Komatiites of the Weltevreden Formation, Barberton Greenstone

Total Page:16

File Type:pdf, Size:1020Kb

Komatiites of the Weltevreden Formation, Barberton Greenstone Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2005 Komatiites of the Weltevreden Formation, Barberton Greenstone Belt, South Africa: implications for the chemistry and temperature of the Archean mantle Keena Kareem Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Earth Sciences Commons Recommended Citation Kareem, Keena, "Komatiites of the Weltevreden Formation, Barberton Greenstone Belt, South Africa: implications for the chemistry and temperature of the Archean mantle" (2005). LSU Doctoral Dissertations. 3249. https://digitalcommons.lsu.edu/gradschool_dissertations/3249 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. KOMATIITES OF THE WELTEVREDEN FORMATION, BARBERTON GREENSTONE BELT, SOUTH AFRICA: IMPLICATIONS FOR THE CHEMISTRY AND TEMPERATURE OF THE ARCHEAN MANTLE A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Geology and Geophysics by Keena Kareem B.S., Tulane University, 1999 May 2005 ACKNOWLEDGMENTS The author wishes to thank, Dr. Gary Byerly, the author’s major advisor for guidance and support in defining the project, technical assistance with instrumentation, and practical advice concerning non-dissertation related issues. Appreciation goes out to the other members of the advisory committee: Drs. Huiming Bao, Lui-Heung Chan, Ray Ferrell, Darrell Henry, of the Department of Geology and Geophysics, and Dr. David Constant of the Department of Civil and Environmental Engineering at Louisiana State University. This research was supported by NSF grant to Dr. Gary Byerly, a student grant from GSA, and a Huel Perkins Fellowship. The author wishes to thank others in the Department of Geology who offered technical assistance, Dr. Xiaogang Xie in microanalysis, Wanda Leblanc in x-ray diffraction data collection and whole rock chemical determinations, Rick Young in rock sample preparation, and Tommy Blanchard in sample preparation for lithium concentration and isotopes. The author also wishes to extend appreciation to the office staff for all the assistance they provided. The author wishes to thank her family members for support during her years in graduate school, her mother, Lily Kareem, her father, Majid Kareem, and her siblings, Rashad Kareem, Najla Kareem, and Angela Ross. The author wishes to extend appreciation to a few of her friends in Baton Rouge, Juan Chow, Swati Ghoshal, Matt Hackworth, Maria Antonieta Pacheco, Melanie Thompson, and Paul White, for feedback with presentations, excursions such as coffee breaks, and enjoyable conversations. ii TABLE OF CONTENTS ACKNOWLEDGMENTS………...…………...…………………………………..…….ii ABSTRACT………….……………………………………………………………..….…v CHAPTER 1. INTRODUCTION…………………..………………………………...1 CHAPTER 2. PETROLOGY AND GEOCHEMISTRY OF KOMATIITES OF THE WELTEVREDEN FORMATION, BARBERTON GREENSTONE BELT, SOUTH AFRICA…………………..…..…..4 Introduction……………………………………………........................4 Geologic Background…………………….……………………......….5 Weltevreden Formation………………………………………..….8 Analytical Techniques……………………..…………………….....…9 Electron Microprobe……………………….……………….…..…9 Inductively Coupled Plasma Spectrometer ………..…………….10 X-ray Fluorescence and Inductively Coupled Plasma Source Mass Spectrometer……..………………………..10 Results……………………………………….………………….……11 Petrography………………………………...…………………….11 Mineral Chemistry……….………………….………...…………18 Rock Chemistry……………………………………………….…62 Melt Inclusion Chemistry………………………….…..………...64 MELTS…………………………………...……….……..........…73 Discussion………………………………………………….…….…..82 Alteration and Metamorphism……………………………..…….82 Partition Coefficients……………...…………………………..…84 Model for the Petrogenesis of the Weltevreden Formation Komatiites……………………………………………….……….90 Conclusions………………………………………….………...……104 References……………………………………………………..…....105 CHAPTER 3. ALTERATION OF KOMATIITES FROM THE WELTEVREDEN FORMATION, BARBERTON GREENSTONE BELT, SOUTH AFRICA...…………..……...…..113 Introduction………………………………………………………....113 Geologic Background……………………………………......….….115 Analytical Techniques……………………………………...…...….116 X-ray Diffraction…………………...…………………..……....116 Electron Microprobe………………………………..…….….....117 Results………………………………………………………..…..…117 Petrography…………………………………………..……....…117 X-ray Diffraction………………………………...……………..122 Mineral Chemistry………………….……………………..…....123 iii Discussion…………………………………………...………….…..136 Serpentine Chemistry………………………...………...……….136 Correlation Between Serpentine and Host Mineral and Rock ....139 Alteration History…………………………………...……….....145 Conclusions…………………………………………...……….……148 References……………………………………...…….……….….…149 CHAPTER 4. LITHIUM AND OXYGEN ISOTOPIC COMPOSITIONS OF KOMATIITES FROM THE BARBERTON GREENSTONE BELT, SOUTH AFRICA: IMPLICATIONS FOR THE COMPOSITION OF THE ARCHEAN MANTLE AND SURFACE ALTERATION PROCESSES………………..…152 Introduction……………………………………………...……………152 Sample Description…………………………...………………………154 Analytical Techniques………………………………………..………156 Lithium……………………………………………...…..………156 Oxygen………………………………………………………….157 Results……………………………………………………...…………157 Lithium Concentration……………………...………...……..….157 Lithium Isotopic Composition……………...……...….…….….160 Oxygen Isotopic Composition………….……………………....165 Discussion………………………………………………………….....165 Lithium and Oxygen in the Mantle………...……….…………..165 Behavior of Lithium and Oxygen During Serpentinization........179 Model – Recycled Crust and Viscously Coupled Hydrated Mantle…………...……………………………………………...188 Conclusions……………………………………………………...……192 References……………………………………………….....................194 CHAPTER 5. CONCLUSIONS…………………………….……………………….201 APPENDIX A: STATISTICS…………………………………………..…………....205 APPENDIX B: MELTS RESULTS AND CIPW NORM……………..…………...211 APPENDIX C: STANDARDS FOR SERPENTINE ………………………......….226 VITA……………………………………………………………...……………………227 iv ABSTRACT The komatiites of the 3.29 Ga Weltevreden Formation, Barberton Greenstone Belt, South Africa represent extremely magnesian lavas derived from the Archean mantle. Three related papers are presented on aspects of the temperature and composition of the Archean mantle, and surface alteration processes. Petrographical and geochemical analyses confirm that olivines from the komatiites retain much of their original igneous character, containing fresh olivines, pyroxenes, and chromites. The olivines from the Weltevreden Formation are extremely magnesian, with Fo contents up to 95.6. Primitive mantle normalized Gd/Yb values near 1, and Al2O3/TiO3 values of 26-33 for these rocks are consistent with derivation from deep primitive mantle, leaving a melt residue of only olivine. Models based on the geochemistry of these rocks indicate eruption temperatures of at least 1660˚C, higher than previously reported for komatiitic eruption temperatures. X-ray diffraction and electron microprobe analyses show that the dominant alteration mineral in these rocks is serpentine. The dominant serpentine mineral present, lizardite, shows a wide range of compositional variation. Observed textures and geochemical variation of the alteration products indicate these rocks were altered at a lower metamorphic grade than previously reported for the Barberton Greenstone Belt. The δ7Li and δ18O values of the fresh olivine separates from these rocks range from 0.5 to 10.0‰ and 3.8 to 4.2‰, respectively. The variation of δ7Li values and the low δ18O values of olivine separates indicates the incorporation of a subduction component in the mantle source region, which suggests the Archean mantle was v heterogeneous. Temperatures of serpentinization ranging from 142 to 310˚C were determined using the oxygen isotopic compositions of the whole rocks assuming fluids with δ18O values ranging from -1 to 2‰. The estimated temperatures and the petrographical and geochemical data of these rocks indicate alteration at temperatures lower than previously estimated for the Barberton Greenstone Belt. vi CHAPTER 1. INTRODUCTION The 3.55-3.22 Ga Barberton Greenstone Belt, South Africa, represents one of the best preserved greenstone terrains available for studies of the early history of the Earth. It represents a natural laboratory for examination of the early Earth including evolution of life, ancient meteorite impacts, and volcanism. Unique rocks that erupted predominantly during the Archean, the komatiites are important because they are a significant component of the Archean crust. Komatiites are ultramafic volcanic rocks, usually characterized by their spinifex textures. The Barberton Greenstone Belt contains some of the best exposures of komatiites on Earth, therefore analyses of these rocks and their fresh primary igneous minerals may aid in constraining the thermal and compositional nature of the mantle source region. For years, the origin and occurrence of komatiites have been the subject of debate. Researchers have disagreed on the nature and composition of the mantle source for komatiites, origin of spinifex texture, possible dissolved volatiles in komatiitic liquids, and eruption temperatures and tectonic setting for komatiitic lavas. The objectives of
Recommended publications
  • Source and Bedrock Distribution of Gold and Platinum-Group Metals in the Slate Creek Area, Northern.Chistochina Mining District, East-Central Alaska
    Source and Bedrock Distribution of Gold and Platinum-Group Metals in the Slate Creek Area, Northern.Chistochina Mining District, East-Central Alaska By: Jeffrey Y. Foley and Cathy A. Summers Open-file report 14-90******************************************1990 UNITED STATES DEPARTMENT OF THE INTERIOR Manuel Lujan, Jr., Secretary BUREAU OF MINES T S Arv. Director TN 23 .U44 90-14 c.3 UNITED STATES BUREAU OF MINES -~ ~ . 4,~~~~1 JAMES BOYD MEMORIAL LIBRARY CONTENTS Abstract 1 Introduction 2 Acknowledgments 2 Location, access, and land status 2 History and production 4 Previous work 8 Geology 8 Regional and structural geologic setting 8 Rock units 8 Dacite stocks, dikes, and sills 8 Limestone 9 Argillite and sandstone 9 Differentiated igneous rocks north of the Slate Creek Fault Zone 10 Granitic rocks 16 Tertiary conglomerate 16 Geochemistry and metallurgy 18 Mineralogy 36 Discussion 44 Recommendations 45 References 47 ILLUSTRATIONS 1. Map of Slate Creek and surrounding area, in the northern Chistochina Mining District 3 2. Geologic map of the Slate Creek area, showing sample localities and cross section (in pocket) 3. North-dipping slaty argillite with lighter-colored sandstone intervals in lower Miller Gulch 10 4. North-dipping differentiated mafic and ultramafic sill capping ridge and overlying slaty argillite at upper Slate Creek 11 5. Dike swarm cutting Jurassic-Cretaceous turbidites in Miller Gulch 12 6 60-ft-wide diorite porphyry and syenodiorite porphyry dike at Miller Gulch 13 7. Map showing the locations of PGM-bearing mafic and ultramafic rocks and major faults in the east-central Alaska Range 14 8. Major oxides versus Thornton-Tuttle differentiation index 17 9.
    [Show full text]
  • Mantle Peridotite Xenoliths
    Earth and Planetary Science Letters 260 (2007) 37–55 www.elsevier.com/locate/epsl Mantle peridotite xenoliths in andesite lava at El Peñon, central Mexican Volcanic Belt: Isotopic and trace element evidence for melting and metasomatism in the mantle wedge beneath an active arc ⁎ Samuel B. Mukasa a, , Dawnika L. Blatter b, Alexandre V. Andronikov a a Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109-1005, USA b Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA Received 6 July 2006; received in revised form 3 May 2007; accepted 7 May 2007 Available online 13 May 2007 Editor: R.W. Carlson Abstract Peridotites in the mantle wedge and components added to them from the subducting slab are thought to be the source of most arc magmas. However, direct sampling of these materials, which provides a glimpse into the upper mantle beneath an active margin, is exceedingly rare. In the few arc localities where found, peridotite xenoliths are usually brought to the surface by basaltic magmas. Remarkably, the hornblende-bearing ultramafic xenoliths and clinopyroxene megaxenocrysts from El Peñon in the central Mexican Volcanic Belt were brought to the surface by a Quaternary high-Mg siliceous andesite, a rock type usually considered too evolved to be a direct product of mantle melting. The xenoliths and megaxenocrysts from El Peñon represent lithospheric mantle affected by significant subduction of oceanic lithosphere since as early as the Permian. Trace element and radiogenic isotope data we report here on these materials suggest a history of depletion by melt extraction, metasomatism involving a fluid phase, and finally, limited reaction between the ultramafic materials and the host andesite, probably during transport.
    [Show full text]
  • Bedrock Geology Glossary from the Roadside Geology of Minnesota, Richard W
    Minnesota Bedrock Geology Glossary From the Roadside Geology of Minnesota, Richard W. Ojakangas Sedimentary Rock Types in Minnesota Rocks that formed from the consolidation of loose sediment Conglomerate: A coarse-grained sedimentary rock composed of pebbles, cobbles, or boul- ders set in a fine-grained matrix of silt and sand. Dolostone: A sedimentary rock composed of the mineral dolomite, a calcium magnesium car- bonate. Graywacke: A sedimentary rock made primarily of mud and sand, often deposited by turbidi- ty currents. Iron-formation: A thinly bedded sedimentary rock containing more than 15 percent iron. Limestone: A sedimentary rock composed of calcium carbonate. Mudstone: A sedimentary rock composed of mud. Sandstone: A sedimentary rock made primarily of sand. Shale: A deposit of clay, silt, or mud solidified into more or less a solid rock. Siltstone: A sedimentary rock made primarily of sand. Igneous and Volcanic Rock Types in Minnesota Rocks that solidified from cooling of molten magma Basalt: A black or dark grey volcanic rock that consists mainly of microscopic crystals of pla- gioclase feldspar, pyroxene, and perhaps olivine. Diorite: A plutonic igneous rock intermediate in composition between granite and gabbro. Gabbro: A dark igneous rock consisting mainly of plagioclase and pyroxene in crystals large enough to see with a simple magnifier. Gabbro has the same composition as basalt but contains much larger mineral grains because it cooled at depth over a longer period of time. Granite: An igneous rock composed mostly of orthoclase feldspar and quartz in grains large enough to see without using a magnifier. Most granites also contain mica and amphibole Rhyolite: A felsic (light-colored) volcanic rock, the extrusive equivalent of granite.
    [Show full text]
  • Neuro-Fuzzy Classification of Felsic Lava Geomorphology at Alarcon Rise, Mexico Christina Hefron Maschmeyer University of South Carolina
    University of South Carolina Scholar Commons Theses and Dissertations 2016 Neuro-Fuzzy Classification of Felsic Lava Geomorphology at Alarcon Rise, Mexico Christina Hefron Maschmeyer University of South Carolina Follow this and additional works at: https://scholarcommons.sc.edu/etd Part of the Geology Commons Recommended Citation Maschmeyer, C. H.(2016). Neuro-Fuzzy Classification of Felsic Lava Geomorphology at Alarcon Rise, Mexico. (Master's thesis). Retrieved from https://scholarcommons.sc.edu/etd/3566 This Open Access Thesis is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. NEURO-FUZZY CLASSIFICATION OF FELSIC LAVA GEOMORPHOLOGY AT ALARCON RISE, MEXICO by Christina Hefron Maschmeyer Bachelor of Science College of Charleston, 2014 Bachelor of Arts College of Charleston, 2014 Submitted in Partial Fulfillment of the Requirements For the Degree of Master of Science in Geological Sciences College of Arts and Sciences University of South Carolina 2016 Accepted by: Scott White, Director of Thesis Michael Bizimis, Reader Brian Dreyer, Reader Lacy Ford, Senior Vice Provost and Dean of Graduate Studies © Copyright by Christina Hefron Maschmeyer, 2016 All Rights Reserved. ii DEDICATION This thesis is dedicated to Dr. Jim Carew for making me go to graduate school. iii ACKNOWLEDGEMENTS Data for this study were collected during cruises in 2012 aboard the R/V Zephyr and R/V Western Flyer and during 2015 on the R/V Rachel Carson and R/V Western Flyer from the Monterey Bay Aquarium Research Institute. I want to thank the captains, crews, ROV pilots and science parties for their work during these expeditions.
    [Show full text]
  • Depleted Spinel Harzburgite Xenoliths in Tertiary Dykes from East Greenland: Restites from High Degree Melting
    Earth and Planetary Science Letters 154Ž. 1998 221±235 Depleted spinel harzburgite xenoliths in Tertiary dykes from East Greenland: Restites from high degree melting Stefan Bernstein a,), Peter B. Kelemen b,1, C. Kent Brooks a,c,2 a Danish Lithosphere Centre, éster Voldgade 10, DK-1350 Copenhagen K, Denmark b Woods Hole Oceanographic Institution, Woods Hole, City, MA 02543, USA c Geological Institute, UniÕersity of Copenhagen, éster Voldgade 10, DK-1350 Copenhagen K, Denmark Received 28 April 1997; revised 19 September 1997; accepted 4 October 1997 Abstract A new collection of mantle xenoliths in Tertiary dykes from the Wiedemann Fjord area in Southeast Greenland shows that this part of the central Greenland craton is underlain by highly depleted peridotites. The samples are mostly spinel harzburgites with highly forsteritic olivinesŽ. Fo87± 94 , average Fo 92.7 . This, together with unusually high modal olivine contentsŽ. 70±)95% , places the Wiedemann harzburgites in a unique compositional field. Relative to depleted Kaapvaal harzburgites with comparable Fo in olivine, the Wiedemann samples have considerably lower bulk SiO2 Ž average 42.6 wt% versus 44±49 wt%. Spinel compositions are similar to those in other sub-cratonic harzburgites. Pyroxene equilibrium temperatures average 8508C, which is above an Archaean cratonic geotherm at an inferred pressure of 1±2 GPa, but low enough so that it is unlikely that the xenoliths represent residual peridotites created during Tertiary magmatism. Among mantle samples, the Wiedemann harzburgites are, in terms of their bulk composition, most similar to harzburgites from the ophiolites of Papua New GuineaŽ. PNG and New Caledonia Ž.
    [Show full text]
  • Mantle Origin and Flow Sorting of Megacryst-Xenolith Inclusions in Mafic Dikes of Black Canyon, Arizona
    Mantle Origin and Flow Sorting of Megacryst-Xenolith Inclusions in Mafic Dikes of Black Canyon, Arizona U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1541 AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the current- year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Survey publications released prior to the current year are listed in the most recent annual "Price and Availability List." Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books and Maps Professional Papers, Bulletins, Water-Supply Papers, Tech­ Books and maps of the U.S. Geological Survey are available niques of Water-Resources Investigations, Circulars, publications over the counter at the following U.S. Geological Survey offices, of general interest (such as leaflets, pamphlets, booklets), single all of which are authorized agents of the Superintendent of Docu­ copies of Earthquakes & Volcanoes, Preliminary Determination of ments. Epicenters, and some miscellaneous reports, including some of the foregoing series that have gone out of print at the Superin­ • ANCHORAGE, Alaska—4230 University Dr., Rm.
    [Show full text]
  • Lithostratigraphy and Tectonic Evolution of Contrasting Greenstone Successions in the Central Yilgarn Craton, Western Australia
    Precambrian Research 127 (2003) 249–266 Lithostratigraphy and tectonic evolution of contrasting greenstone successions in the central Yilgarn Craton, Western Australia She Fa Chen∗, Angela Riganti, Stephen Wyche, John E. Greenfield, David R. Nelson Geological Survey of Western Australia, 100 Plain Street, East Perth, WA 6004, Australia Accepted 10 April 2003 Abstract Lithostratigraphy of the Late Archaean Marda–Diemals greenstone belt in the Southern Cross Terrane, central Yilgarn Craton defines a temporal change from mafic volcanism to felsic-intermediate volcanism to clastic sedimentation. A ca. 3.0 Ga lower greenstone succession is characterised by mafic volcanic rocks and banded iron-formation (BIF). It is subdivided into three litho- stratigraphic associations and unconformably overlain by the ca. 2.73 Ga upper greenstone succession of calc-alkaline volcanic (Marda Complex) and clastic sedimentary rocks (Diemals Formation). D1 north–south, low-angle thrusting was restricted to the lower greenstone succession and preceded deposition of the upper greenstone succession. D2 east–west, orogenic compression ca. 2730–2680 Ma occurred in two stages; an earlier folding phase and a late phase that resulted in deposition and deformation of the Diemals Formation. Progressive and inhomogeneous east–west shortening ca. 2680–2655 Ma (D3) produced regional-scale shear zones and arcuate structures. The lithostratigraphy and tectonic history of the Marda–Diemals greenstone belt are broadly similar to the northern Murchison Terrane in the western Yilgarn Craton, but has older greenstones and deformation events than the southern Eastern Goldfields Terrane of the eastern Yilgarn Craton. This indicates that the Eastern Goldfields Terrane may have accreted to an older Murchison–Southern Cross granite–greenstone nucleus.
    [Show full text]
  • Metamorphic Gold Exploration Timmins Abitibi Greenstone
    Ontario Geological Survey Open File Report 6101 Toward a New Metamorphic Framework for Gold Exploration in the Timmins Area, Central Abitibi Greenstone Belt 2002 ONTARIO GEOLOGICAL SURVEY Open File Report 6101 Toward a New Metamorphic Framework for Gold Exploration in the Timmins Area, Central Abitibi Greenstone Belt by P.H. Thompson 2002 Parts of this publication may be quoted if credit is given. It is recommended that reference to this publication be made in the following form: Thompson, P.H. 2002. Toward a new metamorphic framework for gold exploration in the Timmins area, central Abitibi greenstone belt; Ontario Geological Survey, Open File Report 6101, 51p. e Queen’s Printer for Ontario, 2002 e Queen’s Printer for Ontario, 2002. Open File Reports of the Ontario Geological Survey are available for viewing at the Mines Library in Sudbury, at the Mines and Minerals Information Centre in Toronto, and at the regional Mines and Minerals office whose district includes the area covered by the report (see below). Copies can be purchased at Publication Sales and the office whose district includes the area covered by the report. Al- though a particular report may not be in stock at locations other than the Publication Sales office in Sudbury, they can generally be obtained within 3 working days. All telephone, fax, mail and e-mail orders should be directed to the Publica- tion Sales office in Sudbury. Use of VISA or MasterCard ensures the fastest possible service. Cheques or money orders should be made payable to the Minister of Finance. Mines and Minerals Information Centre (MMIC) Tel: (416) 314-3800 Macdonald Block, Room M2-17 1-800-665-4480(toll free inside Ontario) 900 Bay St.
    [Show full text]
  • Geological Mapping, Structural Setting and Petrographic Description of the Archean Volcanic Rocks of Mnanka Area, North Mara
    PROCEEDINGS, 43rd Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 12-14, 2018 SGP-TR-213 Geological Mapping, Structural Setting and Petrographic Description of the Archean Volcanic Rocks of Mnanka Area, North Mara Ezra Kavana Acacia Mining PLc, North Mara Gold Mine, Department of Geology, P. O. Box 75864, Dar es Salaam, Tanzania Email: [email protected] Keywords: Musoma Mara Greenstone Belt, Mnanka volcanics, Archaean rocks and lithology ABSTRACT The Mnanka area is situated within the Musoma Mara Greenstone Belt, the area is near to Nyabigena, Gokona and Nyabirama gold mines. Mnanka area comprises of the sequence of predominant rhyolitic volcanic rocks, chert and metasediments. Gold mineralizations in Mnanka area is structure controlled and occur mainly as hydrothermal disseminated intrusion related deposits. Hence the predominant observed structures are joints and flow banding. Measurements from flow banding plotted on stereonets using win-TENSOR software has provided an estimate for the general strike of the area lying 070° to 100° dipping at an average range angle of 70° to 85° while data from joints plotted on stereonets suggest multiple deformation events one of which conforms to the East Africa Rift System (striking WSW-ENE, NNE-SSW and N-S). 1. INTRODUCTION This paper focuses on performing a systematic geological mapping and description of structures and rocks of the Mnanka area. The Mnanka area is located in the Mara region, Tarime district within the Musoma Mara Greenstone Belt. The gold at Mnanka is host ed by volcanic rocks that belong to the Musoma Mara Greenstone Belt (Figure 1). The Mnanka volcanics are found within the Kemambo group that comprises of the sequence of predominant rhyolitic volcanic rocks, chert and metasediments south of the Nyarwana fault.
    [Show full text]
  • The Rustenburg Layered Suite Formed As a Stack of Mush with Transient Magma Chambers ✉ Zhuosen Yao1, James E
    ARTICLE https://doi.org/10.1038/s41467-020-20778-w OPEN The Rustenburg Layered Suite formed as a stack of mush with transient magma chambers ✉ Zhuosen Yao1, James E. Mungall 1 & M. Christopher Jenkins 1 The Rustenburg Layered Suite of the Bushveld Complex of South Africa is a vast layered accumulation of mafic and ultramafic rocks. It has long been regarded as a textbook result of fractional crystallization from a melt-dominated magma chamber. Here, we show that most 1234567890():,; units of the Rustenburg Layered Suite can be derived with thermodynamic models of crustal assimilation by komatiitic magma to form magmatic mushes without requiring the existence of a magma chamber. Ultramafic and mafic cumulate layers below the Upper and Upper Main Zone represent multiple crystal slurries produced by assimilation-batch crystallization in the upper and middle crust, whereas the chilled marginal rocks represent complementary supernatant liquids. Only the uppermost third formed via lower-crustal assimilation–fractional crystallization and evolved by fractional crystallization within a melt-rich pocket. Layered intrusions need not form in open magma chambers. Mineral deposits hitherto attributed to magma chamber processes might form in smaller intrusions of any geometric form, from mushy systems entirely lacking melt-dominated magma chambers. 1 Department of Earth Sciences, Carleton University, 2115 Herzberg Laboratories, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada. ✉ email: [email protected] NATURE COMMUNICATIONS | (2021) 12:505 | https://doi.org/10.1038/s41467-020-20778-w | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20778-w ayered mafic intrusions represent portions of the plumbing derived by incremental crystallization must be removed.
    [Show full text]
  • Geochemistry of an Ultramafic-Rodingite Rock Association in the Paleoproterozoic Dixcove Greenstone Belt, Southwestern Ghana
    Journal of African Earth Sciences 45 (2006) 333–346 www.elsevier.com/locate/jafrearsci Geochemistry of an ultramafic-rodingite rock association in the Paleoproterozoic Dixcove greenstone belt, southwestern Ghana Kodjopa Attoh a,*, Matthew J. Evans a,1, M.E. Bickford b a Department of Earth and Atmospheric Sciences, Cornell University, Snee Hall, Ithaca, NY 14853, USA b Department of Earth Sciences, Syracuse University, Syracuse, NY 13244, USA Received 11 January 2005; received in revised form 20 February 2006; accepted 2 March 2006 Available online 18 May 2006 Abstract Rodingite occurs in ultramafic rocks within the Paleoproterozoic (Birimian) Dixcove greenstone belt in southwestern Ghana. U–Pb analyses of zircons from granitoids intrusive into the greenstone belt constrain the age of the rodingite-ultramafic association to be older than 2159 Ma. The ultramafic complex consists of variably serpentinized dunite and harzburgite overlain by gabbroic rocks, which together show petrographic and geochemical characteristics consistent with their formation by fractional crystallization involving olivine and plagioclase cumulates. Major and trace element concentrations and patterns in the ultramafic–mafic cumulate rocks and associated plagiogranite are similar to rocks in ophiolitic suites. The rodingites, which occur as irregular pods and lenses, and as veins and blocks in the serpentinized zones, are characterized by high Al2O3 and CaO contents, which together with petrographic evidence indicate their formation from plagioclase-rich protoliths. The peridotites are highly depleted in REE and display flat, chondrite-normalized REE pat- terns with variable, but mostly small, positive Eu anomalies whereas the rodingites, which are also highly depleted, with overall REE contents from 0.04 to 1.2 times chondrite values, display distinct large positive Eu anomalies.
    [Show full text]
  • Geochemical Analysis of Beaver River Diabase in Comparison to Anorthosite Inclusions and Similar Mid- Continental Rift Diabase
    GEOCHEMICAL ANALYSIS OF BEAVER RIVER DIABASE IN COMPARISON TO ANORTHOSITE INCLUSIONS AND SIMILAR MID- CONTINENTAL RIFT DIABASE Jenna Fischer NDSU Petrology Dr. Saini- Eidukat 5/3/16 BACKGROUND MID- CONTINENT RIFT SYSTEM • Also known as Keweenawan Rift • Middle Proterozoic in age: ~ 1.1 Ga • Triple- junction rift that extends into Kansas and the lower peninsula of Michigan • Outcrops from the MRS are only seen around the Lake Superior region • Generally composed of flood basalts and intrusions • Source was a mantle plume • End of MRS could be Grenvillian orogeny (debatable) Image: www.earthscope.org Miller (1997) LAKE SUPERIOR REGION • Many intrusions in comparison to volcanic rock (60%) • Types of intrusions: Troctolitic, gabbroic, anorthositic, and granitic • Duluth Complex, North Shore Volcanic Group, and Hypabyssal Intrusions • Most hypabyssal intrusions are younger than Duluth Complex • Transitional boundary between complexes • Faults Green (1972) Miller (1997) Map: Miller and Green (2002) LAKE SUPERIOR REGION Map: Miller and Green (2002) HYPABYSSAL INTRUSIONS • Definition: a sub-volcanic rock; an intrusive igneous rock that is emplaced at medium to shallow depth within the crust between volcanic and plutonic • Largest concentration of these subvolcanic intrusions forms the Beaver Bay Complex • Whole rock compositions approximate the magma compositions • Most hypabyssal intrusions do not display igneous foliation and lack signs of differentiation • But late intrusions do! Ex. Sonju Lake, Beaver River Diabase Miller and Green (2002)
    [Show full text]