Petrology of Serpentinites and Rodingites in the Oceanic Lithosphere

Total Page:16

File Type:pdf, Size:1020Kb

Petrology of Serpentinites and Rodingites in the Oceanic Lithosphere Petrology of Serpentinites and Rodingites in the Oceanic Lithosphere Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften am Fachbereich Geowissenschaften der Universität Bremen vorgelegt von Frieder Klein Bremen, 2009 Referent: Prof. Dr. Wolfgang Bach Koreferent/in: Prof. Dr. Cornelia Spiegel Tag der mündlichen Prüfung:…………………… Zum Druck genehmigt: Bremen,.......…………… Der Dekan Erklärung Hiermit versichere ich, dass ich 1. die Arbeit ohne unerlaubte fremde Hilfe angefertigt habe, 2. keine anderen als die von mir angegebenen Quellen und Hilfsmittel benutzt habe und 3. die den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Bremen, den Anmerkungen des Verfassers zur vorliegenden Dissertation Die vorliegende Arbeit stellt zwar eine monographische Dissertation dar, die einzelnen Kapitel, denen die Einleitung vorangestellt ist, sind jedoch bezüglich ihres Aufbaues so konzip- iert, dass sie unabhängig voneinander publiziert werden können bzw. publiziert sind. Durch diesen Umstand ist es zu erklären, dass jedes Kapitel nochmals eine eigene Einleitung, Diskus- sion und ein Literaturverzeichnis enthält. Auch beim Schreibstil, dem Umfang, der Verwend- ung von Abkürzungen sowie der Formatierung von Abbildungen und Tabellen wurde Bereits den Anforderungen unterschiedlicher Fachzeitschriften Rechnung getragen. Diesen Umstand möge der Leser berücksichtigen. Bremen, März 2009 Frieder Klein Table of Contents Zusammenfassung 1 Abstract 3 Prologue 5 Outline 8 1. Introduction 11 1.1. Serpentinized peridotites at mid-ocean ridges 11 1.2. Serpentinized peridotites at active oceanic margins 14 1.3. Hydrothermal systems and serpentinized peridotites 14 1.4. Mineralogical and petrological aspects of serpentinization 16 1.4.1. Serpentinite textures 16 1.4.2. Serpentinization - an isovolumetrical process? 17 1.4.3. Some crystallographic basics concerning serpentine 18 1.4.4. A note on the mineral chemistry of serpentine and its value as a geothermometer 19 1.4.5. The MgO–SiO2–H2O (MSH) system 19 1.4.6. Redox conditions during serpentinization 20 1.5. Rodingitization 24 References 25 %%%% Abstract 37 2.1. Introduction 37 2.2. Geological setting 40 2.3. Analytical methods 41 2.3.1. Microscopy and electron microprobe analysis 41 2.3.2. Thermodynamic calculations 42 2.4. Results 46 2.4.1. Petrography 46 2.4.2. Mineral chemistry 51 2.4.3. Phase diagrams 54 2.5. Discussion 59 !"!#"$ \#& ' 2.5.2. Redox conditions during serpentinization 60 2.5.3. Redox conditions during steatitization 61 2.5.4. Implications for a potential H2S,aq buffer in serpentinite-hosted hydrothermal systems 62 2.5.5. Sulfur metasomatism 63 2.5.6. Possible existence of a free H2-rich vapor phase 66 # * *+&/" : References 69 3. Iron Partitioning and Hydrogen Generation During Serpentinization of Abyssal $"<+/*: Abstract 78 3.1. Introduction 78 3.2. Analytical methods 81 3.2.1. Microscopy and electron microprobe analysis 81 3.2.2. Mößbauer spectroscopy and magnetization measurements 82 3.2.3. Geochemical modeling 82 3.3. Results 85 3.3.1. Petrography 85 3.3.2. Mineral compositions 87 <%@#!!B@#&"/C ' 3.3.4. Geochemical reaction path modeling 92 3.4. Discussion 103 3.4.1. Serpentinization at Hole 1274A and geochemical reaction path models 103 E//!"@/#/!C FE 3.4.3. Fe+2%+3 exchange equilibria in serpentinites 104 3.4.4. Geochemical reaction path modeling and serpentinization experiments 106 3.4.5. The formation of brucite and serpentine in mesh-rims 108 # +&/" References 113 Appendix 119 EL!/B$\/N/$"/"! modeling 120 Abstract 120 4.1. Introduction 120 4.2. Method 122 4.3. Results 126 4.3.1. Reaction path models 126 4.3.2. Phase diagrams 137 4.4. Discussion 138 4.4.1. Modeling of rodingitization 139 4.4.2. The critical role of aqueous silica 141 4.4.3. Mass transfer by diffusion or advection 142 EEE"[U#"[EE EE+!V$/"!#\# circulation? 145 E# E E+&/" E* References 148 !CW!XYB"[ /N//$XB"\# supporting a unique microbial ecosystem 155 Abstract 155 5.1. Introduction 155 \/@&/# : 5.3. Analytical methods 158 5.4. Petrography 159 5.5. Discussion 161 5.5.1. Origin of the high H2XY\# LM@V" +B@"$XYV\#"B * E"!$" : # ' *+&/" ' References 171 ^&/#/ * _!!$!"!&`^j Zusammenfassung Die Serpentinisierung von Peridotiten erzeugt große Mengen von Wasserstoff. ^#CVM{/#/#$"#[[ C|+##[@/}WC/_VC# /"_</#!^"!"/_@# von Sauerstoff in Magnetit und Serpentin die Freisetzung von Wasserstoff. Wir haben "B"^VMMMMC#""//#|- f f ziehung in O2,g– S2,g und aH2,aq–aH2S,aq Diagrammen für Temperaturen von 150 bis EFF#"^#&VF</^|C#/#~#""- C#/MMMM##/[#"#/#$$ #$$#/C@$!#/##/V #"[\<&`FR#~[- ^//"`^j[{/F'jVCC#&^!/! Beobachtungen offenbaren eine systematische Abfolge von Mineralvergesellschaftungen +@//& C#" !#// \ ^ /+# Pentlandit + Magnetit bildet sich in partiell serpentinisierten Gesteinen. Die Paragenese <BBB"//@\+# ##%|#C$!@@$$$ #$$#/V/X#&VC#C#//%</}- $$#"C#@#/V+#~#"""_$#/ V#[#"\$"\/CC#$- X#&V#$$#/C#/C# @#/V$#[[C|BB"#${#/ VB#[#$V/#&&!C\C#&- C#$ | |/#/ #[ $[ #/$[CC#"+/$/"\$^ f f _&#/V O2,g und S2[/!#/$/Y2S,aq Iso- !#"!/"##/[$$#/C- YB"\##"[B"/!#$$ ^ C#/ V }$$ !#/ " <%V\"/C#""C#/[V"}\# L"!#@//^|C#/@#~#$"V/- "&!$"`""!#!/""_Uj$# und harzburgitische Gesteinszusammensetzungen untersucht und die Modellergebnisse " <& # <%@#!&&!+B V ! @ C# &"!!^##YC@#/^{/F'V/^ \&+@$/V<V/$#/<- #$~<[C# V[@[|#C`</:Fj#%%~V! `</'j|#C</["#%<V!</- @/^""/</$<%@#!&&!- ##/$!"/<+3U5} VFF@FE:&@&"!!\[V</ enthalten, sind die Fe+3U5}!"/#`F@ F:j_U<#_/\#+3-Serpentin @&/[#"_V#/C![|#C#</[ W#$V_!@##C#&<- 1 #/C/[@@L"!#VF#}&V- #"[{#/VV#/C/|#/V![</- #}$$WX##@/|L"!# }$$&VC#//[#"|#//+# C#"/@L"!##FMF&[|#C@# _#/V}$$[&VVC#![</ #|#C&WX##$^+##/</@- nisse und deren Vergleich mit MgO–FeO–Fe2O3–SiO2–H2O Phasenbeziehungen in Ma- #$|#/"!#!#|#C|#/ *E+VF@F^@}\V/ C # F ^+##/ !/! # !!/ +BC/[!#/|#C/@@V! @|#C@"@#$XVV"@$V ![@"B"L@&$$|#//! |#C#/%#C/#[&@$/ !#/"^$&["!/!- ["/#!&&!##/"#"$"B- "<#/&"@ "#_&@|#/V/\C\V "[##"[\C#/[@"B"- &!$"#$/L"B"&!$""/ #/#/V#\\/"~#//- #/@VCC#&LB!V/$#//- `\#^!j$L"!#VFF#FFV- //^/$#//#[#&#"V &"\@@@\#<C#"&C!- #/\##\@@V/$#/V\# X!BWC##L"@C_!#L"|#/ C/[|#/V<V/$#/##"- #/@V/C@V/V\- #X#&V/@^ <$VXC#"#^$$#Y+ Spezies "/[XC/!C\CV "[C##"[\//XC#"$[ @V\#^!@/X#&V@// ^#XYB"$`XYj`~&j- XCV}$$#X#[&Y4UY2 #$_"/_&#/$#/~#""C#/ #XY&V<"L&[ des KHF vorhanden sind, dar. Petrographische Untersuchungen offenbaren, dass Olivin @V/!#[#$_#/V}$$ <#/C/[}$$#X#- &CYB"\##$!#/ XY@[L&#%B"+"| #@XY"/C#&C#$ 2 Abstract Serpentinization of peridotite generates large amounts of dihydrogen (H2,aq), in- @B!$MB#$#$#/B#[[/# ![!YB/!#$#V WC@B$B"/!}V"- !V#"B"$MMMM!"!#! f f relations in O2,g– S2,g and aH2,aq–aH2[/"$"!#@F EFFF<}#"!$MMMM! trace changes in oxygen and sulfur fugacities during progressive serpentinization and C$!$"<+/FR#~ `^//"[{/F'j/!@VB"- /$"#"/!C"/ pentlandite assemblages forming in the early stages of serpentinization to millerite + !B!BB"""@/C&+#W#VB @V@#@/!B!C&+!!B[@#$$/$- VV#@B!$@#$$"$/"# $B/[$"$#+!" #$#C$![#["V$"&#// of serpentinization. In contrast, steatitization indicates increased silica activities and that /#$# $#/B #[[ # !BB" !B V #[ form as the reducing capacity of the peridotite is exhausted and H2 activities drop. Under [#[#$#C@#!!#$#$ f f &LV#$ O2,g– S2[/B"$!$ H2S,aq, indicating that H2V\#@#$$ YB//#/!C/B!@#&& "![&"!#LW"- "B"!"`#/_U"!#j#- C@#/&"!L"#"!"!@ B[@#&"/C"#"[<%@#!!B$!B $#B!C#C@#/$"^//"{/F'[< +/L"!V""V#C- /[/@#`</:Fj$V[C$! `</'j@#/"/[[B!"/#"" ""!"/[<%@#!V+3U5V#@- FFFE:$!"/"""VB"!B !C&@#"/[+3U5V#$!"/! B//$"FF:_U#[! solution model that includes greenalite and Fe+3!#V// @#$@!"/W!- #""!#!@VFV#B[ the dissolution of olivine and coeval formation of serpentine, magnetite and dihydrogen requires an external source of silica. At these temperatures, hydrogen fugacities are too $#!@@}"!#!@FMF [@#@"@B//$[@#$ olivine to serpentine, magnetite and brucite requires no external silica. The MgO–FeO– Fe2O3–SiO2–H2O phase relations observed in the mesh rims indicate that serpentine and @#$"Y*E+&B$""!#@FF- 3 &@F_V#/!/!!!/ #@#$"B"@@B[$! #"B"V/$$!$"#$[@C the assemblage serpentine + brucite. Our study indicates that unprecedented details about the reaction sequences during serpentinization may be obtained from merging careful !/!["/[!!B"!V"B" modeling. L"B"!"!!!V/ $"$/"[U#"[@#L"#!- V/ $ \#M& #@ \# "V $" !#// serpentinization into a gabbroic body. Phase assemblages typical of rodingite (grossular !/j!$"FFFF[@#B \#B#$$@B/@@+\#@"" $$@B/@@[!!!/" replaces clinopyroxene. Our model results support the hypothesis that rodingites form #/!CB\#@B!C- actions are present. Our calculations further indicate that the formation of mineral as- "@/!"/V@B/$"\ "BV@B!VB/!##!\# <$$#"&B@B$$#$Y+![! VB!/"[M#"[@#B/- #"!@#$/@B$!/ activities. LV\#$XYB"`XYj /V/$B/[Y4UY2 ratio. We sug- / $ V XY[!V !@W!$"!$XY\#/!BV V!B"!B!C[//$Y2. Model calculations predict that high H2$B"\#@ attributed to serpentinization of the troctolites and subsequent hydrothermal reactions @&#XY 4 Prologue "[&"&#!_R!/!$- !_"/"!$&R#$ "[&$#B#$#`+#[ '*j[!`/[+@[':'+WY![''"[ '_VL""$$['*FB[FF:{#['*{#_[ '*'Y!['::['*Ej[/"/`/[+#- "{#@['*|[FFE|['*E['' [':*['E'j["/`/[+/[''|[':'j $/`/[^R+X[FFEB<['' [FF&[''Fj B#!!#V[B#$[#"[&#- //B@B[/LB$V! `C@#/[C#j["@##"[&["!- ##V#"!VV!"$V !BW@B"@/"@B!/#!"`"[ '[':<B[''<B['*/['*['*' $[':}&}&['**j Serpentinites contain minerals and mineral assemblages that occur almost no- _`|[FF*j!/#!"[ the alteration assemblage consists mainly of magnetite, and brucite or talc (depending on !"!"!#j[""#$"[[ !UB/B#$##["@/[/[- #[[!C[B$#"[- #"#!`+@['*:^&['*E_&['* [':&[''"['Fj L"/!#$!\@B$ /\#!$"W"/"V" _YB"B"\#@B!CC@B/B reducing conditions,
Recommended publications
  • The Rustenburg Layered Suite Formed As a Stack of Mush with Transient Magma Chambers ✉ Zhuosen Yao1, James E
    ARTICLE https://doi.org/10.1038/s41467-020-20778-w OPEN The Rustenburg Layered Suite formed as a stack of mush with transient magma chambers ✉ Zhuosen Yao1, James E. Mungall 1 & M. Christopher Jenkins 1 The Rustenburg Layered Suite of the Bushveld Complex of South Africa is a vast layered accumulation of mafic and ultramafic rocks. It has long been regarded as a textbook result of fractional crystallization from a melt-dominated magma chamber. Here, we show that most 1234567890():,; units of the Rustenburg Layered Suite can be derived with thermodynamic models of crustal assimilation by komatiitic magma to form magmatic mushes without requiring the existence of a magma chamber. Ultramafic and mafic cumulate layers below the Upper and Upper Main Zone represent multiple crystal slurries produced by assimilation-batch crystallization in the upper and middle crust, whereas the chilled marginal rocks represent complementary supernatant liquids. Only the uppermost third formed via lower-crustal assimilation–fractional crystallization and evolved by fractional crystallization within a melt-rich pocket. Layered intrusions need not form in open magma chambers. Mineral deposits hitherto attributed to magma chamber processes might form in smaller intrusions of any geometric form, from mushy systems entirely lacking melt-dominated magma chambers. 1 Department of Earth Sciences, Carleton University, 2115 Herzberg Laboratories, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada. ✉ email: [email protected] NATURE COMMUNICATIONS | (2021) 12:505 | https://doi.org/10.1038/s41467-020-20778-w | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20778-w ayered mafic intrusions represent portions of the plumbing derived by incremental crystallization must be removed.
    [Show full text]
  • The Nakhlite Meteorites: Augite-Rich Igneous Rocks from Mars ARTICLE
    ARTICLE IN PRESS Chemie der Erde 65 (2005) 203–270 www.elsevier.de/chemer INVITED REVIEW The nakhlite meteorites: Augite-rich igneous rocks from Mars Allan H. Treiman Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, TX 77058-1113, USA Received 22 October 2004; accepted 18 January 2005 Abstract The seven nakhlite meteorites are augite-rich igneous rocks that formed in flows or shallow intrusions of basaltic magma on Mars. They consist of euhedral to subhedral crystals of augite and olivine (to 1 cm long) in fine-grained mesostases. The augite crystals have homogeneous cores of Mg0 ¼ 63% and rims that are normally zoned to iron enrichment. The core–rim zoning is cut by iron-enriched zones along fractures and is replaced locally by ferroan low-Ca pyroxene. The core compositions of the olivines vary inversely with the steepness of their rim zoning – sharp rim zoning goes with the most magnesian cores (Mg0 ¼ 42%), homogeneous olivines are the most ferroan. The olivine and augite crystals contain multiphase inclusions representing trapped magma. Among the olivine and augite crystals is mesostasis, composed principally of plagioclase and/or glass, with euhedra of titanomagnetite and many minor minerals. Olivine and mesostasis glass are partially replaced by veinlets and patches of iddingsite, a mixture of smectite clays, iron oxy-hydroxides and carbonate minerals. In the mesostasis are rare patches of a salt alteration assemblage: halite, siderite, and anhydrite/ gypsum. The nakhlites are little shocked, but have been affected chemically and biologically by their residence on Earth. Differences among the chemical compositions of the nakhlites can be ascribed mostly to different proportions of augite, olivine, and mesostasis.
    [Show full text]
  • Igneous Intrusive Rocks of the Peake and Denison Ranges Within the Adelaide Geosyncline
    tl-io' -GIÜEOIJS IìÜTFÈIJSIVE R.OCKS OF TI;IE PE.ã,KE .ã.¡ÜED DEDÜTSO¡Ü FI.ãNGES T'i'ITIT-¡Ü 1FI:[E .â'EDEI,.â'IDE GEOSYIÜCI,IìÜE \/OLL[&fE I f = Figrures, Plates, Captions, Irfaps, Tabl.es and Appendicies. By: Robert Sinclair Irlorrison B.Sc. (Acadia, L98L) B.Sc. Hons. (Adelaide, 1982) The Department of Geology and Geophysics The University of Adelaide South Australia. This thesis is submitted as fulfilment of the requirements for the degree of Doctor of Philosophy in GeologY at The University of Adelaide South Australia. February 298à, l-988. Resubmitted March 3L-t, 1989. n¡ q: t c! Jr '"f.' .''ì r ll,r.-¡. lci- I\ \, \ , .' ì T.ã.BI,E OF COIÜTEIÜTS Chapter One: Symopsis of tlre Adelaide Geoslmcline. Figure 1.1: General Geology of Èhe Adelaide Geosynclj-ne. Figure L.2= Structural Geology of the Adelaide Geosybcline. Figure l-.3: Stratigraphic Nomenclature for the Adelaide Geosyncline. Figure L.5.4: Cross-Section of Adelaidean Evaporite Deformation. Plate 1.1-: Diapiric Breccia. Plate L.2z Diapiric Breccia and Contacts. Table L.3.1: RepresentaÈive Geochemistry of Callanna Group Volcanics in the Adelaide Geosyncline. Table 1.3.2: Representative Geochemistry of Burra Group Volcanics in the Adelaide Geosyncline. Table 1.3.3: Representative Geochernistry of the Umberatana Group Volcanic Equivalents. Table l-. 3.5: Representative Geochemistry of Moralana Supergroup Volcanics in the Adelaide Geosyncline. Chapter thtos Igmeous Intn¡sions of the Adelaide Geoslmcline: A Revies. Figure 2.Lz lgneous Rocks of the Adelaide Geosyncline and Kanmantoo Trough. Figure 2.7.1-'. Geology of a Northern Section in the willouran Ranges.
    [Show full text]
  • Komatiites of the Weltevreden Formation, Barberton Greenstone
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2005 Komatiites of the Weltevreden Formation, Barberton Greenstone Belt, South Africa: implications for the chemistry and temperature of the Archean mantle Keena Kareem Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Earth Sciences Commons Recommended Citation Kareem, Keena, "Komatiites of the Weltevreden Formation, Barberton Greenstone Belt, South Africa: implications for the chemistry and temperature of the Archean mantle" (2005). LSU Doctoral Dissertations. 3249. https://digitalcommons.lsu.edu/gradschool_dissertations/3249 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. KOMATIITES OF THE WELTEVREDEN FORMATION, BARBERTON GREENSTONE BELT, SOUTH AFRICA: IMPLICATIONS FOR THE CHEMISTRY AND TEMPERATURE OF THE ARCHEAN MANTLE A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Geology and Geophysics by Keena Kareem B.S., Tulane University, 1999 May 2005 ACKNOWLEDGMENTS The author wishes to thank, Dr. Gary Byerly, the author’s major advisor for guidance and support in defining the project, technical assistance with instrumentation, and practical advice concerning non-dissertation related issues. Appreciation goes out to the other members of the advisory committee: Drs. Huiming Bao, Lui-Heung Chan, Ray Ferrell, Darrell Henry, of the Department of Geology and Geophysics, and Dr.
    [Show full text]
  • General Geological Setting and the Structural Features of the Guleman Peridotite Unit and the Chromite Deposits (Elaziğ, Eastern Turkey)
    GENERAL GEOLOGICAL SETTING AND THE STRUCTURAL FEATURES OF THE GULEMAN PERIDOTITE UNIT AND THE CHROMITE DEPOSITS (ELAZIĞ, EASTERN TURKEY) Tandoğan ENGİN*; Mehmet BALCI*; Yücel SÜMER* and Yusuf Z. ÖZKAN* ABSTRACT. — The Guleman peridotite unit covering an area of about 200 km2 is made up of tectonite and cumulate rock groups. Tectonite forms 65 %, the remainder being cumulates. Cumulates broadly encircle and rest on tectonites. Both groups of rocks include chromite deposits but those found in tectonites are far more important than the others. The mineralogy and petrology of the peridotites is briefly described. A thick dunite unit in the Kef area is defined as a transition zone between cumulate and tectonite on the basis of field relations and textural features they ex- hibit. Batı Kef which is one of the major chromite deposit in the area is situated at the base of this thick dunite unit. Numbers of major chromite deposits are located in harzburgite with a thin dunite envelope around them. Chromite de- posits in Guleman are classified as alpine or podiform type but they demonstrate extensive continuation along their strike as well as dip directions. The peridotile unit dealt with here presents rather orderly internal structural patterns. Layering and foliation in the peridotite are invariably found parallel to each other. Chromite bodies which have primary contact relations with the host peridotite are also parallel to the layering and foliation, thus the chromite bodies themselves form an important element in the internal structure of the peridotite. Chromite deposits have been divided into groups on the basis of the local lithological and structural characters of the host peridotite and the characteristic features of the chromite deposits themselves.
    [Show full text]
  • Resources in the Upper Zone of the Bushveld Complex, South Africa
    Papers and Proceedings of the Royal Society of Tasmania, Volume 150(1), 2016 15 Fe-Ti-V-(P) RESOURCES IN THE UPPER ZONE OF THE BUSHVELD COMPLEX, SOUTH AFRICA by L.A. Fischer and Q. Yuan (with four text-figures and two plates) Fischer, L.A. & Yuan, Q. 2016 (31:viii): Fe-Ti-V-(P) resources in the Upper Zone of the Bushveld Complex, South Africa. Papers and Proceedings of the Royal Society of Tasmania 150(1): 15–22. https://doi.org/10.26749/rstpp.150.1.15 ISSN 0080-4703. Institut für Mineralogie, Leibniz Universität Hannover, 30167 Hannover, Germany, and School of Physical Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia (LAF*); Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China, and Department of Geology, University of Liege, 4000 Sart Tilman, Belgium (QY). *Author for correspondence. Email: [email protected] The Bushveld Complex in South Africa is the largest layered intrusion on Earth. Its upper part is known for huge resources of iron, tita- nium, vanadium and phosphorus. Associated with the layered character of the rocks, these resources are enriched at certain levels of the intrusion, which makes it important to understand the formation processes of those layers. In this paper we give an introduction and overview of recent debates and challenges. Key Words: layered intrusion, Bushveld, resources. INTRODUCTION Fe, Ti, V and P never or only rarely occur as native elements in nature. Minerals, rich in one or more of these Iron (Fe), titanium (Ti) and vanadium (V) are important elements are mined and their components are extracted.
    [Show full text]
  • Some Geochemical Data of the Mafic-Ultramafic Complex at Tulu Dimitri, Ethiopia, and Their Genetic Significance
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sitzungsberichte der Akademie der Wissenschaften mathematisch-naturwissenschaftliche Klasse Jahr/Year: 1982 Band/Volume: 191 Autor(en)/Author(s): Warden Arthur J., Kazmin V., Kiesl W., Pohl Walter Artikel/Article: Some Geochemical Data of the Mafic-Ultramafic Complex at Tulu Dimitri, Ethiopia, and their Genetic Significance. 111-131 Some Geochemical©Akademie d. Wissenschaften Wien; Data download ofunter thewww.biologiezentrum.at Mafic-Ultramafic Complex at Tulu Dimitri, Ethiopia, and their Genetic Significance By A. J. W a r d e n * ), V. K a z m i n * ), W . K i e s l *) and W . P o h l *) With 13 Figures (Vorgelegt in der Sitzung der mathem.-naturw. Klasse am 11. März 1982 durch das w. M. W . Pe t r a s c h e k ) Abstract The Upper Proterozoic Western Volcanic Belt of Ethiopia contains at Tulu Dimitri an elongate mafic-ultramafic complex, which was interpreted earlier on field evidence as an ophiolite. In view of the important regional tectonic implications a confirmation was sought by carrying out geochemical analyses on a small suite of representative rocks of the complex. The chemical data confirm the ophiolitic identity of the Tulu Dimitri complex. REE-contents differ, however, from published standards. Zusammenfassung Der jung-proterozoische westliche Vulkanitgürtel in Äthiopien enthält bei Tulu Dimitri einen länglichen mafisch-ultramafischen Komplex, der vor kurzem auf Grund geologischer Feldarbeit als Ophiolit interpretiert wurde. Da dies wichtige Konsequenzen für die Deutung der regionalen geologischen Zusammenhänge hat, wurde eine Überprüfung dieser Interpretation durch gesteinsgeochemische Analysen einer Anzahl repräsentativer Proben aus dem Komplex durchgeführt.
    [Show full text]
  • Anorthosite-Gabbro-Granophyte Relationships, Mount Sheridan Area
    RICE UNIVERSITY ANORTHOSITE-GABBRO-GRANOPHYRE RELATIONSHIPS, MOUNT SHERIDAN AREA, OKLAHOMA by EDWARD C. THORNTON A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS Thesis Director's Signature: Houston, Texas May, 1975 ABSTRACT ANORTHOSITE-GABBRO-GRANOPHYRE RELATIONSHIPS MOUNT SHERIDAN AREA, OKLAHOMA Edward C. Thornton Field work, phase analysis by microprobe, petrography, and oxygen isotope analysis have been undertaken in an ef¬ fort to establish the relationships among the anorthositic, gabbroic, and granophyric rocks of the Mount Sheridan area in southwestern Oklahoma. The gabbro has been found to be somewhat finer-grained when in contact with the anorthosite. Petrographically, the gabbro is quite different from the anorthosite. The anorthosite is essentially a one-pyroxene rock (clinopy- roxene) while the gabbro contains both augite and hyper- sthene. Quartz, micropegmatite, and biotite are present in the gabbro but essentially absent in the anorthosite. The anorthosite is a cumulate rock with well-developed igneous lamination whereas the gabbro is generally not laminated. The above information established that the anorthosite is the older unit and that the gabbro was sub¬ sequently intruded into it. The gabbro is transitional into the overlying grano- phyre through a zone of intermediate rock. The zone of transition has been found to extend into the gabbro itself as has been determined by phase analysis, in addition, diabasic inclusions are present in the granophyre - evi¬ dence of possible mixing of basaltic and granophyric magma. These observations suggest that gabbroic and granophyric magmas were emplaced simultaneously at Mount Sheridan and that the intermediate rock between the gabbro and grano¬ phyre may have been generated by mixing of the two magma types.
    [Show full text]
  • Geochemical and Petrological Characterizations of Peridotite and Related Rocks in Marquette County, Michigan
    Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 4-2016 Geochemical and Petrological Characterizations of Peridotite and Related Rocks in Marquette County, Michigan Andrew Lloyd Sasso Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Geochemistry Commons, and the Geology Commons Recommended Citation Sasso, Andrew Lloyd, "Geochemical and Petrological Characterizations of Peridotite and Related Rocks in Marquette County, Michigan" (2016). Master's Theses. 687. https://scholarworks.wmich.edu/masters_theses/687 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. GEOCHEMICAL AND PETROLOGICAL CHARACTERIZATIONS OF PERIDOTITE AND RELATED ROCKS IN MARQUETTE COUNTY, MICHIGAN by Andrew Lloyd Sasso A thesis submitted to the Graduate College in partial fulfillment of the requirements for the degree of Master of Science Geosciences Western Michigan University April 2016 Thesis Committee: Joyashish Thakurta, Ph.D., Chair Robb Gillespie, Ph.D. Mohamed Sultan, Ph.D. GEOCHEMICAL AND PETROLOGICAL CHARACTERIZATIONS OF PERIDOTITE AND RELATED ROCKS IN MARQUETTE COUNTY, MICHIGAN Andrew Lloyd Sasso, M.S. Western Michigan University, 2016 This study characterizes the following rock units in Marquette County, Michigan in terms of geochemistry and petrology: (1) Presque Isle Peridotite, (2) Deer Lake Peridotite, (3) Yellowdog Peridotite, and (4) Black Rock Point Gabbro. Analyses were conducted to determine if any petrological or geochemical relationships exist between these units, and to assess the potential of these units to host magmatic sulfide deposits.
    [Show full text]
  • Babbitt Se.Indd
    Prepared and Published with the Support of MISCELLANEOUS MAP SERIES THE U.S. GEOLOGICAL SURVEY AS PART OF THE 2004 STATE GEOLOGIC MAPPING PROGRAM ELEMENT (STATEMAP) MAP M-162 MINNESOTA GEOLOGICAL SURVEY OF THE NATIONAL GEOLOGIC MAPPING PROGRAM Bedrock Geology, Babbitt SE Quadrangle Harvey Thorleifson, Director �� ��� BEDROCK GEOLOGY OF THE BABBITT SOUTHEAST QUADRANGLE, ��� �� ��� ��� �� �� �� �� ST. LOUIS AND LAKE COUNTIES, MINNESOTA �� �� �� ��� �� By �� ��� �� ��� ��� �� �� James D. Miller, Jr. �� �� �� �� ��� 2005 �� �� ��� �� ��� �� �� ��� ������������������������ MAP SYMBOLS ����������� Geologic contact—Approximately located by outcrop control. ��� ��������� �� ��� ��������� Geologic contact—Poorly located by rare outcrop, topography, and/or ����������� �� ��� ����� geophysical data. ��������� �� ��� Fault—Inferred, based on geologic offset, topography, local structures, ��� �� ������� ��� ��� ����� and/or geophysical data. ��� ��� ������ ��� ��� ���������� Fault—Speculative, based on geophysical data and/or topography. ��� ��������� ������ Attitude of inclined sedimentary or volcanic bedding ��� ������� � ���������� �� �� Attitude of inclined igneous layering ��� ��� ��� ������ ��������� ��������������� Attitude of igneous foliation (inclined, horizontal) �� ��� Trend of igneous fabric ��� ��� ��� ��� ������������� Attitude of inclined bedding-parallel joint set ��� ��� ������ Attitude of vertical mineralized joint ��� �� �� �� Attitude of inclined felsic dike ��� ��� ��� Area of bedrock outcrop �� �� ��� ��� ����������� Drill hole
    [Show full text]
  • The Oshirabetsu Gabbroic Mass in the Southeastern Part of the Hidaka Metamorphic Belt, Hokkaido, Japan
    Title The Oshirabetsu Gabbroic Mass in the Southeastern Part of the Hidaka Metamorphic Belt, Hokkaido, Japan Author(s) Takahashi, Teruyuki Citation 北海道大学理学部紀要, 20(2-3), 203-224 Issue Date 1983-02 Doc URL http://hdl.handle.net/2115/36718 Type bulletin (article) File Information 20_2-3_p203-224.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Jour. Fac. Sci., Hokkaido Univ., Ser. IV, vol. 20, nos. 2-3, Feb., 1983, pp. 203-224. THE OSHIRABETSU GABBROIC MASS IN THE SOUTHEASTERN PART OF THE HIDAKA METAMORPHIC BELT, HOKKAIDO, JAPAN by Teruyuki Takahashi (with 9 text·figures, 3 tables and 2 plates) Abstract The Hidaka metamorphic belt is characterized by the presence of a large quantity of basic plutonic and metamorphic rocks. The Oshirabetsu gabbroic mass forming one of the centers of igneous activity in the Hidaka metamorphic belt, consists mainly of olivine gabbro, troctolite, coarse-grained gabbro, norite and diorite. The gabbroic rocks are highly variable in lithology and are accompanied by nickel-bearing iron sulfide deposits with graphite. Among these rock-types, olivine gabbro and a part of troctolite show cumulate texture and their chemical composition indicates that olivine gabbro and a part of troctolite are the cumulus phase of this mass. Analyses of major and trace elements of representative rock-types from the Oshirabetsu gabbroic mass reveal that the above-stated rock-types have been formed during a series of magmatic differentiation. Chemical composition within the gabbroic mass except the cumulate rocks varies smoothly and its trend shows the characteristics of calc-alkali rock series.
    [Show full text]
  • Petrology and Geochemical Characteristics of Phlogopite Pyroxenite Related to Durbachites, Moldanubian Zone, Bohemian Massif
    Journal of Geosciences, 60 (2015), 73–90 DOI: 10.3190/jgeosci.191 Original paper Petrology and geochemical characteristics of phlogopite pyroxenite related to durbachites, Moldanubian Zone, Bohemian Massif Jakub TRUBAČ1*, Stanislav VRÁNA2, Eva HALUZOVÁ3, Lukáš ACKERMAN3 1 Institute of Geochemistry, Mineralogy and Mineral Resources, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic; [email protected] 2 Czech Geological Survey, Klárov 3, 118 21 Prague 1, Czech Republic 3 Institute of Geology v.v.i., The Czech Academy of Sciences, Rozvojová 269, 165 00 Prague 6, Czech Republic; * Corresponding author The phlogopite pyroxenite with a high content of pyrrhotite forms a body of circular outline about 1 km in diameter at Přední Zvonková in Moldanubian Zone (Šumava/Bohemian Forest/Böhmerwald), Czech Republic. The contours of pyroxenite body are indicated by magnetometry and gravity data. Loose blocks up to 70 cm in size scattered on fields in the flat terrain indicate that the rock is at least partly exposed at the current erosion level. The best preserved sample SV235A is a medium-grained rock containing 27 vol. % phlogopite, 23 % diopside, 25 % enstatite, abundant apatite (7 %), minor plagioclase (3 %, An39–42), and pyrrhotite (3 %). Tendency to sulphide segregation is indicated by several mm pyrrhotite aggregates enclosing individual grains of pyroxenes, phlogopite and apatite. In the mg# vs. MgO diagram the studied pyroxenites plot along the linear trend defined by granitoid durbachites (me- lanocratic quartz syenites, quartz monzodiorites to melagranites), biotite–amphibole quartz diorites and biotite–amphi- bole ultramafic rocks (all from the Moldanubian Zone in southern and south–central Bohemia), after the whole-rock compositions of pyroxenites are corrected for the respective content of pyrrhotite.
    [Show full text]