The Role of Form and Function in the Collegiate Biology Curriculum

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Form and Function in the Collegiate Biology Curriculum AMER. ZOOL., 28:619-664 (1988) The Role of Form and Function in the Collegiate Biology Curriculum WILLIAM V. MAYER Professor of Biology Emeritus, University of Colorado, Boulder, Colorado 80302 INTRODUCTION ductory courses have come about slowly Form and function are usually regarded and largely independently in various col- as essential, but routine, items in a curric- leges and universities. This does not mean ulum. They seem less important now than that guidelines for improvement did not before the rise in interest in molecular biol- exist. It does mean they went largely ogy and ecology. Those of my age group unheeded. To understand the climate for can recall the morphological drudgery of change one needs to examine activities that introductory zoology that involved draw- have been underway for close to a century ing, with a 4-H pencil, typical representa- designed to improve the caliber of biology tives of the various animal phyla and label- programs. To this end one must review the ing their parts with parallel guidelines and work of committees, commissions, and properly printed names. The aim of such studies that looked at the status quo and a course seemed to be to produce these made recommendations. The following illustrated sheets rather than to under- section highlights the more significant stand either the organisms or relationships efforts focused on the biology classroom. among them. I plodded through these ster- ile and boring assignments knowing that A BRIEF REVIEW OF STUDIES ON somewhere along the line, in later courses, INTRODUCTORY BIOLOGY I would be introduced to content that would Many efforts have been made to place synthesize this mass of detail and lead to a objectives in some kind of orderly pattern. conceptual understanding of morphology Attempts to delineate cognitive and affec- and its application to the living world. Later tive objectives for biology can be traced to I was to find this a vain hope. Ultimately I the ancient Greeks, see Moore (p. 483). had to make my own synthesis. However, serious study of the subject in Fortunately the days of the dissect, look, the United States can be traced to about draw, label and memorize type of labora- 1890 according to Hurd (1961, p. 9). tory are drawing to a close. The formal- Hurd's work is a major, but little known, dehyde smell and the lanolin covered hands contribution to biological education, appli- are less a requirement for biology than in cable to all levels from elementary school the past hastened, perhaps, by the obser- through college. Its value as a source of vation that formaldehyde is carcinogenic. generalizations about the content of a col- As a graduate assistant in the formalde- legiate biology course is due, in part, to the hyde and shark era I found myself exposed early congruence of curricula in secondary several times a week to barrels of preserved schools and undergraduate colleges. At the specimens in the atmosphere of isolation turn of the century almost every student and privacy given the laboratories of dis- who graduated from high school contin- section in science halls. Changes in intro- ued education in a college or university, 619 620 WILLIAM V. MAYER making the major objective of secondary the students were to examine the external schools one of preparing students for anatomy of animals. In addition to study higher education. Prior to 1900 only 3.8% of the general form, regional parts and of the school population aged 14 to 17 years symmetry were also to be stressed. The was enrolled in secondary schools and there approach was basically comparative, with were about 2,500 high schools in the United one animal compared to others of the same States. By 1900 the number of schools had species to determine points of variation and increased to 6,005 and 8.4% of the 14 to compatibility together with comparison 17 year old age group was enrolled in high with other types. Simple physiological school, with enrollment of girls exceeding experiments were also to be a part of the enrollment of boys by 25%. In New York curriculum. Laboratory work was consid- State, between 1896 and 1900, 82.5% of ered an essential and students were to be high schools taught botany, 70% physiol- subject to both a written and laboratory ogy, 42.5% zoology and 10% biology, so test. The Subcommittee on Physiology that a variety of opportunities in the bio- suggested a one semester course in each of logical sciences were readily available to anatomy, physiology and hygiene with an students. As high schools were essentially emphasis on practical work that stressed college preparatory they reflected colle- the mechanics of physics and chemistry of giate biases in their curricula. Colleges the body. This committee separated phys- themselves were spared examination. The iology from botany and zoology, which it significant early literature regarding intro- regarded as sciences of description and ductory collegiate courses varies from non- observation, and placed it more with chem- existent to sparse. However, what was istry and physics as a science of experi- going on within the college of the time is ment. reflected in the curricula of secondary schools. It would not be unfair to note that In 1896 the National Education Asso- the study of secondary school biology cur- ciation's Department of Natural Science ricula of the period is also a study of intro- Instruction was organized. The president, ductory collegiate biology in the absence Charles E. Bessey, was concerned that sci- of usable data concerning collegiate intro- ence should be something more than accu- ductory courses. The criticisms and sug- mulating facts. More attention was to be gestions for improvement focused on the given to the classification, arrangement and secondary schools were, by and large, as generalization from facts. In short, the applicable to the collegiate introductory development of what was termed a "judi- course, if not also to the entire collegiate cial state of mind." This approach was con- curriculum. firmed by a science committee sponsored by the National Education Association in 1898 under the Chairmanship of E. H. Reports of the National Education Association Hall of Harvard. This 1898 committee Concern about the quality of biology expressed the opinion that the minute education initiated a series of studies of anatomy of plants or animals or specialized secondary curricula that now span almost work of any kind would be premature and a century. The first significant study to con- out of place in a high school course of one cern itself with the life sciences was that in year in length. Rather, the work should 1893 when the National Education Asso- confine itself to the elements of the subject, ciation formed a Committee on Secondary the principles and methods of thought. School Studies, also known as the Com- John M. Coulter, Chairman of the Sub- mittee of Ten. This was headed by Charles committee on Botany in Secondary Schools, W. Eliot, President of Harvard University. severely criticized the common practice of Subcommittees were formed to deal with examination and recitation on the gross specific disciplines and, for the teaching of structure of flowering plants accompanied zoology, the subcommittee emphasized by herbarium observations. He felt these form and function. While the outline of superficial and restricted and even an irrel- the year's course was essentially phyletic, evant presentation of biological science. By THE COLLEGIATE BIOLOGY CURRICULUM 621 extension, his recommendations could mental discipline approach to learning was apply to similar practices in the zoology rejected by psychologists soon after the turn class. of the century, laboratory work in a sur- These studies at the secondary school prising number of institutions still today is level represented an early attempt to conducted for its value for developing develop both cognitive and affective objec- "mental discipline." The last decade of the tives for education in the biological sci- 19th century also focused on a shift away ences. Then, as now, there was little study from a natural history approach to what of science courses at the collegiate level might be called "pure" botany and zoology due, in part, to the resistance on the part whose major emphasis continued to be of collegiate content specialists to any morphological. One must distinguish interference with the way they interpret between studies and implementation. The their disciplines. However, collegiate assumption cannot be made that teaching faculties then, as now, were expressing deep practices or course curricula immediately concern regarding the inadequate prepa- respond to committee recommendations. ration of students entering college. In 1895 Periodically, committees are formed to the National Education Association report on the state of education and most appointed a committee of 24, consisting of of these reports are read and filed, rather 12 university scientists and 12 high school than acted upon. teachers, to consider college entrance stan- dards. The major objective of this com- mittee was to explore ways in which sec- Recommendations of the ondary schools could do their legitimate American Society of Zoologists work as schools of the people while, at the The American Society of Zoologists in same time, furnishing adequate prepara- 1906 made recommendations for improv- tion to pupils intending to continue their ing the teaching of zoology in the high education in colleges and universities. The school. Among these recommendations was subcommittee on zoology reported in 1899. that a full year of zoology be taken by the Its members unanimously opposed the student at secondary school and that it be textbook method of teaching zoology in given for college credit for those continu- which "a large amount of information ing their education. The content outline about animals is acquired thereby in a lim- for a year's work in high school zoology, ited time, and a minimum of attainment as recommended by ASZ, was: and preparation is demanded of the 1.
Recommended publications
  • Science Georgia Standards of Excellence SCIENCE - Zoology
    Science Georgia Standards of Excellence SCIENCE - Zoology The Science Georgia Standards of Excellence are designed to provide foundational knowledge and skills for all students to develop proficiency in science. The Project 2061’s Benchmarks for Science Literacy and the follow up work, A Framework for K-12 Science Education were used as the core of the standards to determine appropriate content and process skills for students. The Science Georgia Standards of Excellence focus on a limited number of core disciplinary ideas and crosscutting concepts which build from Kindergarten to high school. The standards are written with the core knowledge to be mastered integrated with the science and engineering practices needed to engage in scientific inquiry and engineering design. Crosscutting concepts are used to make connections across different science disciplines. The Science Georgia Standards of Excellence drive instruction. Hands-on, student-centered, and inquiry-based approaches should be the emphasis of instruction. The standards are a required minimum set of expectations that show proficiency in science. However, instruction can extend beyond these minimum expectations to meet student needs. Science consists of a way of thinking and investigating, as well a growing body of knowledge about the natural world. To become literate in science, students need to possess sufficient understanding of fundamental science content knowledge, the ability to engage in the science and engineering practices, and to use scientific and technological information correctly. Technology should be infused into the curriculum and the safety of the student should always be foremost in instruction. In this course, students will recognize key features of the major body plans that have evolved in animals and how those body plans have changed over time resulting in the diversity of animals that are evident today.
    [Show full text]
  • Description of an Eyeless Species of the Ground Beetle Genus Trechus Clairville, 1806 (Coleoptera: Carabidae: Trechini)
    Zootaxa 4083 (3): 431–443 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4083.3.7 http://zoobank.org/urn:lsid:zoobank.org:pub:C999EBFD-4EAF-44E1-B7E9-95C9C63E556B Blind life in the Baltic amber forests: description of an eyeless species of the ground beetle genus Trechus Clairville, 1806 (Coleoptera: Carabidae: Trechini) JOACHIM SCHMIDT1, 2, HANNES HOFFMANN3 & PETER MICHALIK3 1University of Rostock, Institute of Biosciences, General and Systematic Zoology, Universitätsplatz 2, 18055 Rostock, Germany 2Lindenstraße 3a, 18211 Admannshagen, Germany. E-mail: [email protected] 3Zoological Institute and Museum, Ernst-Moritz-Arndt-University, Loitzer Str. 26, D-17489 Greifswald, Germany. E-mail: [email protected] Abstract The first eyeless beetle known from Baltic amber, Trechus eoanophthalmus sp. n., is described and imaged using light microscopy and X-ray micro-computed tomography. Based on external characters, the new species is most similar to spe- cies of the Palaearctic Trechus sensu stricto clade and seems to be closely related to the Baltic amber fossil T. balticus Schmidt & Faille, 2015. Due to the poor conservation of the internal parts of the body, no information on the genital char- acters can be provided. Therefore, the systematic position of this fossil within the megadiverse genus Trechus remains dubious. The occurrence of the blind and flightless T. eoanophthalmus sp. n. in the Baltic amber forests supports a previ- ous hypothesis that these forests were located in an area partly characterised by mountainous habitats with temperate cli- matic conditions.
    [Show full text]
  • Classification of Botany and Use of Plants
    SECTION 1: CLASSIFICATION OF BOTANY AND USE OF PLANTS 1. Introduction Botany refers to the scientific study of the plant kingdom. As a branch of biology, it mainly accounts for the science of plants or ‘phytobiology’. The main objective of the this section is for participants, having completed their training, to be able to: 1. Identify and classify various types of herbs 2. Choose the appropriate categories and types of herbs for breeding and planting 1 2. Botany 2.1 Branches – Objectives – Usability Botany covers a wide range of scientific sub-disciplines that study the growth, reproduction, metabolism, morphogenesis, diseases, and evolution of plants. Subsequently, many subordinate fields are to appear, such as: Systematic Botany: its main purpose the classification of plants Plant morphology or phytomorphology, which can be further divided into the distinctive branches of Plant cytology, Plant histology, and Plant and Crop organography Botanical physiology, which examines the functions of the various organs of plants A more modern but equally significant field is Phytogeography, which associates with many complex objects of research and study. Similarly, other branches of applied botany have made their appearance, some of which are Phytopathology, Phytopharmacognosy, Forest Botany, and Agronomy Botany, among others. 2 Like all other life forms in biology, plant life can be studied at different levels, from the molecular, to the genetic and biochemical, through to the study of cellular organelles, cells, tissues, organs, individual plants, populations and communities of plants. At each of these levels a botanist can deal with the classification (taxonomy), structure (anatomy), or function (physiology) of plant life.
    [Show full text]
  • The Biodiversity–Ecosystem Function Debate in Ecology
    Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Handbook of The Philosophy of Science: Philosophy of Ecology. The copy attached is provided by Elsevier for the author’s benefit and for the benefit of the author’s institution, for non-commercial research, and educational use. This includes without limitation use in instruction at your institution, distribution to specific colleagues, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From deLaplante Kevin, and Picasso Valentin, The Biodiversity-Ecosystem Function Debate in Ecology. In: Dov M. Gabbay, Paul Thagard and John Woods, editors, Handbook of The Philosophy of Science: Philosophy of Ecology. San Diego: North Holland, 2011, pp. 169-200. ISBN: 978-0-444-51673-2 © Copyright 2011 Elsevier B. V. North Holland. Author's personal copy THE BIODIVERSITY–ECOSYSTEM FUNCTION DEBATE IN ECOLOGY Kevin deLaplante and Valentin Picasso 1 INTRODUCTION Population/community ecology and ecosystem ecology present very different per- spectives on ecological phenomena. Over the course of the history of ecology there has been relatively little interaction between the two fields at a theoretical level, despite general acknowledgment that many ecosystem processes are both influ- enced by and constrain population- and community-level phenomena.
    [Show full text]
  • Content Outline for Biological Science Section of the MCAT
    Content Outline for Biological Science Section of the MCAT Content Outline for Biological Science Section of the MCAT BIOLOGY MOLECULAR BIOLOGY: ENZYMES AND METABOLISM A. Enzyme Structure and Function 1. Function of enzymes in catalyzing biological reactions 2. Reduction of activation energy 3. Substrates and enzyme specificity B. Control of Enzyme Activity 1. Feedback inhibition 2. Competitive inhibition 3. Noncompetitive inhibition C. Basic Metabolism 1. Glycolysis (anaerobic and aerobic, substrates and products) 2. Krebs cycle (substrates and products, general features of the pathway) 3. Electron transport chain and oxidative phosphorylation (substrates and products, general features of the pathway) 4. Metabolism of fats and proteins MOLECULAR BIOLOGY: DNA AND PROTEIN SYNTHESIS DNA Structure and Function A. DNA Structure and Function 1. Double-helix structure 2. DNA composition (purine and pyrimidine bases, deoxyribose, phosphate) 3. Base-pairing specificity, concept of complementarity 4. Function in transmission of genetic information B. DNA Replication 1. Mechanism of replication (separation of strands, specific coupling of free nucleic acids, DNA polymerase, primer required) 2. Semiconservative nature of replication C. Repair of DNA 1. Repair during replication 2. Repair of mutations D. Recombinant DNA Techniques 1. Restriction enzymes 2. Hybridization © 2009 AAMC. May not be reproduced without permission. 1 Content Outline for Biological Science Section of the MCAT 3. Gene cloning 4. PCR Protein Synthesis A. Genetic Code 1. Typical information flow (DNA → RNA → protein) 2. Codon–anticodon relationship, degenerate code 3. Missense and nonsense codons 4. Initiation and termination codons (function, codon sequences) B. Transcription 1. mRNA composition and structure (RNA nucleotides, 5′ cap, poly-A tail) 2.
    [Show full text]
  • Zoology (ZOOLOGY) 1
    Zoology (ZOOLOGY) 1 ZOOLOGY/BIOLOGY/BOTANY 152 — INTRODUCTORY BIOLOGY ZOOLOGY (ZOOLOGY) 5 credits. Second semester of a two semester course designed for majors in ZOOLOGY/BIOLOGY 101 — ANIMAL BIOLOGY biological sciences. Continuation of 151. Topics include: selected topics 3 credits. in plant physiology, a survey of the five major kingdoms of organisms, speciation and evolutionary theory, and ecology at multiple levels of the General biological principles. Topics include: evolution, ecology, animal biological hierarchy. Enroll Info: Biology/Botany/ZOOLOGY/BIOLOGY/ behavior, cell structure and function, genetics and molecular genetics BOTANY 151. Not recommended for students with credit already in and the physiology of a variety of organ systems emphasizing function in Zoology/BIOLOGY/ZOOLOGY 101,102 or Botany/BIOLOGY/BOTANY 130 humans. Enroll Info: Not recommended for students with credit already in Requisites: ZOOLOGY/BIOLOGY/BOTANY 151 Zoology/Biology/BOTANY/BIOLOGY/ZOOLOGY 151 or 152 Course Designation: Gen Ed - Communication Part B Requisites: None Breadth - Biological Sci. Counts toward the Natural Sci req Course Designation: Breadth - Biological Sci. Counts toward the Natural Level - Elementary Sci req L&S Credit - Counts as Liberal Arts and Science credit in L&S Level - Elementary Repeatable for Credit: No L&S Credit - Counts as Liberal Arts and Science credit in L&S Last Taught: Spring 2021 Repeatable for Credit: No Last Taught: Summer 2021 ZOOLOGY 153 — INTRODUCTORY BIOLOGY 3 credits. ZOOLOGY/BIOLOGY 102 — ANIMAL BIOLOGY LABORATORY 2 credits. One-semester course designed for engineering majors including chemical and biological engineering. Topics include: cell structure and function, General concepts of animal biology at an introductory level.
    [Show full text]
  • BIOL 1501 Principles of Biology I
    Common Course Outline for: BIOL 1501 Principles of Biology I A. Course Description 1. Number of credits: 5 2. Lecture hours per week: 4 Lab hours per week: 3 3. Prerequisites: Math 1080 or 1090 or eligible for 1100; Eligible for READ 1106 4. Co-requisites: None 5. MnTC Goal: 3 This course is designed for students majoring in biology and other science related fields, including the health professions. Students will explore major biological processes occurring at the cellular level, with emphasis on cell structure and function, metabolism, reproduction, development, genetics and gene expression, and evolution. Students will engage in techniques appropriate to the study of biological processes and gain experience in experimental design, data analysis and interpretation, and the communication of results. This course meets a requirement for the Biology (Minnesota State Transfer Pathway) AS-P degree and is a prerequisite for BIOL 1502. It is strongly recommended that students have successfully completed (C or higher) a college level biology lab course, or a high school biology course within the past three years, before enrolling in this course. Lecture 4 hours per week. Lab 3 hours per week. B. Date last revised: August 2019 C. Outline of Major Content Areas Lecture: Subtopics listed under each main topic may vary due to recent developments in the field and current events. 1. Introduction a. The scientific process, the nature of biological inquiry, and data analysis and interpretation b. Hypotheses, predictions, and scientific theories c. Evolution and natural selection d. Unity and diversity of life e. Systematics – taxonomy, classification, phylogeny f. Organic molecules g.
    [Show full text]
  • Science: Biology Unit #7: Cell Structure and Function (4
    Youngstown City Schools SCIENCE: BIOLOGY UNIT #7: CELL STRUCTURE AND FUNCTION (4 weeks) SYNOPSIS: Students will consider the scientific evidence that scientists used to understand that the cell is the smallest unit that is classified as a living thing and it is the basic structural and functional unit of all known living organisms. Students will consider the intricate network of organelles within cells that all have unique functions which allow the cell to function properly and maintain its living condition. Students will explain what would happen if a specific organelle malfunctioned and how it would impact the entire cell. Enablers: Cell Theory STANDARDS IV. CELLS A. Cell structure and function [Note: This topic focuses on the cell as a system itself (single-celled organism); as a part of larger systems (multicellular organism), and sometimes as part of a multicellular organism. But they are always as part of an ecosystem.] 1. The living conditions is dependent on the structure, function and interrelatedness of cell parts. A living cell is composed of a small number of elements - - mainly carbon, hydrogen, nitrogen, oxygen, phosphorous and sulfur. a. because of its small size and four available bonding electrons, carbon can join to other carbon atoms in chains and rings to form large and complex molecules (macromolecules; organic building blocks / amino acids) b. the essential functions of cells involve chemical reactions that involve water and carbohydrates, proteins, lipids and nucleic acids c. cell functions are regulated; complex interactions among the different kinds of molecules in the cell cause distinct cycles of activities - - such as growth and division d.
    [Show full text]
  • Roy Adaptation Model
    Roy Adaptation Model Assumptions • The person is a bio-psycho-social being. The person is in constant interaction with a changing environment. • To cope with a changing world, person uses both innate and acquired mechanisms which are biological, psychological and social in origin. • To respond positively to environmental changes, the person must adapt. • The person has 4 modes of adaptation: physiologic needs, self- concept, role function and inter-dependence. Major Concepts • Adaptation -- goal of nursing • Person -- adaptive system • Environment -- stimuli • Health -- outcome of adaptation • Nursing- promoting adaptation and health Adaptation • Responding positively to environmental changes. • The process and outcome of individuals and groups who use conscious awareness, self reflection and choice to create human and environmental integration Person • Bio-psycho-social being in constant interaction with a changing environment • Uses innate and acquired mechanisms to adapt • Includes people as individuals or in groups-families, organizations, communities, and society as a whole. Environment • Focal - internal or external and immediately confronting the person • Contextual- all stimuli present in the situation that contribute to effect of focal stimulus • Residual-a factor whose effects in the current situation are unclear • All conditions, circumstances, and influences surrounding and affecting the development and behavior of persons and groups with particular consideration of mutuality of person and earth resources, including focal,
    [Show full text]
  • Ugc Locf Document on Zoology
    UGC LOCF DOCUMENT ON ZOOLOGY Learning Outcomes based Curriculum Framework (LOCF) for (ZOOLOGY) Undergraduate Programme 2020 UNIVERSITY GRANTS COMMISSION BAHADUR SHAH ZAFAR MARG NEW DELHI – 110 002 UGC LOCF DOCUMENT ON ZOOLOGY Table of Contents Table of Contents ....................................................................................................................... 2 Preamble .................................................................................................................................... 6 1. Introduction ......................................................................................................................................... 09 2. Learning Outcome Based approach to Curriculum Planning ............................................... 10 2.1 Nature and extent of the B.Sc degree Programme in Zoology ......................................... 11 2.2. Aims of Bachelor’s Degree Programme in Zoology ......................................................... 11 3. Graduate Attributes in Zoology ..................................................................................................... 12 4. Qualification Descriptors for a Bachelor’s Degree Programme in Zoology.....................14 5. Learning Outcomes in Bachelor’s Degree Programme in Zoology…………………..15 5.1 Knowledge and Understanding ...................................................................................................... 15 5.2 Subject Specific Intellectual and Practical Skills .......................................................................
    [Show full text]
  • Zoology (Zoo & Zool)
    ZOOLOGY (ZOO & ZOOL) 241. Human Physiology. Credit 4 hours. Prerequisite: GBIO 151 and BIOL 152 or equivalent. A general study of functions in organ systems of the human. Three hours of lecture and two hours of laboratory per week. Persons majoring in Biology may not use this course to fulfill their major requirements; however, it may be used to fulfill an elective requirement. 242. Principles of Human Biology. Credit 4 hours. Prerequisite: GBIO 151 and BIOL 152 or equivalent. Principles of Human Biology has been primarily designed for students pursing careers with curricula that require a single semester of human biology such as Kinesiology. The major areas of subject concentration are the muscular, cardiovascular, respiratory, nervous, and sensory systems. Biology majors may not use this course to fulfill their major requirements. However, it may be used to fulfill an elective requirement and in calculating cumulative and major averages. Three hours of lecture and two hours of laboratory per week. 250. Human Anatomy and Physiology Lecture I. Credit 3 hours. Prerequisites: GBIO 151 and BIOL 152 and registration in or prior credit for Zoology 252 or permission of the Department Head. Topics covered include: anatomical terminology and the structure and function of molecules, cells, tissues, and the integumentary, skeletal, muscular, nervous, and endocrine systems. Three hours of lecture per week. This course can not be used as a concentration elective for Biology majors; however, it may be used as a general elective. 251. Human Anatomy and Physiology Lecture II. Credit 3 hours. Prerequisites: ZOO 250 and registration in or prior credit for Zoology 253 or permission of the Department Head.
    [Show full text]
  • The Dissipative Photochemical Origin of Life: UVC Abiogenesis of Adenine
    entropy Article The Dissipative Photochemical Origin of Life: UVC Abiogenesis of Adenine Karo Michaelian Department of Nuclear Physics and Applications of Radiation, Instituto de Física, Universidad Nacional Autónoma de México, Circuito Interior de la Investigación Científica, Cuidad Universitaria, Mexico City, C.P. 04510, Mexico; karo@fisica.unam.mx Abstract: The non-equilibrium thermodynamics and the photochemical reaction mechanisms are described which may have been involved in the dissipative structuring, proliferation and complex- ation of the fundamental molecules of life from simpler and more common precursors under the UVC photon flux prevalent at the Earth’s surface at the origin of life. Dissipative structuring of the fundamental molecules is evidenced by their strong and broad wavelength absorption bands in the UVC and rapid radiationless deexcitation. Proliferation arises from the auto- and cross-catalytic nature of the intermediate products. Inherent non-linearity gives rise to numerous stationary states permitting the system to evolve, on amplification of a fluctuation, towards concentration profiles providing generally greater photon dissipation through a thermodynamic selection of dissipative efficacy. An example is given of photochemical dissipative abiogenesis of adenine from the precursor HCN in water solvent within a fatty acid vesicle floating on a hot ocean surface and driven far from equilibrium by the incident UVC light. The kinetic equations for the photochemical reactions with diffusion are resolved under different environmental conditions and the results analyzed within the framework of non-linear Classical Irreversible Thermodynamic theory. Keywords: origin of life; dissipative structuring; prebiotic chemistry; abiogenesis; adenine; organic molecules; non-equilibrium thermodynamics; photochemical reactions Citation: Michaelian, K. The Dissipative Photochemical Origin of MSC: 92-10; 92C05; 92C15; 92C40; 92C45; 80Axx; 82Cxx Life: UVC Abiogenesis of Adenine.
    [Show full text]