Laboratory-Skills-Training-Handbook

Total Page:16

File Type:pdf, Size:1020Kb

Laboratory-Skills-Training-Handbook Laboratory Skills Training Handbook Charlotte Bailey Vicki Barwick AM Laboratory Skills Training Handbook Charlotte Bailey Vicki Barwick May 2007 ISBN 978-0-948926-25-9 1 Introduction 1.1 The need for a laboratory skills training handbook Although analysis of samples is frequently carried out by using sophisticated instruments, the importance of basic laboratory skills cannot be overlooked. The majority of instruments require calibration via the analysis of sets of calibration standards. It is therefore essential that analysts are able to prepare such solutions accurately. The analyst also needs to be able to handle and prepare samples correctly and be able to make ‘routine’ measurements, such as measurements of pH, reliably. Laboratories are increasingly being required to demonstrate the competence of their staff to carry out particular tasks and to document how competence was assessed. As well as sound practical skills, analysts should have at least a basic understanding of important quality issues such as method validation, traceability and quality control. The aim of this handbook is to provide a basic training package in key laboratory skills and to provide an introduction to important quality topics. Those responsible for training analysts can use the handbook to help plan training programmes. Trainees can use the handbook as a guide to best practice for a range of laboratory skills and to gain a basic understanding of quality issues. 1.2 Structure of the handbook and how to use it This handbook is divided into two sections. Part A is aimed at the trainee analyst. Chapter A1 contains the essential health and safety information that analysts should be familiar with to enable them to work safely in the laboratory. It also covers the selection of test methods and equipment plus key aspects to consider when planning and carrying out an analysis. Chapter A2 covers sample handling and storage. Chapter A3 covers the key laboratory skills that analysts need in order to be able to carry out analytical work with the required level of accuracy. There are questions relating to each ‘skill’ to test understanding. Chapter A4 introduces the key topics relating to quality assurance and quality control that analysts should be familiar with. Finally, Chapter A5 addresses data handling and reporting of results. Part B of the handbook is aimed at those responsible for planning and carrying out the training of analysts. For each of the key laboratory skills covered in Chapter A3 there are key learning points, suggestions for assessing competence and observations which may indicate that retraining is required. 1.3 A note about units of volume Volumes can be expressed in a number of different ways, e.g. cm3, mL, dm3, L. In this handbook we have used millilitres (mL) and litres (L) as the units of volume. However, you may encounter cm3 and dm3 in other texts or standard operating procedures. Remember that 1 mL is equivalent to 1 cm3 and that 1 L is equivalent to 1 dm3 (and that 1 L contains 1000 mL). 1.4 Acknowledgements Production of this handbook was supported under contract with the Department of Trade and Industry as part of the National Measurement System Valid Analytical Measurement (VAM) programme. The authors would like to thank everyone who provided suggestions on the content of the handbook, in particular, members of the VAM Clinical, Food, Industrial and © LGC Limited 2007 Environment Reference Materials User Groups, and members of the ACB Education Committee. We would also like to thank Pete Colwell (LGC), Andy Earls (LGC), Martyn Egerton (West Park Hospital, Epsom), Stephen Halloran (Royal Surrey County Hospital) and Elizabeth Prichard (LGC) for reviewing and commenting on drafts of the handbook. © LGC Limited 2007 Contents PART A: INFORMATION FOR THE ANALYST 1 A1 WORKING IN THE LABORATORY 1 A1.1 Health and safety issues 1 A1.2 Method and equipment selection 4 A1.2.1 Method selection 4 A1.2.2 Equipment selection 5 A1.3 The importance of standard operating procedures 6 A1.4 Carrying out an analysis 7 A2 SAMPLE HANDLING AND STORAGE 9 A2.1 Receiving samples 9 A2.2 Labelling 9 A2.3 Storage 10 A2.3.1 Containers 10 A2.3.2 Storage conditions 10 A2.4 Sample tracking 11 A3 KEY LABORATORY SKILLS 12 A3.1 Measuring volume 12 A3.1.1 Types of equipment available 12 A3.1.2 Markings on equipment used for volumetric measurements 15 A3.1.3 Selecting a suitable piece of equipment 16 A3.1.4 Cleaning glassware 18 A3.1.5 Checking the accuracy of the volume of liquid contained in/delivered by the equipment 19 A3.1.6 Checklists for making measurements of volume 20 A3.1.7 Questions 25 A3.2 Measuring mass 27 A3.2.1 Mass versus weight 27 A3.2.2 Types of balance available 27 A3.2.3 Selecting a suitable balance 28 A3.2.4 Checking the balance accuracy and set up 29 A3.2.5 Correct use of balances for different applications 31 A3.2.6 Checklist for making measurements of mass 34 A3.2.7 Questions 35 A3.3 Measuring pH 36 A3.3.1 What is pH? 36 A3.3.2 Equipment for measuring pH 37 A3.3.3 Choosing a suitable electrode 38 A3.3.4 Care of electrodes 40 A3.3.5 Calibration of pH meters 42 A3.3.6 Measuring the pH of the test sample 43 A3.3.7 Checklist for making pH measurements using a pH meter 44 A3.3.8 Questions 45 A3.4 Preparing solutions of known concentration 46 A3.4.1 When are solutions of known concentration used? 46 A3.4.2 Calculating the concentration of solutions 47 A3.4.3 Selecting a suitable material to prepare the solution 52 A3.4.4 Practical steps in preparing solutions of known concentration 52 A3.4.5 Labelling and storage of solutions 54 © LGC Limited 2007 A3.4.6 Checklist for preparing solutions of known concentration 55 A3.4.7 Questions 57 A3.5 Preparing reagent solutions 59 A3.5.1 Calculating the concentration of reagent solutions 59 A3.5.2 Preparing reagent solutions 60 A3.5.3 Labelling and storage of reagent solutions 60 A3.5.4 Checklist for preparing reagent solutions 61 A3.5.5 Question 61 A3.6 Carrying out a titration 63 A3.6.1 Principles of titration 63 A3.6.2 Carrying out a standardisation experiment 64 A3.6.3 Detecting the end-point 64 A3.6.4 Carrying out a titration 66 A3.6.5 Titration calculations 68 A3.6.6 Checklist for carrying out a titration 71 A3.6.7 Questions 71 A3.7 Centrifugation 73 A3.7.1 What is centrifugation and when is it used? 73 A3.7.2 rpm versus g 73 A3.7.3 Different types of centrifuge 74 A3.7.4 Correct operation of a centrifuge: safety and quality issues 77 A3.7.5 Checklist for using a centrifuge 80 A3.7.6 Questions 81 A4 QUALITY ISSUES 82 A4.1 Definition of quality 82 A4.2 Quality management, quality assurance and quality control 83 A4.2.1 International quality standards 84 A4.3 Method validation 85 A4.3.1 Definition of validation 85 A4.3.2 When is method validation required? 86 A4.3.3 How much validation is required? 86 A4.3.4 Method performance parameters 87 A4.4 Calibration and traceability 92 A4.5 Documenting test methods 95 A4.6 Introduction to control charts 97 A4.7 Proficiency testing and external quality assessment 98 A4.7.1 Scoring systems in PT schemes 99 A4.7.2 Evaluation of performance scores 100 A4.8 Errors and uncertainty 100 A4.8.1 Random errors 101 A4.8.2 Systematic errors 101 A4.8.3 Evaluating measurement uncertainty 101 A4.8.4 Why is measurement uncertainty important? 104 A5 DATA HANDLING AND REPORTING RESULTS 105 A5.1 Essential statistical terms 105 A5.2 Units of measurement 107 A5.2.1 Concentration expressed as a percentage 107 A5.2.2 Concentration expressed as m/m or m/v 108 A5.2.3 Concentration expressed as parts per million or parts per billion 108 A5.3 Reporting results 109 © LGC Limited 2007 A5.3.1 Decimal places and significant figures 109 A5.3.2 Rounding rules 111 A5.3.3 Deciding the number of significant figures to report 112 A5.3.4 Checking data 114 A5.4 Questions 115 PART B: INFORMATION FOR THE SUPERVISOR 119 B1 ACCREDITATION REQUIREMENTS 119 B2 GENERAL APPROACH TO ASSESSING COMPETENCE 120 B3 KEY LABORATORY SKILLS 121 B3.1 Measuring volume 121 B3.1.1 Key learning points for measuring volume 121 B3.1.2 Assessing competence in using volumetric glassware 123 B3.1.3 Observations indicating that retraining may be required 124 B3.2 Measuring mass 124 B3.2.1 Key learning points for measuring mass 124 B3.2.2 Assessing competence in making measurement of mass 125 B3.2.3 Observations indicating that retraining may be required 125 B3.3 Measuring pH 126 B3.3.1 Key learning points for measuring pH 126 B3.3.2 Assessing competence in making measurement of pH 126 B3.3.3 Observations indicating that retraining may be required 126 B3.4 Preparing solutions of known concentration 127 B3.4.1 Key learning points for preparing solutions of known concentration 127 B3.4.2 Assessing competence in preparing solutions of known concentration 127 B3.4.3 Observations indicating that retraining may be required 128 B3.5 Preparing reagent solutions 128 B3.5.1 Key learning points for preparing reagent solutions 128 B3.5.2 Assessing competence in preparing reagent solutions 129 B3.5.3 Observations indicating that retraining may be required 129 B3.6 Carrying out a titration 129 B3.6.1 Key learning points for carrying out a titration 129 B3.6.2 Assessing competence in carrying out a titration 130 B3.6.3 Observations indicating that retraining may be required 130 B3.7 Centrifugation 130 B3.7.1 Key learning points for using a centrifuge 130 B3.7.2 Assessing competence in using a centrifuge 131 B3.7.3 Observations indicating that retraining may be required 131 APPENDIX 1: GLOSSARY OF TERMS 133 APPENDIX 2: ANSWERS TO QUESTIONS 137 APPENDIX 3: TRAINING RECORD 149 APPENDIX 4: ADDITIONAL RESOURCES 152 © LGC Limited 2007 © LGC Limited 2007 Part A Information for the analyst © LGC Limited 2007 © LGC Limited 2007 Part A: Information for the analyst A1 Working in the laboratory The laboratory is a potentially hazardous working environment.
Recommended publications
  • Catalogue of Chemical, Philosophical and Other Glassware For
    CHEMICAL GLASSWARE. PHILADELPHIA & NEW YORK 1 8 8 1 1 8 8 1 CATALOGUE OF CHEMICAL, PHILOSOPHICAL AN D OTHER GLASSWARE FOR LABORATORIES, COLLEGES, MUSEUMS, ASSAYING WORKS, INSTITUTES OF TECHNOLOGY, ACADEMIES, &c., &c. MANUFACTURED BY WHITALL, TATUM & CO., No. 410 RACE STREET, 46 and 48 BARCLAY ST., P. O. Lock Box P, P. O. Box 3814, PHILADELPHIA. N E W Y O R K . 1 8 8 1 . For a full line of G lassw are of various kinds, send for our G eneral C atalogue. CHEMICAL REAGENTS AT NET PRICES. Discount on Chemical List, pages vi.-xiv., and Bottles, x v i i i . - x x . , .................................................................................45 p e r cent. Discount on Flint Homoeopathic Vials, pages xxi.-xxiii., 25 “ “ Graduates, pages xvi., xvii., - - 25 “ Reagents, pp. iv., v.; Sundries, p. xv.; and Scales, p. xxiv. at net prices. The references by pages are to oar GENERAL CATALOGUE. ii CHEMICAL AND PHILOSOPHICAL GLASSWARE FOR Laboratories, Colleges, Museums, Assaying Works, Institutes of Technology, Academies, &c. Attention is invited to the Line of Chemical Glass Ware of our own manufacture. By purchasing this class of goods at home, instead of depending upon foreign sources of supply, the carrying of a large and expensive stock is avoided; the opportunity of effecting changes in the form of apparatus for special purposes is afforded, and promptness in filling orders greatly facilitated. Under the advice and direction of experienced chemists, we have for a number of years been perfecting our work in these lines, and now feel confident that the character both of the glass and work­ manship will be found, for all the usual needs of the Laboratory, to compare favorably with the imported wares.
    [Show full text]
  • Laboratory Glassware N Edition No
    Laboratory Glassware n Edition No. 2 n Index Introduction 3 Ground joint glassware 13 Volumetric glassware 53 General laboratory glassware 65 Alphabetical index 76 Índice alfabético 77 Index Reference index 78 [email protected] Scharlau has been in the scientific glassware business for over 15 years Until now Scharlab S.L. had limited its sales to the Spanish market. However, now, coinciding with the inauguration of the new workshop next to our warehouse in Sentmenat, we are ready to export our scientific glassware to other countries. Standard and made to order Products for which there is regular demand are produced in larger Scharlau glassware quantities and then stocked for almost immediate supply. Other products are either manufactured directly from glass tubing or are constructed from a number of semi-finished products. Quality Even today, scientific glassblowing remains a highly skilled hand craft and the quality of glassware depends on the skill of each blower. Careful selection of the raw glass ensures that our final products are free from imperfections such as air lines, scratches and stones. You will be able to judge for yourself the workmanship of our glassware products. Safety All our glassware is annealed and made stress free to avoid breakage. Fax: +34 93 715 67 25 Scharlab The Lab Sourcing Group 3 www.scharlab.com Glassware Scharlau glassware is made from borosilicate glass that meets the specifications of the following standards: BS ISO 3585, DIN 12217 Type 3.3 Borosilicate glass ASTM E-438 Type 1 Class A Borosilicate glass US Pharmacopoeia Type 1 Borosilicate glass European Pharmacopoeia Type 1 Glass The typical chemical composition of our borosilicate glass is as follows: O Si 2 81% B2O3 13% Na2O 4% Al2O3 2% Glass is an inorganic substance that on cooling becomes rigid without crystallising and therefore it has no melting point as such.
    [Show full text]
  • Microinjection & Transfection 2016-2017
    WORLD PRECISION INSTRUMENTS Instrumenting scientific ideas Microinjection & Transfection 2016-2017 Come see us at The Allied Genetics 2016 Conference • July 13-17 • Booths # 623 & 816/818 Everything you need for Microinjection Microinjection processes use either metal microinjection Recently, WPI introduced its customizable Microinjection needles or glass micropipettes to inject small liquid System with everything you need to get started. We can volumes. For example, genetic material may be inserted help you customize your system with many options and into a living cell, a drug introduced into an eye or brain, microinjection system accessories. The basic system or fluid injected into a muscle. Typically, microinjection includes: is performed under a microscope. A stereotaxic frame l Microinjection pump like the PV820 Pneumatic setup may be required. PicoPump l LED lighted microscope base with a PZMIII Stereo Microscope and an articulating mirror l Micromanipulator l Many accessories WPI offers a variety of pumps along with special syringes, stereotaxic frames, glass capillaries and needles. The setup you choose depends on the size of your microinjection aliquots, the volume to be injected and the size of needle or glass tip you choose. In addition, we offer an electroporator for transfection procedures. Whether you are working with Danio rerio (zebrafish), Xenopus, Drosophila or Caenorhabditis elegans, we can help you customize a microinjection system for your application. Options for Customizing Your System INJECTOR ✱ PV820 Pneumatic PicoPump with Hold Pressure • PV830 Pneumatic PicoPump with Hold Designed to simplify intracellular injection and a variety Microprocessor- The versatile Pressure and Vacuum of other micro in jec tion tasks, WPI's PicoPumps use UMP3 controlled injector uses • Nanoliter2010 carefully regulated air pres sures for se cur ing cells and injecting them with fluid.
    [Show full text]
  • FS/2018 ORGANIC CHEMISTRY I LAB CHEM 226 (2219) Instructor
    FS/2018 ORGANIC CHEMISTRY I LAB CHEM 226 (2219) Instructor: Terry Bone 120-B Schrenk Hall [email protected] 341-4820 http://www.mst.edu/~tbone 9:00-10:00, Tu-Th, or by appt. Cynthia Bolon 213 Schrenk Hall [email protected] 341-4439 OBJECTIVES: Course objectives are to develop facility with performing laboratory techniques involving the handling of organic chemicals safely and the keeping of proper records of experiments conducted in the laboratory. Crystallization, distillation, extraction and chromatography are emphasized as separation and purification techniques. Melting points, boiling points, and refractive indices are used routinely as measures of purity. Safe handling of chemicals and proper disposal of waste products are priority goals in this course. To help in attaining such goals, the first week of the semester is devoted to SAFETY in the chemistry laboratory. For the remainder of the semester, most of the experiments are conducted on a micro scale. BOOKS: 1. 100 pg. set Organic Chemistry Laboratory Notebook 2. “Organic Chemistry Laboratory Laboratory Techniques, 2nd ed”. Available as free pdf download at https://open.umn.edu/opentextbooks/BookDetail.aspx?bookId=369 3. “Microscale Techniques for the Organic Laboratory, 2nd ed”, (MTOL), Mayo, Pike, Butcher and Trumper, John Wiley & Sons, Inc.,2001 (on reserve at library circulation desk-currently out of print but available on Amazon) 4. “Right to Know pocket guide for School & University Employees”, Genium Publishing Corp., 1990. (optional) (#1 can be purchased from the book store) LAB SYLLABUS: Originally prepared by Prof. S. B. Hanna, modified by D. E. Hoiness, T.Bone. GENERAL GUIDELINES SAFETY Goggles must be worn at all times in the lab.
    [Show full text]
  • Q Path Adhesive Slide
    In Vitro Diagnostic Medical Device For professional use only Q PATH ADHESIVE SLIDE According to standard ISO 18113-2 : 2009, Point 7 Requirements for instructions or use and consolidated Directive 98/79/EC PRODUCT NAME Cat. No Description Pack Size 10048001 Q path Adhesive Slide white Box of 72 slides 10048002 Q path Adhesive Slide blue Box of 72 slides 10048003 Q path Adhesive Slide green Box of 72 slides 10048004 Q path Adhesive Slide yellow Box of 72 slides 10048005 Q path Adhesive Slide pink Box of 72 slides INTENDED PURPOSE These microscope slides may be used for the routine diagnosis of suspensions of cells and samples of tissue. Given that the possibilities for their use are highly varied, these glass slides should only be handled by users who hold a professional qualification that complies with national legislation. These microscope slides are intended for single use only. Any re-use or inappropriate treatment of their surface could lead to inaccurate results, the deterioration of preparations, and erroneous diagnoses. WARNING AND PRECAUTIONS Before use, please read all this information carefully. Microscope slides and cover slips are intended for single use by qualified personnel. They must under no circumstances be used more than once, and must be disposed of after use or at the end of the archive period in an appropriate manner as potentially infectious waste. If you observe any damage to the packaging, or any signs of glass fragments, the slides and cover slips must not be used, due to the risk of injury from glass splinters. Recommendation: In order to reduce the risk of injury due to sharp edges as much as possible, we strongly recommend the use of our microscope slides with polished edges.
    [Show full text]
  • A Simple Spectrophotometric Method for the Determination Of
    J Clin Pathol: first published as 10.1136/jcp.14.2.202 on 1 March 1961. Downloaded from 202 Technical methods usual laboratory filters may give falsely increased values.) Of the clear and colourless filtrate 10 ml. is pipetted into A a 25 ml. measuring flask and 10 ml. reagent (3) added. simple spectrophotometric After mixing dilute with distilled water to the mark and method for the determination of renew mixing. After 10 minutes the mixture is ready for reading. The colour is stable, according to Watt and urea in blood and urine Chrisp, for 11 days. READING T. K. WITH, TOVE DREYER PETERSEN, AND BIRGIT PETERSEN From the Central Laboratory, Svend- The reactions are read in a spectrophotometer at 420 nm. borg County Hospital, Denmark with a blank prepared in the same way as the reaction mixture but with 3 ml. of distilled water instead of 3 ml. of blood. The urea standard (reagent 4) is treated in the Several methods for urea in determining blood and urine same way as the blood. Cuvettes of 1 cm. thickness are are in use in clinical laboratories, but none is ideal in suitable. mass routine The analysis. spectrophotometric method If p, s, and b are the extinctions of the the based on a modified Ehrlich sample, reagent proposed by Watt standard, and the blank respectively, the urea concen- and Chrisp (1954) for pure solutions is therefore of tration is interest because it can be modified for use in mass clinical analyses of blood and urine. Brown (1959) has l00(p-b)/(s-b) mg./100 ml.
    [Show full text]
  • EWRE Lab Regulations
    Department of Civil & Environmental Engineering University of Massachusetts College of Engineering University of Massachusetts September 2012 CONTENTS UNIVERSITY OF MASSACHUSETTS ......................................................................................................................... 1 CONTENTS ...................................................................................................................................................................... 2 A. LABORATORY SAFETY AND SECURITY ........................................................................................................... 1 1. GENERAL RULES .......................................................................................................................................................... 1 2. EMERGENCY ................................................................................................................................................................ 2 3. DISPOSAL OF CHEMICALS ............................................................................................................................................ 2 a. What chemical wastes are hazardous or non-hazardous? ...................................................................................... 2 b. Disposal of hazardous wastes ................................................................................................................................. 2 4. FUME HOODS ..............................................................................................................................................................
    [Show full text]
  • Environmental Chemistry Method Methoxyfenozide & Degradates In
    Dow AgroSciences LLC Study ID: 110356 Page 12 Method Validation Study for the Detennination of Residues of Methoxyfenozide and its A-ring • Phenol Metabolite and B-ring Mono Acid Metabolite in Surface Water, Ground Water and Drinking Water by Liquid Chromatography with Tandem Mass Spectrometry INTRODUCTION J This method is applicable for the quantitative detennination of residues of methoxyfenozide and its A-ring phenol metabolite and B-ring mono acid metabolite in surface, ground and drinking water. The method was validated over the concentration range of 0.05-1.0 µg/L with a validated limit of quantitation of 0.05 µg/L. Common names, chemical names, and molecular formulas for the analytes are given in Table I. This study was conducted to fulfill data requirements outlined in the EPA Residue Chemistry Test Guidelines, OPPTS 850. 7100 (/). The validation will also comply with the requirements of EU Council Regulation (EC) No. 1107/2009 with particular regard to Section 3 of SANCO/3029/99 rev.4 and Section 3 of SANCO/825/00 rev.8.1 as well as PMRA Regulatory Directive Dir98-02 (2-4). The validation was conducted following Dow AgroSciences SOP ECL-24 with exceptions noted in the protocol or by protocol amendment. Method Principle Residues of methoxyfenozide, its A-ring phenol metabolite and its B-ring mono acid metabolite • are extracted from water samples by taking a l 0.0-mL aliquot and placing in an I I -dram (45-mL) glass vial equipped with a PTFE-lined cap or a 50-mL polypropylene centrifuge tube equipped with a cap.
    [Show full text]
  • Laboratory Equipment Reference Sheet
    Laboratory Equipment Stirring Rod: Reference Sheet: Iron Ring: Description: Glass rod. Uses: To stir combinations; To use in pouring liquids. Evaporating Dish: Description: Iron ring with a screw fastener; Several Sizes Uses: To fasten to the ring stand as a support for an apparatus Description: Porcelain dish. Buret Clamp/Test Tube Clamp: Uses: As a container for small amounts of liquids being evaporated. Glass Plate: Description: Metal clamp with a screw fastener, swivel and lock nut, adjusting screw, and a curved clamp. Uses: To hold an apparatus; May be fastened to a ring stand. Mortar and Pestle: Description: Thick glass. Uses: Many uses; Should not be heated Description: Heavy porcelain dish with a grinder. Watch Glass: Uses: To grind chemicals to a powder. Spatula: Description: Curved glass. Uses: May be used as a beaker cover; May be used in evaporating very small amounts of Description: Made of metal or porcelain. liquid. Uses: To transfer solid chemicals in weighing. Funnel: Triangular File: Description: Metal file with three cutting edges. Uses: To scratch glass or file. Rubber Connector: Description: Glass or plastic. Uses: To hold filter paper; May be used in pouring Description: Short length of tubing. Medicine Dropper: Uses: To connect parts of an apparatus. Pinch Clamp: Description: Glass tip with a rubber bulb. Uses: To transfer small amounts of liquid. Forceps: Description: Metal clamp with finger grips. Uses: To clamp a rubber connector. Test Tube Rack: Description: Metal Uses: To pick up or hold small objects. Beaker: Description: Rack; May be wood, metal, or plastic. Uses: To hold test tubes in an upright position.
    [Show full text]
  • Kimblecatalog Dwkcover Digital.Pdf
    1 ADAPTERS 223 GAS SAMPLING 16 AMPULES 226 HYDROMETERS 16 ARSINE GENERATORS 229 ISO 17 BEADS 235 JARS 18 BEAKERS 236 JUGS 21 BOTTLES 237 KITS AND LABSETS 41 BURETS 265 NMR 47 CAPS, CLOSURES, SEPTA 271 PETROCHEMICAL 59 CELL CULTURE 289 PIPETS 62 CENTRIFUGE TUBES 294 PURGE AND TRAP 71 CHROMATOGRAPHY 295 RAY-SORB 112 CLAMPS 300 ROTARY EVAPORATORS 114 CONCENTRATORS 305 SAFETY 118 CONDENSERS 319 SERIALIZED AND CERTIFIED 124 CONES 324 SLEEVES 124 CRUCIBLES 324 STARTER PACKS 125 CYLINDERS 325 STIRRERS 131 DAIRYWARE 328 STOPCOCKS AND VALVES 135 DESICCATORS 337 STOPPERS 135 DISHES 340 TISSUE GRINDERS 136 DISPENSERS 348 TUBES 136 DISSOLUTION VESSELS 365 VACUUM AND AIRLESS 137 DISTILLATION 374 VIALS 158 DRYING 389 WASHERS 159 EXTRACTION 390 WEIGHING BOATS 165 FILTRATION 391 TECHNICAL INFORMATION 179 FLASKS 433 INDEX TABLE OF CONTENTS TABLE 210 FREEZE DRYING 210 FRITTED WARE 211 FUNNELS Kimble has the products and expertise to support our customers’ workflows. We focus on providing laboratory glassware solutions from sample storage to sample disposition for market segments such as petrochemical, pharma/biotech/life sciences, environmental and food/beverage. With our breadth of products and depth of knowledge, Kimble offers everything you need to streamline your workflow and simplify everyday life in the lab. From vials and NMR tubes to barcoding services and beakers, we’ve got you—and your sample— covered from start to finish. Discover why Every Sample Deserves Kimble Sample Collection Sample Storage Sample Preparation Detection Sample Disposition
    [Show full text]
  • Laboratory Supplies and Equipment
    Laboratory Supplies and Equipment Beakers: 9 - 12 • Beakers with Handles • Printed Square Ratio Beakers • Griffin Style Molded Beakers • Tapered PP, PMP & PTFE Beakers • Heatable PTFE Beakers Bottles: 17 - 32 • Plastic Laboratory Bottles • Rectangular & Square Bottles Heatable PTFE Beakers Page 12 • Tamper Evident Plastic Bottles • Concertina Collapsible Bottle • Plastic Dispensing Bottles NEW Straight-Side Containers • Plastic Wash Bottles PETE with White PP Closures • PTFE Bottle Pourers Page 39 Containers: 38 - 42 • Screw Cap Plastic Jars & Containers • Snap Cap Plastic Jars & Containers • Hinged Lid Plastic Containers • Dispensing Plastic Containers • Graduated Plastic Containers • Disposable Plastic Containers Cylinders: 45 - 48 • Clear Plastic Cylinder, PMP • Translucent Plastic Cylinder, PP • Short Form Plastic Cylinder, PP • Four Liter Plastic Cylinder, PP NEW Polycarbonate Graduated Bottles with PP Closures Page 21 • Certified Plastic Cylinder, PMP • Hydrometer Jar, PP • Conical Shape Plastic Cylinder, PP Disposal Boxes: 54 - 55 • Bio-bin Waste Disposal Containers • Glass Disposal Boxes • Burn-upTM Bins • Plastic Recycling Boxes • Non-Hazardous Disposal Boxes Printed Cylinders Page 47 Drying Racks: 55 - 56 • Kartell Plastic Drying Rack, High Impact PS • Dynalon Mega-Peg Plastic Drying Rack • Azlon Epoxy Coated Drying Rack • Plastic Draining Baskets • Custom Size Drying Racks Available Burn-upTM Bins Page 54 Dynalon® Labware Table of Contents and Introduction ® Dynalon Labware, a leading wholesaler of plastic lab supplies throughout
    [Show full text]
  • The Stoichiometry of a Reaction Introduction This Experiment Provides a Method to Determine the Mole Ratio in Which Two Substances Combine Chemically
    The Stoichiometry of a Reaction Introduction This experiment provides a method to determine the mole ratio in which two substances combine chemically. Such information is helpful in determining the stoichiometry of a reaction, i.e. the balanced chemical equation and the information that can be derived from it. The principle underlying this experiment is based on keeping the quantity of one reactant constant while varying the quantity of a second reactant. The mass of the precipitate produced is then used as an indicator of the effect of varying the quantity of the second reactant. When enough of the second reactant has been added to completely react with the first reactant, there will be no further increase in the amount of the precipitate produced, regardless of how much of the second one is added. Equipment/Materials 0.1M Pb(NO3)2 Stirring rod 0.1M KI Funnel 5 % HNO3 Side-armed Erlenmeyer flask Filter paper Hot plate 10mL automatic pipets Analytical balance 50 mL beakers Wash bottle of DI water Safety • Goggles must be worn at all times in the laboratory. • Pour any leftover solution in the designated containers. • Follow your instructor’s directions for the disposal of the precipitates. Guiding Questions Which trial(s) will give the most precipitate? Why? 9A-1 Procedure 1. In this experiment the stoichiometry of the lead nitrate – potassium iodide system will be investigated. The volume of the potassium iodide will be held constant while the volume of the lead nitrate is varied. The concentration of both solutions will be 0.1000 M. Each lab group will be asked to prepare two combinations in the following table.
    [Show full text]