Anorthosite-Gabbro-Granophyte Relationships, Mount Sheridan Area
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
45. Myrmekite Formed by Na- and Ca-Metasomatism of K- Feldspar
1 ISSN 1526-5757 45. Myrmekite formed by Na- and Ca-metasomatism of K- feldspar Jiashu RONG Beijing Research Institute of Uranium Geology P.O. Box 9818, Beijing, 100029 Peoples Republic of China Email address: [email protected] September 23, 2002 Abstract Myrmekite, an intergrowth of plagioclase and quartz vermicules, often occurs in felsic-to-intermediate, calc-alkalic plutonic and gneissic rocks. Several hypotheses for myrmekite genesis are briefly reviewed and discussed. The proportional relationship between the volume of quartz vermicules and the An value of plagioclase is consistent with the hypothesis or replacement, solid state exsolution, and recrystallization of primary plagioclase. (1) Perthitic albite and K- feldspar relicts in myrmekite and (2) swapped myrmekite between two differently oriented K-feldspar crystals obviously indicate that myrmekite is formed by nibble replacement of K-feldspar by myrmekitic plagioclase because of modification by Ca-bearing sodic emanation or fluid. Myrmekite of different morphology and spatial distribution are of the same metasomatic origin. The myrmekite that was produced during deformation should be later than that formed prior to deformation. Characteristics of myrmekite Myrmekite was first described by Michel-Lévy (1874) and named by Sederholm (1897) as an intergrowth of plagioclase and quartz vermicules. Myrmekite is commonly observed in felsic-to-intermediate calc-alkalic granitic rocks (but not in alkalic-tending plutonic rocks) and in granitic gneisses of similar composition. 2 On the basis of the geologic environment, Phillips (1974) classified myrmekite in the following ways: 1. rim myrmekite, occurring at the contact of plagioclase with another differently oriented K-feldspar; 2. intergranular myrmekite, situated at the boundary between two differently oriented K-feldspars; 3. -
The Forsterite-Anorthite-Albite System at 5 Kb Pressure Kristen Rahilly
The Forsterite-Anorthite-Albite System at 5 kb Pressure Kristen Rahilly Submitted to the Department of Geosciences of Smith College in partial fulfillment of the requirements for the degree of Bachelor of Arts John B. Brady, Honors Project Advisor Acknowledgements First I would like to thank my advisor John Brady, who patiently taught me all of the experimental techniques for this project. His dedication to advising me through this thesis and throughout my years at Smith has made me strive to be a better geologist. I would like to thank Tony Morse at the University of Massachusetts at Amherst for providing all of the feldspar samples and for his advice on this project. Thank you also to Michael Jercinovic over at UMass for his help with last-minute carbon coating. This project had a number of facets and I got assistance from many different departments at Smith. A big thank you to Greg Young and Dale Renfrow in the Center for Design and Fabrication for patiently helping me prepare and repair the materials needed for experiments. I’m also grateful to Dick Briggs and Judith Wopereis in the Biology Department for all of their help with the SEM and carbon coater. Also, the Engineering Department kindly lent their copy of LabView software for this project. I appreciated the advice from Mike Vollinger within the Geosciences Department as well as his dedication to driving my last three samples over to UMass to be carbon coated. The Smith Tomlinson Fund provided financial support. Finally, I need to thank my family for their support and encouragement as well as my friends here at Smith for keeping this year fun and for keeping me balanced. -
Mountains, Streams, and Lakes of Oklahoma I
Information Series #1, June 1998 Mountains, Streams, and Lakes of OklahomaI Kenneth S. Johnson2 INTRODUCTION valleys, hills, and plains throughout most of the re mainder of Oklahoma (Fig. 1). All the major lakes and Mountains and streams define the landscape of reservoirs of Oklahoma are man-made, and they are Oklahoma (Fig. 1). The mountains consist mainly of important for flood contr()l, water supply, recreation, resistant rock masses that were folded, faulted, and and generation of hydroelectric power. Natural lakes thrust upward in the geologic past (Fig. 2), whereas in Oklahoma are limited to oxbow lakes along major the streams have persisted in eroding less-resistant streams and to playa lakes in the High Plains region rock units and lowering the landscape to form broad of the west. Alphabetical List of20 Lakes with Largest Surface Area (from Oklahoma Water Atlas, Oklahoma Water Resources Board) 1. Broken Bow 11. Lake 0' The Cherokees 2. Canton 12. Oologah 3. Eufaula 13. Robert s. Kerr 4. Fort Gibson 14. Sardis 5. Foss 15. Skiatook 6. Great Salt Plains 16. Tenkiller Ferry ·7. Hudson 17. Texoma 8. Hugo 18. Waurika 9. Kaw 19. Webbers Falls 10. Keystone 20. Wister Modified from Historical Atlas of Oklahoma, by John W. Morris, Charles R. Goins, and Edwin C. 25 McReynolds. Copyright © 1986 by the University I of Oklahoma Press. o 40 80Km Figure 1. Mountains, streams, and principal lakes of Oklahoma. lReprinted from Oklahoma Geology Notes (1993), vol. 53, no. 5, p. 180-188. The Notes article was reprinted and expanded from Oklahoma Almanac, 1993-1994, Oklahoma Department of Lihraries, p. -
The Surface Reactions of Silicate Minerals
RESEARCH BULLETIN 614 SEPTEMBER, 1956 UNIVERSITY OF MISSOURI COLLEGE OF AGRICULTURE AGRICULTURAL EXPERIMENT STATION J. H. Longwell, Director The Surface Reactions Of Silicate Minerals PART II. REACTIONS OF FELDSPAR SURFACES WITH SALT SOLUTIONS. V. E. NASH AND C. E. MARSHALL (Publication authorized September 5, 1956) COLUMBIA, MISSOURI TABLE OF CONTENTS Introduction .......... .. 3 The Interaction of Albite with Salt Solutions . .. 4 The Interaction of Anorthite with Salt Solutions ........ .. 7 Relative Effectiveness of Ammonium Chloride and Magnesium Chloride on the Release of Sodium from Albite . .. 9 Surface Interaction of Albite with Salt Solutions in Methanol . .. 13 Experiments on Cationic Fixation ............................... 16 Detailed Exchange and Activity Studies with Individual Feldspars .......... .. 19 Procedure .. .. 20 Microcline . .. 21 Albite .................................................... 22 Oligoclase . .. 23 Andesine . .. 24 Labradori te . .. 25 Bytownite ................................................. 25 Anorthite . .. 27 Discussion ........ .. 28 Summary ..................................................... 35 References .. .. 36 Most of the experimental material of this and the preceding Research Bulletin is taken from the Ph.D. Thesis of Victor Nash, University of Missouri, June 1955. The experiments on cation fixation were carried our with the aid of a research grant from the Potash Rock Company of America, Lithonia, Georgia, for which the authors wish to record their appreciation. The work was part of Department of Soils Research Project No.6, entitled, "Heavy Clays." The Surface Reactions of Silicate Minerals PART II. REACTIONS OF FELDSPAR SURFACES WITH SALT SOLUTIONS. v. E. NASH AND C. E. MARSHALL INTRODUCTION The review of literature cited in Part I of this series indicates that little is known of the interaction of feldspar surfaces with salt solutions. The work of Breazeale and Magistad (1) clearly demonstrated that ex change reactions between potassium and calcium occur in the case of or thoclase surfaces. -
Constraining the Source Regions of Lunar Meteorites Using Orbital Geochemical Data
Meteoritics & Planetary Science 50, Nr 2, 214–228 (2015) doi: 10.1111/maps.12412 Constraining the source regions of lunar meteorites using orbital geochemical data A. CALZADA-DIAZ1,2*, K. H. JOY3, I. A. CRAWFORD1,2, and T. A. NORDHEIM2,4 1Department of Earth and Planetary Sciences, Birkbeck College, London WC1E 7HX, UK 2Centre for Planetary Sciences UCL/Birkbeck, London WC1E 6BT, UK 3School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK 4Mullard Space Science Laboratory, University College London, Dorking RH5 6NT, UK *Corresponding author. E-mail: [email protected] (Received 30 July 2014; revision accepted 06 November 2014) Abstract–Lunar meteorites provide important new samples of the Moon remote from regions visited by the Apollo and Luna sample return missions. Petrologic and geochemical analysis of these meteorites, combined with orbital remote sensing measurements, have enabled additional discoveries about the composition and age of the lunar surface on a global scale. However, the interpretation of these samples is limited by the fact that we do not know the source region of any individual lunar meteorite. Here, we investigate the link between meteorite and source region on the Moon using the Lunar Prospector gamma ray spectrometer remote sensing data set for the elements Fe, Ti, and Th. The approach has been validated using Apollo and Luna bulk regolith samples, and we have applied it to 48 meteorites excluding paired stones. Our approach is able broadly to differentiate the best compositional matches as potential regions of origin for the various classes of lunar meteorites. Basaltic and intermediate Fe regolith breccia meteorites are found to have the best constrained potential launch sites, with some impact breccias and pristine mare basalts also having reasonably well-defined potential source regions. -
Norwegian Anorthosites and Their Industrial Uses, with Emphasis on the Massifs of the Inner Sogn-Voss Area in Western Norway
NGU-BULL 436, 2000 - PAGE 103 Norwegian anorthosites and their industrial uses, with emphasis on the massifs of the Inner Sogn-Voss area in western Norway JAN EGIL WANVIK Wanvik, J.E. 2000: Norwegian anorthosites and their industrial uses, with emphasis on the massifs of the Inner Sogn- Voss area in western Norway. Norges geologiske undersøkelse Bulletin 436, 103-112. Anorthositic rocks are common in several geological provinces in Norway. Many occur at scattered localities in different parts of the country, but the two largest anorthosite complexes in western Europe are situated in western Norway. These two Precambrian massifs, the Inner Sogn-Voss province (~ 1700 Ma), and the Rogaland province (~ 930 Ma) have been investigated for use as a raw material for various industrial applications. Anorthosite with a high anorthite content (An >70) is easily soluble in mineral acids, and the bytownite plagioclase of the Sogn anorthosite makes it well suited for industrial processes based on acid leaching. The high aluminium content, ca. 31% Al2O3, has made these occurrences interesting for various industrial applications, especially as an alternative raw material for the Norwegian aluminium industry. With this goal in mind, geological investigations and processing studies have been carried out at various times during the past century. At present, a refined process utilising both the silicon and the calcium contents of the anorthosite has renewed industrial interest in these acid soluble anorthosites. Jan Egil Wanvik, Geological Survey of Norway, N-7491 Trondheim, Norway. Introduction Anorthositic rocks are common in several geological prov- inces in Norway and occur at many localities in different parts of the country (Fig. -
The Civilian Conservation Corps As Means of Social
THE CIVILIAN CONSERVATION CORPS AS MEANS OF SOCIAL CONTROL: A SOUTHWESTERN OKLAHOMA PERSPECTIVE By LEON CHAD KINDER Bachelor of Science Southwestern Oklahoma State University Weatherford, Oklahoma 1993 Master of Education Southwestern Oklahoma State University Weatherford, Oklahoma 1995 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF EDUCATION December, 2003 Tueiis 2DD3D K5lc THE CIVILIAN CONSERVATION CORPS AS MEANS OF SOCIAL CONTROL: A SOUTHWESTERN OKLAHOMA PERSPECTIVE Thesis Approved: ,~(l,g ,, Thesis Advisor ~ Dean of the Graduate College 11 PREFACE I wish to express my sincere gratitude to Dr. Lowell Caneday, my dissertation advisor, for the many hours he spent in support of my work. To Dr. Christine Cashel, doctoral committee chair, my deepest appreciation is extended. Thanks is also expressed to the other members of the doctoral committee, Dr. William Bryans, Dr. Colleen Hood, and Dr. Thomas Kuzmic for their time, suggestions, and support given in the development of this project. I also wish to express thanks to my mentor, Dr. Ken Rose, Dean of the School of Professional and Graduate Studies at Southwestern Oklahoma State University, for his assistance and support during my doctoral work. To my wife Gayla, children Natalie and Carson, and members of my extended family a special thanks is given. Thank-you all for your love and support. 111 TABLE OF CONTENTS CHAPTER PAGE I. INTRODUCTION, STATEMENT OF THESIS AND HISTORICAL BACKGROUND ......................................... 1 Introduction and Statement of Thesis ............................ 1 The Great Depression ............................................. .2 The Great Depression in Oklahoma .............................. 3 Hoover's Response to the Great Depression .................. -
Highlights of Lawton, Oklahoma
Highlights of Lawton, Oklahoma The Community The City of Lawton, Oklahoma, founded in 1901, is the fifth largest city in Oklahoma and the county seat of Comanche County, in Southwest Oklahoma. Lawton is located approximately 90 miles southwest of Oklahoma City along Interstate 44. Fort Sill, an active U.S. Army installation, is on the City’s north side and is within the city limits as the result of annexation in the 1990s. Comanche County is home to more than 122,000 residents as of 2017, with Lawton accounting for 94,000 of the countywide population – smaller cities and towns including Cache, Chattanooga. Elgin, Faxon, Fletcher, Geronimo, Indiahoma, Medicine Park, and Sterling make up the remainder. Mild Winters, Warm Summers The mean temperature for the Lawton area is 61.5 degrees. The percentage of sunshine in Lawton ranges from an average of about 60 percent in the winter to nearly 80 percent in the summer, providing a long growing season of 215 days. The July high is around 95 degrees. Summers are generally warm with 95 days of 90 degrees or higher. The winter months are typically mild with an average low temperature in January of 27 degrees. Annual precipitation ranges from about 30 inches in western Comanche County to 33 inches in the east, slightly less than the U.S. average of 39 inches. Annual snowfall averages 3.6 inches while the average U.S. city gets 26 inches of snow per year. Cost of Living Lawton remains a low cost-of-living city relative to both the nation and Oklahoma. -
Oklahoma Today Spring 1980 Volume 30 No. 2
HONORABLE GEORGE NIGH Great Plains Country Enters The 1980s .....................4 Governor By Sue Carter VOLUME 30 NUMBER 2 SPRING 1980 Mountain Climbers' Paradise: Wichita Mountains Wildlife Refuge. ... 8 By Paul McCl~ng SUE CARTER PAUL E. LEFEBVRE Editor Art and Production BlLL BUSCH Dauntless Gold Seekers of the Wichitas .................... 11 C~rculat~on and Promotion By Steve Wilson Published hy the Oklahoma Tourism and Recreauon Deparln~enl Delores Buffalo Takes Us To Indian City. ..... BvJoye R. Boulton COMMISSION MEMBERS LT. GOV. SPENCER BERNARD BOB HODDER JIM PATE Wedding at Holy City. ..... Chalrman Oklahoma C~tyV~ce Chalrman Mad111 Secretary By Sheila Samples JAKE J SIMMONS. JR LARRY FIELD Muskogee Guymon Pageantry, Tradition Follow The Artillery Hunt .... BOB HINTON CELlA ROSENBERGER WR DICK STUBBS By Sheila Samples Altus Tulsa Henryetta BILL KELLOW. Dlr ABE L HESSER RON ACREE. Dlr Red Rock Canyon Family Reunion. ...... Tour~smPromollon Plannlng & Development Execut~veD~rector By Judith Wall W D JOHNSON. Dlr ROBERT A PIKE Dlr KEN FLAMING Dlr Adm~n~strat~on State Parks State Lodges Quartz Mountain Resort Fascinates Hikers .................. 25 11 1s Ihe purvose 01 Oklahoma Today lo dovole llself lo Ihe enule stale 01 Oklaho~naand 11s evay poslllve aspecl the scenery culture recreallonal and vls~lorallracllny evenls 11s lndustly nalural and By John Davis man made wonders 11s achievements 11s herrlage 11s presenl and 11s tulure Quartz Visitors Discover The World of Jeff Briley, Naturalist. ...... 27 502 WILL ROGERS BUILDING .Oklahoma C~ty73105 .(405) 521-2496 By Gary Lantz $5 00 Pel Year In U S S9 00 Elsewhere SI 25 Srnyle Copy Copyr~ghl1980 by Oklahoma Today Mayazrne L~lho111 Oklaho~na Restaurant Diners Enjoy Tales Of Oklahoma's First Resort ....... -
TOPOGRAPHIC MAP of OKLAHOMA Kenneth S
Page 2, Topographic EDUCATIONAL PUBLICATION 9: 2008 Contour lines (in feet) are generalized from U.S. Geological Survey topographic maps (scale, 1:250,000). Principal meridians and base lines (dotted black lines) are references for subdividing land into sections, townships, and ranges. Spot elevations ( feet) are given for select geographic features from detailed topographic maps (scale, 1:24,000). The geographic center of Oklahoma is just north of Oklahoma City. Dimensions of Oklahoma Distances: shown in miles (and kilometers), calculated by Myers and Vosburg (1964). Area: 69,919 square miles (181,090 square kilometers), or 44,748,000 acres (18,109,000 hectares). Geographic Center of Okla- homa: the point, just north of Oklahoma City, where you could “balance” the State, if it were completely flat (see topographic map). TOPOGRAPHIC MAP OF OKLAHOMA Kenneth S. Johnson, Oklahoma Geological Survey This map shows the topographic features of Oklahoma using tain ranges (Wichita, Arbuckle, and Ouachita) occur in southern contour lines, or lines of equal elevation above sea level. The high- Oklahoma, although mountainous and hilly areas exist in other parts est elevation (4,973 ft) in Oklahoma is on Black Mesa, in the north- of the State. The map on page 8 shows the geomorphic provinces The Ouachita (pronounced “Wa-she-tah”) Mountains in south- 2,568 ft, rising about 2,000 ft above the surrounding plains. The west corner of the Panhandle; the lowest elevation (287 ft) is where of Oklahoma and describes many of the geographic features men- eastern Oklahoma and western Arkansas is a curved belt of forested largest mountainous area in the region is the Sans Bois Mountains, Little River flows into Arkansas, near the southeast corner of the tioned below. -
The Rustenburg Layered Suite Formed As a Stack of Mush with Transient Magma Chambers ✉ Zhuosen Yao1, James E
ARTICLE https://doi.org/10.1038/s41467-020-20778-w OPEN The Rustenburg Layered Suite formed as a stack of mush with transient magma chambers ✉ Zhuosen Yao1, James E. Mungall 1 & M. Christopher Jenkins 1 The Rustenburg Layered Suite of the Bushveld Complex of South Africa is a vast layered accumulation of mafic and ultramafic rocks. It has long been regarded as a textbook result of fractional crystallization from a melt-dominated magma chamber. Here, we show that most 1234567890():,; units of the Rustenburg Layered Suite can be derived with thermodynamic models of crustal assimilation by komatiitic magma to form magmatic mushes without requiring the existence of a magma chamber. Ultramafic and mafic cumulate layers below the Upper and Upper Main Zone represent multiple crystal slurries produced by assimilation-batch crystallization in the upper and middle crust, whereas the chilled marginal rocks represent complementary supernatant liquids. Only the uppermost third formed via lower-crustal assimilation–fractional crystallization and evolved by fractional crystallization within a melt-rich pocket. Layered intrusions need not form in open magma chambers. Mineral deposits hitherto attributed to magma chamber processes might form in smaller intrusions of any geometric form, from mushy systems entirely lacking melt-dominated magma chambers. 1 Department of Earth Sciences, Carleton University, 2115 Herzberg Laboratories, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada. ✉ email: [email protected] NATURE COMMUNICATIONS | (2021) 12:505 | https://doi.org/10.1038/s41467-020-20778-w | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20778-w ayered mafic intrusions represent portions of the plumbing derived by incremental crystallization must be removed. -
Four Western Cheilanthoid Ferns in Oklahoma
Oklahoma Native Plant Record 65 Volume 10, December 2010 FOUR WESTERN CHEILANTHOID FERNS IN OKLAHOMA Bruce A. Smith McLoud High School McLoud, Oklahoma 74851 Keywords: arid, distribution, habitat, key ABSTRACT The diversity of ferns in some of the more arid climates of western Oklahoma is surprising. This article examines four Oklahoma cheilanthoid ferns: Astrolepis integerrima, Cheilanthes wootonii, Notholaena standleyi, and Pellaea wrightiana. With the exceptions of A. integerrima and P. wrightiana which occur in Alabama and North Carolina respectively, all four species reach their eastern limits of distribution in Oklahoma. Included in this article are common names, synonyms, brief descriptions, distinguishing characteristics, U.S. and Oklahoma distribution, habitat information, state abundance, and a dichotomous key to selected cheilanthoids. The Oklahoma Natural Heritage Inventory has determined that all but one (N. standleyi) are species of concern in the state. INTRODUCTION of eastern Oklahoma, while most members of the Pteridaceae occur in Almost half of the ferns in the family western Oklahoma (Taylor & Taylor Pteridaceae are xeric adapted ferns. In 1991). Oklahoma six genera and sixteen species Statewide, the most common species in the family are known to occur. They in the Pteridaceae is Pellaea atropurpurea live on dry or moist rocks and can be (Figure 4), which can be found found in rock crevices, at the bases of throughout the body of the state and boulders, or on rocky ledges. Common Cimarron County in the panhandle. The associated species include lichens, mosses, rarest are Cheilanthes horridula and liverworts, and spike mosses. Two Cheilanthes lindheimeri. Cheilanthes horridula physical characteristics that unite the and Cheilanthes lindheimeri have only been family are the marginal sori (Figure 1) and seen in one county each, Murray and the lack of a true indusium.