Meet the Bryophytes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Volume 1, Chapter 2-7: Bryophyta
Glime, J. M. 2017. Bryophyta – Bryopsida. Chapt. 2-7. In: Glime, J. M. Bryophyte Ecology. Volume 1. Physiological Ecology. Ebook 2-7-1 sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 10 January 2019 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 2-7 BRYOPHYTA – BRYOPSIDA TABLE OF CONTENTS Bryopsida Definition........................................................................................................................................... 2-7-2 Chromosome Numbers........................................................................................................................................ 2-7-3 Spore Production and Protonemata ..................................................................................................................... 2-7-3 Gametophyte Buds.............................................................................................................................................. 2-7-4 Gametophores ..................................................................................................................................................... 2-7-4 Location of Sex Organs....................................................................................................................................... 2-7-6 Sperm Dispersal .................................................................................................................................................. 2-7-7 Release of Sperm from the Antheridium..................................................................................................... -
An Annotated Checklist of Tasmanian Mosses
15 AN ANNOTATED CHECKLIST OF TASMANIAN MOSSES by P.I Dalton, R.D. Seppelt and A.M. Buchanan An annotated checklist of the Tasmanian mosses is presented to clarify the occurrence of taxa within the state. Some recently collected species, for which there are no published records, have been included. Doubtful records and excluded speciei. are listed separately. The Tasmanian moss flora as recognised here includes 361 species. Key Words: mosses, Tasmania. In BANKS, M.R. et al. (Eds), 1991 (3l:iii): ASPECTS OF TASMANIAN BOTANY -- A TR1BUn TO WINIFRED CURTIS. Roy. Soc. Tasm. Hobart: 15-32. INTRODUCTION in recent years previously unrecorded species have been found as well as several new taxa described. Tasmanian mosses received considerable attention We have assigned genera to families followi ng Crosby during the early botanical exploration of the antipodes. & Magill (1981 ), except where otherwise indicated in One of the earliest accounts was given by Wilson (1859), the case of more recent publications. The arrangement who provided a series of descriptions of the then-known of families, genera and species is in alphabetic order for species, accompanied by coloured illustrations, as ease of access. Taxa known to occur in Taslnania ami Part III of J.D. Hooker's Botany of the Antarctic its neighbouring islands only are listed; those for Voyage. Although there have been a number of papers subantarctic Macquarie Island (politically part of since that time, two significant compilations were Tasmania) are not treated and have been presented published about the tum of the century. The first was by elsewhere (Seppelt 1981). -
Household and Personal Uses
Glime, J. M. 2017. Household and Personal Uses. Chapt. 1-1. In: Glime, J. M. Bryophyte Ecology. Volume 5. Uses. Ebook sponsored 1-1-1 by Michigan Technological University and the International Association of Bryologists. Last updated 5 October 2017 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 1 HOUSEHOLD AND PERSONAL USES TABLE OF CONTENTS Household Uses...................................................................................................................................................1-1-2 Furnishings...................................................................................................................................................1-1-4 Padding and Absorption...............................................................................................................................1-1-5 Mattresses.............................................................................................................................................1-1-6 Shower Mat...........................................................................................................................................1-1-7 Urinal Absorption.................................................................................................................................1-1-8 Cleaning.......................................................................................................................................................1-1-8 Brushes and Brooms.............................................................................................................................1-1-8 -
Water Relations: Conducting Structures
Glime, J. M. 2017. Water Relations: Conducting Structures. Chapt. 7-1. In: Glime, J. M. Bryophyte Ecology. Volume 1. Physiological 7-1-1 Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 7 March 2017 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 7-1 WATER RELATIONS: CONDUCTING STRUCTURES TABLE OF CONTENTS Movement to Land .............................................................................................................................................. 7-1-2 Bryophytes as Sponges ....................................................................................................................................... 7-1-2 Conducting Structure .......................................................................................................................................... 7-1-4 Leptomes and Hydromes............................................................................................................................. 7-1-8 Hydroids............................................................................................................................................. 7-1-12 Leptoids.............................................................................................................................................. 7-1-14 Rhizome..................................................................................................................................................... 7-1-15 Leaves....................................................................................................................................................... -
Volume 1, Chapter 7-4A: Water Relations: Leaf Strategies-Structural
Glime, J. M. 2017. Water Relations: Leaf Strategies – Structural. Chapt. 7-4a. In: Glime, J. M. Bryophyte Ecology. Volume 1. 7-4a-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 17 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 7-4a WATER RELATIONS: LEAF STRATEGIES – STRUCTURAL TABLE OF CONTENTS Overlapping Leaves .......................................................................................................................................... 7-4a-4 Leaves Curving or Twisting upon Drying ......................................................................................................... 7-4a-5 Thickened Leaf.................................................................................................................................................. 7-4a-5 Concave Leaves ................................................................................................................................................ 7-4a-7 Cucullate Leaves ............................................................................................................................................. 7-4a-10 Plications ......................................................................................................................................................... 7-4a-10 Revolute and Involute Margins ...................................................................................................................... -
Botany News. 2. May 20, 2020 California Academy of Sciences
Botany News. 2. May 20, 2020 California Academy of Sciences Tristemma mauritianum (A Madagascar Princess Flower) F. Almeda Hello to our volunteers, We celebrated a milestone this month. It has been 15 years since Deb Trock (Director of Collections and Botany Collections Manager) joined the Academy! We held a surprise party for her online--she was expecting a boring meeting and instead she was greeted with home-made signs saying congratulations (one of the fancier ones is below), many smiling faces, and speeches recognizing her contributions to the Academy collections and to the staff. We would have preferred sharing this special moment with her in-person, but we are adapting and enjoying the time that we can spend together virtually. We hope you enjoy our second newsletter, and we hope you are all keeping well and busy. With our best wishes from the Botany Department A Walk Through the Orchids in San Francisco Tom Daniel During my walk home from the Academy through four or five different neighborhoods on the west side of San Francisco, I see several different large-flowered and brightly colored orchids that residents have in their yards, porches, and windows. For the past few years, I have been growing a beautiful orchid in a bark-filled pot in my backyard. Our department’s research associate and orchid specialist, De Mally, gave Mary and me a cluster of pseudobulbs of Maxillaria soconuscana (recently transferred to a different genus, as Psittacoglossum soconuscanum), a native of Chiapas, Mexico that former botany curator Dennis Breedlove collected in 1986, and which she and Dennis described as new to science in 1989. -
Water Transport and Gas Exchange in the Non-Vascular Plant Dendroligotrichum Dendroides (Brid
Gayana Bot. 68(1): 89-92, 2011. Comunicación breve ISSN 0016-5301 Water transport and gas exchange in the non-vascular plant Dendroligotrichum dendroides (Brid. ex Hedw.) Broth. (Polytrichaceae, Bryophyta) Transporte de agua e intercambio de gases en la planta no vascular Dendroligotrichum dendroides (Brid. ex Hedw.) Broth. (Polytrichaceae, Bryophyta) CRISTIAN ATALA Laboratorio de Anatomía Funcional de Plantas, Departamento de Ciencia y Tecnología Vegetal (DCTV), Universidad de Concepción Campus Los Ángeles, Juan Antonio Coloma 0201, Los Ángeles, Chile. [email protected] RESUMEN Se midió la conductancia hidráulica específi ca (Ks) y el intercambio de gases en individuos de D. dendroides (Polytrichaceae, Musci). Ks fue más alta que en algunas coníferas y comparable con algunas angiospermas leñosas, pero la fotosíntesis (Amax) fue relativamente baja. Los resultados muestran que una planta no vascular puede alcanzar altos valores de Ks, sugiriendo un funcionamiento “vascular” similar a las traqueófi tas. INTRODUCTION Mosses are non-vascular plants, generally short, and lacking There is a positive relationship between hydraulic specialized vascular tissue. They are poikilohydric, meaning conductance and carbon gain (Meinzer & Grantz 1990, they are strongly dependent on environmental moisture Sperry & Pockman 1993, Hubbard et al. 2001). The (Proctor 1981). Mosses belonging to the Polytrichaceae photosynthesis rate in some mosses is lower than in most present a conductive tissue analogous to xylem, and some vascular plants (Brodribb et al. 2007), with the exception species can reach 60 cm to ca. 1 m height. Several species of of Polytrichum commune Hedw. that reach values similar to the Polytrichaceae have been studied regarding the anatomy gimnosperms (Brodribb et al. -
Telopea · Escholarship.Usyd.Edu.Au/Journals/Index.Php/TEL · ISSN 0312-9764 (Print) · ISSN 2200-4025 (Online)
Volume 2(5): 455-533 T elopea Publication Date: 29 October 1984 . , . _ . The Royal dx.doi.org/io.775i/teiopeai9844501 Journal ot Plant Systematics “ 2™ plantnet.rbgsyd.nsw.gov.au/Telopea · escholarship.usyd.edu.au/journals/index.php/TEL · ISSN 0312-9764 (Print) · ISSN 2200-4025 (Online) Telopea 2(5): 455-533 (1984) 455 CENSUS OF NEW SOUTH WALES MOSSES H e l e n P. R a m sa y * (Accepted for publication 29.3.1983) ABSTRACT Ramsay, Helen P. (School of Botany, University of New South Wales, Kensington, N.S.W. Australia 2033) 1984. Census of New South Wales Mosses. Telopea 2(5): 455-533 — The Census gives a checklist containing 527 species of mosses in 171 genera and 56 families. Compilation of the list is based on literature and information obtained from herbarium specimens in Australian herbaria. The distribution of species is recorded for 13 ecogeographic regions of New South Wales. Included are lists of synonyms, nomina nuda, unsubstantiated rccords and a bibliography. CONTENTS Introductory material ................................................................................................................ 455 Tabular census ................................................................................................................................ 460 Index to synonyms ......................................................................................................................... 503 List o f unsubstantiated records ................................................................................................ 509 N -
Bryophyte Biology Second Edition
This page intentionally left blank Bryophyte Biology Second Edition Bryophyte Biology provides a comprehensive yet succinct overview of the hornworts, liverworts, and mosses: diverse groups of land plants that occupy a great variety of habitats throughout the world. This new edition covers essential aspects of bryophyte biology, from morphology, physiological ecology and conservation, to speciation and genomics. Revised classifications incorporate contributions from recent phylogenetic studies. Six new chapters complement fully updated chapters from the original book to provide a completely up-to-date resource. New chapters focus on the contributions of Physcomitrella to plant genomic research, population ecology of bryophytes, mechanisms of drought tolerance, a phylogenomic perspective on land plant evolution, and problems and progress of bryophyte speciation and conservation. Written by leaders in the field, this book offers an authoritative treatment of bryophyte biology, with rich citation of the current literature, suitable for advanced students and researchers. BERNARD GOFFINET is an Associate Professor in Ecology and Evolutionary Biology at the University of Connecticut and has contributed to nearly 80 publications. His current research spans from chloroplast genome evolution in liverworts and the phylogeny of mosses, to the systematics of lichen-forming fungi. A. JONATHAN SHAW is a Professor at the Biology Department at Duke University, an Associate Editor for several scientific journals, and Chairman for the Board of Directors, Highlands Biological Station. He has published over 130 scientific papers and book chapters. His research interests include the systematics and phylogenetics of mosses and liverworts and population genetics of peat mosses. Bryophyte Biology Second Edition BERNARD GOFFINET University of Connecticut, USA AND A. -
Helen P. Ramsay1 and Andi Cairns2
Cunninghamia 8(3): 2004 Ramsay & Cairns, Mosses in the Wet Tropics bioregion NE Queensland 371 Habitat, distribution and the phytogeographical affinities of mosses in the Wet Tropics bioregion, north–east Queensland, Australia. Helen P. Ramsay1 and Andi Cairns2 1National Herbarium of New South Wales, Royal Botanic Gardens, Sydney NSW 2000, AUSTRALIA. 2School of Tropical Biology, James Cook University, Townsville, Queensland 4811, AUSTRALIA. Abstract: A checklist of the mosses (Bryophyta) of the Wet Tropics bioregion, north-east Queensland is presented. Included is an update on the taxonomy of species, listing a total of 408 taxa. The habitat and distribution patterns of species within the area and in Australia, together with information on the phytogeographical affinities of these taxa in related areas beyond Australia, are discussed. Cunninghamia (2004) 8(3): 371–408 Dedication The authors present this work as a tribute to the memory of the late Ilma Stone (1913–2001) and Heinar Streimann (1938–2001), whose work in the area formed the basis for these studies. The work began in the 1980s, between 1984 and 1998 with Ilma Stone, whose taxonomic studies and data from collections made in the area over many years were immeasurable. Heinar Streimann assisted later in the 1990s, with various taxonomic contributions and data from many collections. Without their assistance and knowledge, the work would not have been written. Their deaths in January 2001 and August 2001 respectively were a serious and tragic blow to Australian bryology. Introduction Mosses and liverworts, the major groups of bryophytes, are a Bryophytes in rainforests significant component of the biodiversity in the Australian For bryophytes, rainforests provide niches largely absent in wet tropics, in north-east Queensland, occurring in all other communities (Pócs 1982, Richards 1984, Gradstein ecosystems as colonisers of soil, rocks, fallen logs, and as 1992) including soil, earth banks, rocks, fallen trees and epiphytes and epiphylls. -
The Diversity of the Polytrichopsida—A Review
Bry. Div. Evo. 043 (1): 098–111 ISSN 2381-9677 (print edition) DIVERSITY & https://www.mapress.com/j/bde BRYOPHYTEEVOLUTION Copyright © 2021 Magnolia Press Article ISSN 2381-9685 (online edition) https://doi.org/10.11646/bde.43.1.8 The diversity of the Polytrichopsida—a review NEIL BELL1, ISURU KARIYAWASAM1,2, JORGE FLORES3 & JAAKKO HYVÖNEN3,4 1Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, Scotland �[email protected]; https://orcid.org/0000-0002-2401-2968 2Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka �[email protected]; https://orcid.org/0000-0002-2527-3502 3Finnish Museum of Natural History (Botany), PO Box 7, 00014 Univ. Helsinki, Finland �[email protected]; https://orcid.org/0000-0002-2657-6126 4Organismal & Evol. Biology & Viikki Plant Sci. Center, Univ. Helsinki, Finland �[email protected]; https://orcid.org/0000-0001-7559-8295 Abstract The class Polytrichopsida are a phylogenetically isolated moss lineage of around 200 species. The nematodontous peristome found in most species has a fundamentally different structure from the arthrodontous peristome of the Bryopsida and may be independently evolved from an ancestral type of spore dehiscence apparatus. Within the class generic circumscriptions and relationships are now fairly confidently resolved and more or less congruent with the most developed pre-molecular taxonomy. Drawing on previously published datasets, we conducted a phylogenetic analysis of a novel matrix of terminals representing diversity across the Polytrichopsida. The class comprises 17 extant genera and two known only from fossils. Most of these are numerically small, the most notable exception being Pogonatum with over 50 species. -
Phylogeny of the Moss Class Polytrichopsida (BRYOPHYTA): Generic-Level Structure and Incongruent Gene Trees
Molecular Phylogenetics and Evolution 55 (2010) 381–398 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogeny of the moss class Polytrichopsida (BRYOPHYTA): Generic-level structure and incongruent gene trees Neil E. Bell *, Jaakko Hyvönen Botanical Museum, P.O. Box 7, FI-00014 University of Helsinki, Finland Plant Biology, P.O. Box 65, FI-00014 University of Helsinki, Finland article info abstract Article history: Analysis of an extensive new molecular dataset for the moss class Polytrichopsida provides convincing Received 26 February 2009 support for many traditionally recognised genera and identifies higher level phylogenetic structure with Revised 27 January 2010 a strong geographic component. A large apical clade that is most diverse in the northern hemisphere is Accepted 4 February 2010 subtended by a grade of southern temperate and tropical genera, while the earliest diverging lineages Available online 10 February 2010 have widely separated relictual distributions. However, there is strongly supported topological incongru- ence between the nuclear 18S rRNA gene tree and the chloroplast and mitochondrial data for the posi- Keywords: tions of some taxa and notably for the status of Pogonatum. While Pogonatum is unambiguously Polytrichopsida paraphyletic in the 18S tree, it is well supported as monophyletic by the combined chloroplast and mito- Polytrichales Polytrichaceae chondrial data, this being corroborated by several distinctive morphological synapomorphies and a Phytogeography 51–53 bp deletion in the rps4-trnS spacer. We explore various reticulate historical processes and meth- Phylogeny odological issues as possible explanations for incongruence, and suggest that either (1) the 18S topology Polysporangiophyte is an artefact created by convergence of substitutions at specific sites due to functional and/or molecular- Embryophyte structural constraints not accounted for by the model, or (2) the incongruence is a product of ancient 18S hybridization events.