revisited M.K. ADVAITA, CALEB A. MORSE1,2 AND DOUGLAS LADD3 ABSTRACT. – A total of 154 lichens, four lichenicolous fungi, and one allied fungus were collected by the authors from 2004 to 2015 from Pipestone National Monument (PNM), in Pipestone County, on the Prairie Coteau of southwestern Minnesota. Twelve additional species collected by previous researchers, but not found by the authors, bring the total number of taxa known for PNM to 171. This represents a substantial increase over previous reports for PNM, likely due to increased intensity of field work, and also to the marked expansion of corticolous and anthropogenic substrates since the site was first surveyed in 1899. Reexamination of 116 vouchers deposited in MIN and the PNM herbarium led to the exclusion of 48 species previously reported from the site. Crustose lichens are the most common growth form, comprising 65% of the lichen diversity. Sioux Quartzite provided substrate for 43% of the lichen taxa collected. Saxicolous lichen communities were characterized by sampling four transects on cliff faces and low outcrops. An annotated checklist of the lichens of the site is provided, as well as a list of excluded taxa. We report 24 species (including 22 lichens and two lichenicolous fungi) new for Minnesota: Acarospora boulderensis, A. contigua, A. erythrophora, A. strigata, Agonimia opuntiella, Arthonia clemens, A. muscigena, Aspicilia americana, Bacidina delicata, Buellia tyrolensis, Caloplaca flavocitrina, C. lobulata, C.
    [Show full text]
  • Lavansaari) – One of the Remote Islands in the Gulf of Finland
    Folia Cryptog. Estonica, Fasc. 56: 31–52 (2019) https://doi.org/10.12697/fce.2019.56.05 The lichens of Moshchny Island (Lavansaari) – one of the remote islands in the Gulf of Finland Irina S. Stepanchikova1,2, Dmitry E. Himelbrant1,2, Ulf Schiefelbein3, Jurga Motiejūnaitė4, Teuvo Ahti5, Mikhail P. Andreev2 1St. Petersburg State University, Universitetskaya emb. 7–9, 199034 St. Petersburg, Russia. E-mails: [email protected], [email protected] 2Laboratory of Lichenology and Bryology, Komarov Botanical Institute RAS, Professor Popov St. 2, 197376 St. Petersburg, Russia. E-mail: [email protected] 3Blücherstrasse 71, D-18055 Rostock, Germany. E-mail: [email protected] 4Laboratory of Mycology, Institute of Botany, Nature Research Centre, Žaliųjų Ežerų 49, LT–08406 Vilnius, Lithuania. E-mail: [email protected] 5Botanical Museum, Finnish Museum of Natural History, University of Helsinki, P.O. Box 7, FI-00014 Helsinki, Finland. E-mail: [email protected] Abstract: We present a checklist for Moshchny Island (Leningrad Region, Russia). The documented lichen biota comprises 349 species, including 313 lichens, 30 lichenicolous fungi and 6 non-lichenized saprobic fungi. Endococcus exerrans and Lichenopeltella coppinsii are reported for the first time for Russia;Cercidospora stenotropae, Erythricium aurantiacum, Flavoplaca limonia, Lecidea haerjedalica, and Myriospora myochroa for European Russia; Flavoplaca oasis, Intralichen christiansenii, Nesolechia fusca, and Myriolecis zosterae for North-Western European Russia; and Arthrorhaphis aeruginosa, Calogaya pusilla, and Lecidea auriculata subsp. auriculata are new for Leningrad Region. The studied lichen biota is moderately rich and diverse, but a long history of human activity likely caused its transformation, especially the degradation of forest lichen biota.
    [Show full text]
  • BLS Bulletin 111 Winter 2012.Pdf
    1 BRITISH LICHEN SOCIETY OFFICERS AND CONTACTS 2012 PRESIDENT B.P. Hilton, Beauregard, 5 Alscott Gardens, Alverdiscott, Barnstaple, Devon EX31 3QJ; e-mail [email protected] VICE-PRESIDENT J. Simkin, 41 North Road, Ponteland, Newcastle upon Tyne NE20 9UN, email [email protected] SECRETARY C. Ellis, Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR; email [email protected] TREASURER J.F. Skinner, 28 Parkanaur Avenue, Southend-on-Sea, Essex SS1 3HY, email [email protected] ASSISTANT TREASURER AND MEMBERSHIP SECRETARY H. Döring, Mycology Section, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] REGIONAL TREASURER (Americas) J.W. Hinds, 254 Forest Avenue, Orono, Maine 04473-3202, USA; email [email protected]. CHAIR OF THE DATA COMMITTEE D.J. Hill, Yew Tree Cottage, Yew Tree Lane, Compton Martin, Bristol BS40 6JS, email [email protected] MAPPING RECORDER AND ARCHIVIST M.R.D. Seaward, Department of Archaeological, Geographical & Environmental Sciences, University of Bradford, West Yorkshire BD7 1DP, email [email protected] DATA MANAGER J. Simkin, 41 North Road, Ponteland, Newcastle upon Tyne NE20 9UN, email [email protected] SENIOR EDITOR (LICHENOLOGIST) P.D. Crittenden, School of Life Science, The University, Nottingham NG7 2RD, email [email protected] BULLETIN EDITOR P.F. Cannon, CABI and Royal Botanic Gardens Kew; postal address Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] CHAIR OF CONSERVATION COMMITTEE & CONSERVATION OFFICER B.W. Edwards, DERC, Library Headquarters, Colliton Park, Dorchester, Dorset DT1 1XJ, email [email protected] CHAIR OF THE EDUCATION AND PROMOTION COMMITTEE: S.
    [Show full text]
  • Lichens and Associated Fungi from Glacier Bay National Park, Alaska
    The Lichenologist (2020), 52,61–181 doi:10.1017/S0024282920000079 Standard Paper Lichens and associated fungi from Glacier Bay National Park, Alaska Toby Spribille1,2,3 , Alan M. Fryday4 , Sergio Pérez-Ortega5 , Måns Svensson6, Tor Tønsberg7, Stefan Ekman6 , Håkon Holien8,9, Philipp Resl10 , Kevin Schneider11, Edith Stabentheiner2, Holger Thüs12,13 , Jan Vondrák14,15 and Lewis Sharman16 1Department of Biological Sciences, CW405, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; 2Department of Plant Sciences, Institute of Biology, University of Graz, NAWI Graz, Holteigasse 6, 8010 Graz, Austria; 3Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA; 4Herbarium, Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA; 5Real Jardín Botánico (CSIC), Departamento de Micología, Calle Claudio Moyano 1, E-28014 Madrid, Spain; 6Museum of Evolution, Uppsala University, Norbyvägen 16, SE-75236 Uppsala, Sweden; 7Department of Natural History, University Museum of Bergen Allégt. 41, P.O. Box 7800, N-5020 Bergen, Norway; 8Faculty of Bioscience and Aquaculture, Nord University, Box 2501, NO-7729 Steinkjer, Norway; 9NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; 10Faculty of Biology, Department I, Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; 11Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; 12Botany Department, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany; 13Natural History Museum, Cromwell Road, London SW7 5BD, UK; 14Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic; 15Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic and 16Glacier Bay National Park & Preserve, P.O.
    [Show full text]
  • Lichens and Allied Fungi of the Indiana Forest Alliance
    2017. Proceedings of the Indiana Academy of Science 126(2):129–152 LICHENS AND ALLIED FUNGI OF THE INDIANA FOREST ALLIANCE ECOBLITZ AREA, BROWN AND MONROE COUNTIES, INDIANA INCORPORATED INTO A REVISED CHECKLIST FOR THE STATE OF INDIANA James C. Lendemer: Institute of Systematic Botany, The New York Botanical Garden, Bronx, NY 10458-5126 USA ABSTRACT. Based upon voucher collections, 108 lichen species are reported from the Indiana Forest Alliance Ecoblitz area, a 900 acre unit in Morgan-Monroe and Yellowwood State Forests, Brown and Monroe Counties, Indiana. The lichen biota of the study area was characterized as: i) dominated by species with green coccoid photobionts (80% of taxa); ii) comprised of 49% species that reproduce primarily with lichenized diaspores vs. 44% that reproduce primarily through sexual ascospores; iii) comprised of 65% crustose taxa, 29% foliose taxa, and 6% fruticose taxa; iv) one wherein many species are rare (e.g., 55% of species were collected fewer than three times) and fruticose lichens other than Cladonia were entirely absent; and v) one wherein cyanolichens were poorly represented, comprising only three species. Taxonomic diversity ranged from 21 to 56 species per site, with the lowest diversity sites concentrated in riparian corridors and the highest diversity sites on ridges. Low Gap Nature Preserve, located within the study area, was found to have comparable species richness to areas outside the nature preserve, although many species rare in the study area were found only outside preserve boundaries. Sets of rare species are delimited and discussed, as are observations as to the overall low abundance of lichens on corticolous substrates and the presence of many unhealthy foliose lichens on mature tree boles.
    [Show full text]
  • Shropshire Fungus Checklist 2010
    THE CHECKLIST OF SHROPSHIRE FUNGI 2011 Contents Page Introduction 2 Name changes 3 Taxonomic Arrangement (with page numbers) 19 Checklist 25 Indicator species 229 Rare and endangered fungi in /Shropshire (Excluding BAP species) 230 Important sites for fungi in Shropshire 232 A List of BAP species and their status in Shropshire 233 Acknowledgements and References 234 1 CHECKLIST OF SHROPSHIRE FUNGI Introduction The county of Shropshire (VC40) is large and landlocked and contains all major habitats, apart from coast and dune. These include the uplands of the Clees, Stiperstones and Long Mynd with their associated heath land, forested land such as the Forest of Wyre and the Mortimer Forest, the lowland bogs and meres in the north of the county, and agricultural land scattered with small woodlands and copses. This diversity makes Shropshire unique. The Shropshire Fungus Group has been in existence for 18 years. (Inaugural meeting 6th December 1992. The aim was to produce a fungus flora for the county. This aim has not yet been realised for a number of reasons, chief amongst these are manpower and cost. The group has however collected many records by trawling the archives, contributions from interested individuals/groups, and by field meetings. It is these records that are published here. The first Shropshire checklist was published in 1997. Many more records have now been added and nearly 40,000 of these have now been added to the national British Mycological Society’s database, the Fungus Record Database for Britain and Ireland (FRDBI). During this ten year period molecular biology, i.e. DNA analysis has been applied to fungal classification.
    [Show full text]
  • A Provisional Checklist of the Lichens of Belarus
    Opuscula Philolichenum, 17: 374-479. 2018. *pdf effectively published online 31December2018 via (http://sweetgum.nybg.org/philolichenum/) A Provisional Checklist of the Lichens of Belarus ANDREI TSURYKAU1 ABSTRACT. – A total of 606 species and five subspecific taxa of lichens and allied fungi are documented from Belarus based on combined historical (pre-1980) and modern (post-1980) records. Of these, 50 (8.3%) are represented by only historical reports, 235 (38.8%) are represented by only modern vouchers, and 310 (51.2%) are represented by both historical and modern records. Eleven species are known only from generalized published reports that lacked specific location data. Eighty-eight species are excluded as erroneous reports, or considered as doubtful records. KEYWORDS. – Biodiversity, distribution, lichenized fungi, historical baseline. INTRODUCTION Published accounts of the lichens of Belarus date to the end of the 18th century (Gilibert 1781). In the first phase of lichenological discovery in the country (1780–1900) lichens did not attract special attention and were reported among the general lists of vascular plants and fungi. However, 49 species were reported by the French botanist J.E. Gilibert, the Russian ethnographer of Belarusian origin N. Downar (Dovnar-Zapol'skiy) and Polish botanists K. Filipowicz and F. Błoński (Błoński 1888, 1889; Downar 1861; Filipowicz 1881; Gilibert 1781, 1792). In the early 20th century (1900–1925), there was a second phase of lichenological discovery in Belarus. During that time, Belarusian pioneer lichenologist V.P. Savicz and his wife L.I. Ljubitzkaja (later Savicz-Ljubitzkaja) reported 91 species new to the country (Ljubitzkaja 1914; Savicz 1909, 1910, 1911, 1925; Savicz & Savicz 1924; Wyssotzky et al.
    [Show full text]
  • New Records of Lichens and Lichenicolous Fungi from Fuerteventura (Canary Islands), with Descriptions of Some New Species
    Cryptogamie, Mycologie, 2006, 27 (4): 341-374 © 2006 Adac. Tous droits réservés New records of lichens and lichenicolous fungi from Fuerteventura (Canary Islands), with descriptions of some new species P.P.G.van den BOOM1 & J.ETAYO2 1 Arafura 16, NL-5691JA Son, the Netherlands, email: [email protected] 2 Navarro Villoslada 16, 3° dcha, E-31003, Pamplona, Spain, email: [email protected] Abstract – The flora of lichens and lichenicolous fungi of Fuerteventura (Canary Islands) has been studied. The recent catalogue of the Island was composed of 91 species. In the presented annotated list, 98 are additional records of the island, of which 29 species are new to the Canary Islands and among them Caloplaca fuerteventurae , Lecanactiscanariensis , Lichenostigmacanariense and L. episulphurella are described as new. Macaronesia / new taxa / taxonomy / first records / ecology / chemistry / biodiversity Resumen – Se estudia la flora liquénica y de hongos liquenícolas de la isla de Fuerteventura (Islas Canarias). El catálogo de líquenes y hongos liquenícolas de Fuerteventura se componía hasta el momento de 91 de la isla, mientras que en este trabajo se señalan 98 taxones nuevos para la isla, de los que 29 eran desconocidos en las Canarias. Caloplaca fuerteventurae, Lecanactis canariensis, Lichenostigma canariense y L. episulphurella se describen en este trabajo. INTRODUCTION During a one week trip to the Canary Island Fuerteventura in 2001 by the first author and a one week trip by the second author in 2003, lichens and lichenicolous fungi where collected on all available kind of substrata which was encountered. Most of the collected material has been identified and the results are presented below.
    [Show full text]
  • A New Lichenized Fungus
    A peer-reviewed open-access journal MycoKeys 70: 39–58 (2020) Korean Lecanora species 39 doi: 10.3897/mycokeys.70.51569 RESEarcH ARTicLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research A new lichenized fungus, Lecanora baekdudaeganensis, from South Korea, with a taxonomic key for Korean Lecanora species Beeyoung Gun Lee1, Jae-Seoun Hur2 1 Baekdudaegan National Arboretum, Bonghwa, 36209, South Korea 2 Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, South Korea Corresponding author: Jae-Seoun Hur ([email protected]) Academic editor: T. Lumbsch | Received 28 February 2020 | Accepted 15 June 2020 | Published 24 July 2020 Citation: Lee BG, Hur J-S (2020) A new lichenized fungus, Lecanora baekdudaeganensis, from South Korea, with a taxonomic key for Korean Lecanora species. MycoKeys 70: 39–58. https://doi.org/10.3897/mycokeys.70.51569 Abstract Lecanora baekdudaeganensis Lee & Hur is described as a new lichenized fungus from Baekdudaegan Mountains, South Korea. The new species is classified into the Lecanora subfusca group – allophana type and distinguishable from Lecanora imshaugii Brodo by a darker thallus, brownish disc, K–insoluble gran- ules on the surface of the epihymenium, shorter hypothecium, and the presence of oil droplets in the apothecial section. Molecular analyses employing internal transcribed spacer (ITS) and mitochondrial small subunit (mtSSU) sequences strongly support Lecanora baekdudaeganensis as a distinct species in the genus Lecanora. A surrogate key is provided to assist in the identification of all 52 taxa in the genus Lecanora of Korea. Keywords biodiversity, Lecanoraceae, phorophyte, phylogeny, taxonomy Introduction The Baekdudaegan Mountains are the main mountain range stretching across the en- tire Korean Peninsula.
    [Show full text]
  • <I>Trapelia Calyciformis</I>
    MYCOTAXON ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2020 October–December 2020—Volume 135, pp. 817–823 https://doi.org/10.5248/135.817 Trapelia calyciformis sp. nov. from China Ming-Zhu Dou, Xin Zhao, Ze-Feng Jia* College of Life Sciences, Liaocheng University, Liaocheng, P. R. China * Correspondence to: [email protected] Abstract—Trapelia calyciformis is described from China as a new species. The lichen is characterized by its gray-white thallus, zeorine apothecium with black disc and cracked excipulum, narrow paraphyses branched near the tip, 8-spored asci, aseptate ascospores with one vacuole, and the presence of gyrophoric acid. The specimens examined were deposited in LCUF. A key to the species of Trapelia reported in China is presented. Key words — lichenized fungi, Trapeliales, Trapeliaceae, taxonomy Introduction Trapelia was introduced by Choisy in 1929 and has about 20 species worldwide (Orange 2018). Most taxa are found on rock, rarely on soil and bark (Orange 2018, Aptroot & Schumm 2012, Kantvilas & Elix 2007). The characteristics of this genus are a crustose thallus often with areoles; apotheciate ascomata, slender non-amyloid paraphyses (often branched near the tip but rarely swollen); 8-spored subcylindrical asci with weakly thickened apices; non- septate ascospores that are ellipsoid to subglobose, hyaline, and non-amyloid; and the presence of gyrophoric acid and 5-O-methylhiascic acid (Hertel 1969, 1970; Jaklitsch & al. 2016). In recent years, much attention has been paid to crustose lichens in China, with many new species and records reported (Aptroot & Seaward 1999; Aptroot & Sipman 2001; Aptroot & Sparrius 2003; Dou & al. 2019; Ren 2015, 2017; Ren & Zheng 2018; Ren & al.
    [Show full text]
  • Piedmont Lichen Inventory
    PIEDMONT LICHEN INVENTORY: BUILDING A LICHEN BIODIVERSITY BASELINE FOR THE PIEDMONT ECOREGION OF NORTH CAROLINA, USA By Gary B. Perlmutter B.S. Zoology, Humboldt State University, Arcata, CA 1991 A Thesis Submitted to the Staff of The North Carolina Botanical Garden University of North Carolina at Chapel Hill Advisor: Dr. Johnny Randall As Partial Fulfilment of the Requirements For the Certificate in Native Plant Studies 15 May 2009 Perlmutter – Piedmont Lichen Inventory Page 2 This Final Project, whose results are reported herein with sections also published in the scientific literature, is dedicated to Daniel G. Perlmutter, who urged that I return to academia. And to Theresa, Nichole and Dakota, for putting up with my passion in lichenology, which brought them from southern California to the Traingle of North Carolina. TABLE OF CONTENTS Introduction……………………………………………………………………………………….4 Chapter I: The North Carolina Lichen Checklist…………………………………………………7 Chapter II: Herbarium Surveys and Initiation of a New Lichen Collection in the University of North Carolina Herbarium (NCU)………………………………………………………..9 Chapter III: Preparatory Field Surveys I: Battle Park and Rock Cliff Farm……………………13 Chapter IV: Preparatory Field Surveys II: State Park Forays…………………………………..17 Chapter V: Lichen Biota of Mason Farm Biological Reserve………………………………….19 Chapter VI: Additional Piedmont Lichen Surveys: Uwharrie Mountains…………………...…22 Chapter VII: A Revised Lichen Inventory of North Carolina Piedmont …..…………………...23 Acknowledgements……………………………………………………………………………..72 Appendices………………………………………………………………………………….…..73 Perlmutter – Piedmont Lichen Inventory Page 4 INTRODUCTION Lichens are composite organisms, consisting of a fungus (the mycobiont) and a photosynthesising alga and/or cyanobacterium (the photobiont), which together make a life form that is distinct from either partner in isolation (Brodo et al.
    [Show full text]
  • Large Differences in Carbohydrate Degradation and Transport Potential
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.01.454614; this version posted August 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Large differences in carbohydrate degradation and 2 transport potential in the genomes of lichen fungal 3 symbionts 4 5 Philipp Resl1,2, Adina R. Bujold3, Gulnara Tagirdzhanova3, Peter Meidl2, Sandra Freire Rallo4, 6 Mieko Kono5, Samantha Fernández-Brime5, Hörður Guðmundsson7, Ólafur Sigmar 7 Andrésson7, Lucia Muggia8, Helmut Mayrhofer1, John P. McCutcheon9, Mats Wedin5, Silke 8 Werth2, Lisa M. Willis3, Toby Spribille3* 9 10 1University of Graz, Institute of Biology, Universitätsplatz 2, 8010 Graz, Austria 11 2Ludwig-Maximilians-University Munich, Faculty of Biology Department 1, Diversity and 12 Evolution of Plants, Menzingerstraße 67, 80638 Munich, Germany 13 3University of Alberta, Biological Sciences CW405, Edmonton, AB T6G 2R3 Canada 14 4Rey Juan Carlos University, Departamento de Biología y Geología, Física y Química 15 Inorgánica, Móstoles, Spain. 16 5SWedish Museum of Natural History, Botany Department, PO Box 50007, SE10405 17 Stockholm, SWeden 18 7Faculty of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 102 19 Reykjavík, Iceland 20 8University of Trieste, Department of Life Sciences, via L. Giorgieri 10, 34127 Trieste, Italy 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.08.01.454614; this version posted August 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]