Polytrichaceae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fossil Mosses: What Do They Tell Us About Moss Evolution?
Bry. Div. Evo. 043 (1): 072–097 ISSN 2381-9677 (print edition) DIVERSITY & https://www.mapress.com/j/bde BRYOPHYTEEVOLUTION Copyright © 2021 Magnolia Press Article ISSN 2381-9685 (online edition) https://doi.org/10.11646/bde.43.1.7 Fossil mosses: What do they tell us about moss evolution? MicHAEL S. IGNATOV1,2 & ELENA V. MASLOVA3 1 Tsitsin Main Botanical Garden of the Russian Academy of Sciences, Moscow, Russia 2 Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia 3 Belgorod State University, Pobedy Square, 85, Belgorod, 308015 Russia �[email protected], https://orcid.org/0000-0003-1520-042X * author for correspondence: �[email protected], https://orcid.org/0000-0001-6096-6315 Abstract The moss fossil records from the Paleozoic age to the Eocene epoch are reviewed and their putative relationships to extant moss groups discussed. The incomplete preservation and lack of key characters that could define the position of an ancient moss in modern classification remain the problem. Carboniferous records are still impossible to refer to any of the modern moss taxa. Numerous Permian protosphagnalean mosses possess traits that are absent in any extant group and they are therefore treated here as an extinct lineage, whose descendants, if any remain, cannot be recognized among contemporary taxa. Non-protosphagnalean Permian mosses were also fairly diverse, representing morphotypes comparable with Dicranidae and acrocarpous Bryidae, although unequivocal representatives of these subclasses are known only since Cretaceous and Jurassic. Even though Sphagnales is one of two oldest lineages separated from the main trunk of moss phylogenetic tree, it appears in fossil state regularly only since Late Cretaceous, ca. -
Polytrichaceae – Hair Cap Moss Family
POLYTRICHACEAE – HAIR CAP MOSS FAMILY Plant: moss (tend to be larger and more noticeable than most mosses) Stem: mostly erect Root: rhizoids (no root) Leaves: mostly narrowly lanceolate (although quite variable), spirally arranged on stem, lamellae along leaf nerves, often with toothed leaf margins, leaves sharp pointed, most have a hyaline basal sheath Flowers: dioecious; gametophyte (leafy) with sporophyte born at tip of gametophyte (gametophyte generation dimorphic); sporophtyte – setea often long and solitary, capsule 2 to 6 angled (shape variable), calyptra usually of matted or felted hair, single row of (16?) 32 or 64 teeth on peristome Fruit: Other: forms mats or patches; common throughout NA and CAN (not found in some southwest states); prefers acidic conditions Genera: 22+ genera *** species descriptions are general - for full ID see professional texts for full descriptions (sometimes microscopic details are necessary) WARNING – family descriptions are only a layman’s guide and should not be used as definitive POLYTRICHACEAE – HAIR CAP MOSS FAMILY Common Hair Cap [Polytrichum] Moss; Polytrichum commune Hedw. A Polytrichum (Hair Cap) Moss; Polytrichum piliferum Hedw. Common Hair Cap [Polytrichum] Moss Polytrichum commune Hedw. Polytrichaceae (Hair Cap Moss Family) Oak Openings Metropark, Lucas County, Ohio Notes: antheridia (male) rossettes greenish yellow; seta yellowish brown to red, calyptra of yellowish to brownish hair, capsule rectangular to somewhat cubic; leaves erect to spreading, tips recurved, finely toothed from base to tip, large clasping sheath, awn short; plants medium to tall, in mats or clumps in moist areas; most of NA and CAN except some southwestern states ; spring [V Max Brown, 2009] A Polytrichum (Hair Cap) Moss Polytrichum piliferum Hedw. -
Volume 1, Chapter 2-7: Bryophyta
Glime, J. M. 2017. Bryophyta – Bryopsida. Chapt. 2-7. In: Glime, J. M. Bryophyte Ecology. Volume 1. Physiological Ecology. Ebook 2-7-1 sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 10 January 2019 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 2-7 BRYOPHYTA – BRYOPSIDA TABLE OF CONTENTS Bryopsida Definition........................................................................................................................................... 2-7-2 Chromosome Numbers........................................................................................................................................ 2-7-3 Spore Production and Protonemata ..................................................................................................................... 2-7-3 Gametophyte Buds.............................................................................................................................................. 2-7-4 Gametophores ..................................................................................................................................................... 2-7-4 Location of Sex Organs....................................................................................................................................... 2-7-6 Sperm Dispersal .................................................................................................................................................. 2-7-7 Release of Sperm from the Antheridium..................................................................................................... -
Curitiba, Southern Brazil
data Data Descriptor Herbarium of the Pontifical Catholic University of Paraná (HUCP), Curitiba, Southern Brazil Rodrigo A. Kersten 1,*, João A. M. Salesbram 2 and Luiz A. Acra 3 1 Pontifical Catholic University of Paraná, School of Life Sciences, Curitiba 80.215-901, Brazil 2 REFLORA Project, Curitiba, Brazil; [email protected] 3 Pontifical Catholic University of Paraná, School of Life Sciences, Curitiba 80.215-901, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-41-3721-2392 Academic Editor: Martin M. Gossner Received: 22 November 2016; Accepted: 5 February 2017; Published: 10 February 2017 Abstract: The main objective of this paper is to present the herbarium of the Pontifical Catholic University of Parana’s and its collection. The history of the HUCP had its beginning in the middle of the 1970s with the foundation of the Biology Museum that gathered both botanical and zoological specimens. In April 1979 collections were separated and the HUCP was founded with preserved specimens of algae (green, red, and brown), fungi, and embryophytes. As of October 2016, the collection encompasses nearly 25,000 specimens from 4934 species, 1609 genera, and 297 families. Most of the specimens comes from the state of Paraná but there were also specimens from many Brazilian states and other countries, mainly from South America (Chile, Argentina, Uruguay, Paraguay, and Colombia) but also from other parts of the world (Cuba, USA, Spain, Germany, China, and Australia). Our collection includes 42 fungi, 258 gymnosperms, 299 bryophytes, 2809 pteridophytes, 3158 algae, 17,832 angiosperms, and only one type of Mimosa (Mimosa tucumensis Barneby ex Ribas, M. -
An Annotated Checklist of Tasmanian Mosses
15 AN ANNOTATED CHECKLIST OF TASMANIAN MOSSES by P.I Dalton, R.D. Seppelt and A.M. Buchanan An annotated checklist of the Tasmanian mosses is presented to clarify the occurrence of taxa within the state. Some recently collected species, for which there are no published records, have been included. Doubtful records and excluded speciei. are listed separately. The Tasmanian moss flora as recognised here includes 361 species. Key Words: mosses, Tasmania. In BANKS, M.R. et al. (Eds), 1991 (3l:iii): ASPECTS OF TASMANIAN BOTANY -- A TR1BUn TO WINIFRED CURTIS. Roy. Soc. Tasm. Hobart: 15-32. INTRODUCTION in recent years previously unrecorded species have been found as well as several new taxa described. Tasmanian mosses received considerable attention We have assigned genera to families followi ng Crosby during the early botanical exploration of the antipodes. & Magill (1981 ), except where otherwise indicated in One of the earliest accounts was given by Wilson (1859), the case of more recent publications. The arrangement who provided a series of descriptions of the then-known of families, genera and species is in alphabetic order for species, accompanied by coloured illustrations, as ease of access. Taxa known to occur in Taslnania ami Part III of J.D. Hooker's Botany of the Antarctic its neighbouring islands only are listed; those for Voyage. Although there have been a number of papers subantarctic Macquarie Island (politically part of since that time, two significant compilations were Tasmania) are not treated and have been presented published about the tum of the century. The first was by elsewhere (Seppelt 1981). -
Household and Personal Uses
Glime, J. M. 2017. Household and Personal Uses. Chapt. 1-1. In: Glime, J. M. Bryophyte Ecology. Volume 5. Uses. Ebook sponsored 1-1-1 by Michigan Technological University and the International Association of Bryologists. Last updated 5 October 2017 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 1 HOUSEHOLD AND PERSONAL USES TABLE OF CONTENTS Household Uses...................................................................................................................................................1-1-2 Furnishings...................................................................................................................................................1-1-4 Padding and Absorption...............................................................................................................................1-1-5 Mattresses.............................................................................................................................................1-1-6 Shower Mat...........................................................................................................................................1-1-7 Urinal Absorption.................................................................................................................................1-1-8 Cleaning.......................................................................................................................................................1-1-8 Brushes and Brooms.............................................................................................................................1-1-8 -
Bryophyte Ecology Table of Contents
Glime, J. M. 2020. Table of Contents. Bryophyte Ecology. Ebook sponsored by Michigan Technological University 1 and the International Association of Bryologists. Last updated 15 July 2020 and available at <https://digitalcommons.mtu.edu/bryophyte-ecology/>. This file will contain all the volumes, chapters, and headings within chapters to help you find what you want in the book. Once you enter a chapter, there will be a table of contents with clickable page numbers. To search the list, check the upper screen of your pdf reader for a search window or magnifying glass. If there is none, try Ctrl G to open one. TABLE OF CONTENTS BRYOPHYTE ECOLOGY VOLUME 1: PHYSIOLOGICAL ECOLOGY Chapter in Volume 1 1 INTRODUCTION Thinking on a New Scale Adaptations to Land Minimum Size Do Bryophytes Lack Diversity? The "Moss" What's in a Name? Phyla/Divisions Role of Bryology 2 LIFE CYCLES AND MORPHOLOGY 2-1: Meet the Bryophytes Definition of Bryophyte Nomenclature What Makes Bryophytes Unique Who are the Relatives? Two Branches Limitations of Scale Limited by Scale – and No Lignin Limited by Scale – Forced to Be Simple Limited by Scale – Needing to Swim Limited by Scale – and Housing an Embryo Higher Classifications and New Meanings New Meanings for the Term Bryophyte Differences within Bryobiotina 2-2: Life Cycles: Surviving Change The General Bryobiotina Life Cycle Dominant Generation The Life Cycle Life Cycle Controls Generation Time Importance Longevity and Totipotency 2-3: Marchantiophyta Distinguishing Marchantiophyta Elaters Leafy or Thallose? Class -
Endemic Genera of Bryophytes of North America (North of Mexico)
Preslia, Praha, 76: 255–277, 2004 255 Endemic genera of bryophytes of North America (north of Mexico) Endemické rody mechorostů Severní Ameriky Wilfred Borden S c h o f i e l d Dedicated to the memory of Emil Hadač Department of Botany, University Boulevard 3529-6270, Vancouver B. C., Canada V6T 1Z4, e-mail: [email protected] Schofield W. B. (2004): Endemic genera of bryophytes of North America (north of Mexico). – Preslia, Praha, 76: 255–277. There are 20 endemic genera of mosses and three of liverworts in North America, north of Mexico. All are monotypic except Thelia, with three species. General ecology, reproduction, distribution and nomenclature are discussed for each genus. Distribution maps are provided. The Mexican as well as Neotropical genera of bryophytes are also noted without detailed discussion. K e y w o r d s : bryophytes, distribution, ecology, endemic, liverworts, mosses, reproduction, North America Introduction Endemism in bryophyte genera of North America (north of Mexico) appears not to have been discussed in detail previously. Only the mention of genera is included in Schofield (1980) with no detail presented. Distribution maps of several genera have appeared in scattered publications. The present paper provides distribution maps of all endemic bryophyte genera for the region and considers the biology and taxonomy of each. When compared to vascular plants, endemism in bryophyte genera in the region is low. There are 20 genera of mosses and three of liverworts. The moss families Andreaeobryaceae, Pseudoditrichaceae and Theliaceae and the liverwort family Gyrothyraceae are endemics; all are monotypic. A total of 16 families of mosses and three of liverworts that possess endemic genera are represented. -
Andreaeobryum Macrosporum (Andreaeobryopsida) in Russia
Arctoa (2016) 25: 1–51 doi: 10.15298/arctoa.25.01 ANDREAEOBRYUM MACROSPORUM (ANDREAEOBRYOPSIDA) IN RUSSIA, WITH ADDITIONAL DATA ON ITS MORPHOLOGY ANDREAEOBRYUM MACROSPORUM (ANDREAEOBRYOPSIDA) В РОССИИ, С ДОПОЛНИТЕЛЬНЫМИ ДАННЫМИ О ЕГО МОРФОЛОГИИ MICHAEL S. IGNATOV1,2, ELENA A. IGNATOVA1, VLADIMIR E. FEDOSOV1, OLEG V. I VANOV3, ELENA I. IVANOVA4, MARIA A. KOLESNIKOVA5, SVETLANA V. P OLEVOVA1, ULYANA N. SPIRINA2,6 & TATYANA V. V ORONKOVA2 МИХАИЛ С. ИГНАТОВ1,2, ЕЛЕНА А. ИГНАТОВА1, ВЛАДИМИР Э. ФЕДОСОВ1, ОЛЕГ В. ИВАНОВ3, ЕЛЕНА И. ИВАНОВА4, МАРИЯ А. КОЛЕСНИКОВА5, СВЕТЛАНА В. ПОЛЕВОВА1, УЛЬЯНА Н. СПИРИНА2,6, ТАТЬЯНА В. ВОРОНКОВА2 Abstract Andreaeobryum macrosporum is newly found in Yakutia, in the Sette-Daban Mountain Range, ca. 3000 km west of its known localities in Alaska. This is the first record of the genus and the class Andreaeobryopsida outside of North America. The species was found on calcareous rock outcrops, above the tree line in the Pinus pumila altitudinal belt. The morphology of the Siberian plants is described, focusing particularly on characters less studied in previous observations. Among these are: (1) axillary hairs with a complicated beak structure, apparently regulating mucilage exudation; (2) anacrogyny and the ability to substitute half of a leaf with an archegonium; (3) specific and relatively long sporophyte development within the epigonium, which is filled with mucilage mixed with macerated cells from the inner wall of the epigonium; (4) foot formed by cells with numerous chloroplasts, with inflated surface cells, -
Field Guide to the Moss Genera in New Jersey by Keith Bowman
Field Guide to the Moss Genera in New Jersey With Coefficient of Conservation and Indicator Status Keith Bowman, PhD 10/20/2017 Acknowledgements There are many individuals that have been essential to this project. Dr. Eric Karlin compiled the initial annotated list of New Jersey moss taxa. Second, I would like to recognize the contributions of the many northeastern bryologists that aided in the development of the initial coefficient of conservation values included in this guide including Dr. Richard Andrus, Dr. Barbara Andreas, Dr. Terry O’Brien, Dr. Scott Schuette, and Dr. Sean Robinson. I would also like to acknowledge the valuable photographic contributions from Kathleen S. Walz, Dr. Robert Klips, and Dr. Michael Lüth. Funding for this project was provided by the United States Environmental Protection Agency, Region 2, State Wetlands Protection Development Grant, Section 104(B)(3); CFDA No. 66.461, CD97225809. Recommended Citation: Bowman, Keith. 2017. Field Guide to the Moss Genera in New Jersey With Coefficient of Conservation and Indicator Status. New Jersey Department of Environmental Protection, New Jersey Forest Service, Office of Natural Lands Management, Trenton, NJ, 08625. Submitted to United States Environmental Protection Agency, Region 2, State Wetlands Protection Development Grant, Section 104(B)(3); CFDA No. 66.461, CD97225809. i Table of Contents Introduction .................................................................................................................................................. 1 Descriptions -
Water Relations: Conducting Structures
Glime, J. M. 2017. Water Relations: Conducting Structures. Chapt. 7-1. In: Glime, J. M. Bryophyte Ecology. Volume 1. Physiological 7-1-1 Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 7 March 2017 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 7-1 WATER RELATIONS: CONDUCTING STRUCTURES TABLE OF CONTENTS Movement to Land .............................................................................................................................................. 7-1-2 Bryophytes as Sponges ....................................................................................................................................... 7-1-2 Conducting Structure .......................................................................................................................................... 7-1-4 Leptomes and Hydromes............................................................................................................................. 7-1-8 Hydroids............................................................................................................................................. 7-1-12 Leptoids.............................................................................................................................................. 7-1-14 Rhizome..................................................................................................................................................... 7-1-15 Leaves....................................................................................................................................................... -
Arctic Biodiversity Assessment
310 Arctic Biodiversity Assessment Purple saxifrage Saxifraga oppositifolia is a very common plant in poorly vegetated areas all over the high Arctic. It even grows on Kaffeklubben Island in N Greenland, at 83°40’ N, the most northerly plant locality in the world. It is one of the first plants to flower in spring and serves as the territorial flower of Nunavut in Canada. Zackenberg 2003. Photo: Erik Thomsen. 311 Chapter 9 Plants Lead Authors Fred J.A. Daniëls, Lynn J. Gillespie and Michel Poulin Contributing Authors Olga M. Afonina, Inger Greve Alsos, Mora Aronsson, Helga Bültmann, Stefanie Ickert-Bond, Nadya A. Konstantinova, Connie Lovejoy, Henry Väre and Kristine Bakke Westergaard Contents Summary ..............................................................312 9.4. Algae ..............................................................339 9.1. Introduction ......................................................313 9.4.1. Major algal groups ..........................................341 9.4.2. Arctic algal taxonomic diversity and regionality ..............342 9.2. Vascular plants ....................................................314 9.4.2.1. Russia ...............................................343 9.2.1. Taxonomic categories and species groups ....................314 9.4.2.2. Svalbard ............................................344 9.2.2. The Arctic territory and its subdivision .......................315 9.4.2.3. Greenland ...........................................344 9.2.3. The flora of the Arctic ........................................316