(EWURA) the Tanzania Electricity Grid Code 1 of 8 Code Documents

Total Page:16

File Type:pdf, Size:1020Kb

(EWURA) the Tanzania Electricity Grid Code 1 of 8 Code Documents ENERGY AND WATER UTILITIES REGULATORY AUTHORITY (EWURA) The Tanzania Electricity Grid Code 1 of 8 Code Documents - Preamble Version 2 1st March 2017 Table of Contents 1 Introduction............................................................................................................................................3 2 Policy .......................................................................................................................................................3 2.1 Electricity Industry Structure ...................................................................................................................3 2.2 Electricity Industry Reform......................................................................................................................4 3 Authority.................................................................................................................................................4 3.1 Legislation................................................................................................................................................4 3.2 Multiple Licenses .....................................................................................................................................5 3.3 Applicability.............................................................................................................................................5 4 Grid Code................................................................................................................................................5 4.1 Definition .................................................................................................................................................5 4.2 Objectives.................................................................................................................................................6 4.3 Grid Code Overview ................................................................................................................................6 5 Definitions and Acronyms .....................................................................................................................8 5.1 Definitions................................................................................................................................................8 5.2 Acronyms ...............................................................................................................................................15 6 Notices and domicile ............................................................................................................................17 7 Acknowledgement ................................................................................................................................18 8 References .............................................................................................................................................18 The Tanzanian Grid Code – Preamble (Version 2 – 1st March 2017) Page 2 of 18 1 Introduction (1) The preamble provides the context for the Grid Code and its various sub-sections. It also contains detailed definitions and acronyms of the terms used in the Grid Code documents. 2 Policy 2.1 Electricity Industry Structure (1) The current structure of the power sector in Tanzania is illustrated in Figure 1 below. FIGURE 1: TANZANIA POWER SECTOR STRUCTURE (2) The Ministry of Energy and Minerals (MEM) oversees the power sector direction, and appoints TANESCO’s Board of Directors. The Energy and Water Utilities Regulatory Authority (EWURA or the Authority) is an autonomous multi-sectoral regulatory authority. It is responsible for technical and economic regulation of, among others, the electricity sector. (3) The Tanzania Electric Supply Company Limited (TANESCO) is a state owned, vertically integrated company carrying out generation, transmission and distribution. Under the current market structure, the System Operator is part of TANESCO Transmission. (4) Independent Power Producers (IPPs) are licensed to operate in the generation segment. In addition, interconnections with Zambia and Uganda enable imports of electricity. TANESCO Transmission acts as the single buyer for the purchases of this power. The Tanzanian Grid Code – Preamble (Version 2 – 1st March 2017) Page 3 of 18 (5) Tanzania electricity market is vertically integrated; TANESCO generates, imports and buys power in bulk from IPPs under a single buyer model and transports it over the transmission and distribution networks for resale to its customers. 2.2 Electricity Industry Reform (1) Tanzania will continue to pursue its ongoing reform programme for the power sector. (2) In the medium-term, reform plans for unbundling of TANESCO into separate generation, transmission, and distribution companies encompass the ring-fencing of separate business areas (internal restructuring) while retaining state-ownership. (3) In the long term, the plan ultimately envisages the evolution from a single buyer market structure, with long- term PPAs with TANESCO, to a wholesale power market, in which the producers sell directly (or through a pool or voluntary electricity exchange) to distribution companies. Under this future market structure, it is likely that the roles and relationships associated with Transmission and the System Operator may change and that the Grid Code will need to be updated to reflect this. (4) In order to ensure that the goals of the reform process are achieved, it is imperative that various arrangements are put in place that outline how the various parties in the electricity supply industry are expected to interact. The Tanzanian Grid Code represents one such arrangement with the aims of facilitating and governing open and non-discriminatory access to the transmission system, setting standards for reliable and stable operation of the interconnected system, technically and commercially. The Grid Code thus addresses the needs of the current market structure while taking cognisance of anticipated market reforms. 3 Authority 3.1 Legislation (1) The Grid Code derives its legal authority from the Electricity Act and from the Energy and Water Utilities Regulatory Authority (EWURA) Act. (2) In terms of Section 5 of the Electricity Act, the Authority shall have powers to: (a) award licenses to entities undertaking or seeking to undertake a licensed activity; (b) approve an enforce tariffs and fees charged by licensees; (c) approve licensees terms and conditions of electricity supply; and (d) approve initiations of the procurement of new electricity supply installations. (3) Sections 8(1) and (2) of the Electricity Act specify the following activities as requiring a license, unless the person or activity is exempted by the Authority: (a) Generation; (b) Transmission; (c) Distribution; (d) Supply; (e) System Operation; The Tanzanian Grid Code – Preamble (Version 2 – 1st March 2017) Page 4 of 18 (f) Cross-border electricity trade (g) Physical and financial trade in electricity; and (h) Electrical installation. (4) Furthermore, Section of the 45(b) (v) of the EWURA Act states that the Authority may make Rules with respect to the operation and management of the transmission system to be known as the Grid Code. 3.2 Multiple Licenses (1) Several of the licenses identified above may be held by a single entity. The decision to grant multiple licenses to a single entity depends on the functions that the company must fulfil. (2) A transmission company may, for example, hold licenses for transmission, supply, system operation, cross- border electricity trade, physical and financial trade in electricity; and electrical installation. 3.3 Applicability (1) All licensees are required to comply with the provisions of the Act and approved codes and Regulations. Any breach could result in the suspension or withdrawal of the license or fine. (2) More specifically: (a) Section 17(2)(a) of the Electricity Act stipulates that a transmission licensee shall be required to comply with the Grid Code. (b) Section 20(3) of the Electricity Act stipulates that the System Operator shall abide by the Grid Code. (c) Section 21(2) of the Electricity Act stipulates that a distribution licensee shall, subject to conditions of licence and rules issued by the Authority comply with the applicable requirements of the Grid Code. (3) In terms of Section 18(1) of the Electricity Act, the Authority may grant exemptions to the licence conditions and code requirements. (4) Transmission-Connected Customers are required to comply with certain provisions of the Grid Code in order to give full effect to its objectives. (5) The Grid Code is applicable to all Grid Code Participants registered in accordance with the Grid Code Governance Code. 4 Grid Code 4.1 Definition (1) The term Grid Code is widely used to refer to a document (or set of documents) that legally establishes technical and other requirements for the connection to and use of an electrical system by parties other than the owning electric utility in a manner that ensures reliable, efficient, and safe operation. (2) The Electricity Act defines the Grid Code as the technical and procedural rules and standards issued by the Authority on transmission and system operation. The Tanzanian Grid Code – Preamble (Version 2 – 1st March 2017) Page 5 of 18 4.2 Objectives (1) The fundamental function of a Grid Code is to establish the rules and procedures that allow independent parties to use the power system and to permit the power system to be planned and
Recommended publications
  • Lessons Learned from Existing Biomass Power Plants February 2000 • NREL/SR-570-26946
    Lessons Learned from Existing Biomass Power Plants February 2000 • NREL/SR-570-26946 Lessons Learned from Existing Biomass Power Plants G. Wiltsee Appel Consultants, Inc. Valencia, California NREL Technical Monitor: Richard Bain Prepared under Subcontract No. AXE-8-18008 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute • Battelle • Bechtel Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.doe.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: [email protected] Available for sale to the public, in paper, from: U.S.
    [Show full text]
  • Utilities and Wind Power Integration
    Utilities and Wind Power Integration J. Charles Smith Utility Wind Interest Group Stanford University April 26, 2004 UWIG – A Short History Established by 6 utilities in 1989 with support from EPRI and DOE/NREL Includes Associate Members from wind development community Non-profit corporation governed by Board of Directors from utility and ISO/RTO members Ex officio members include APPA, NRECA, EEI, and EPRI Currently has approximately 60 members Focus on technical issues Slide 2 UWIG Mission and Evolution The mission of the Utility Wind Interest Group (UWIG) is to accelerate the appropriate integration of wind power into the electric system through the coordinated efforts and actions of its members in collaboration with wind industry stakeholders, including federal agencies, trade associations, and industry research organizations. Evolving from role of – Self-education and sharing experience to – Addressing research topics and providing knowledge Slide 3 Wind Industry Is Maturing Number and size of wind plants TSOs are taking note Domestic Activities – FERC Order 2003 – AWEA Grid Code – UWIG Modeling User Group International Activities – National Grid Codes – IEC Activities Application of Traditional Power System Engineering Disciplines Slide 4 Perceived Market Barriers Siting –Avian –Noise – Aesthetics Transmission constraints Energy cost Financing Variable output – Large system impacts (transmission level) – Small system impacts (distribution level) Slide 5 Why is Transmission Important? Wind is remote – needs transmission
    [Show full text]
  • UP ELECTRICITY GRID CODE (Approved by : UPERC’S Order Dated 8 August 2000)
    UP ELECTRICITY GRID CODE (Approved By : UPERC’s Order Dated 8 August 2000) UTTAR PRADESH POWER CORPORATION LIMITED SHAKTI BHAWAN, 14 Ashok Marg, Lucknow 226 001. (The State Transmission Utility) GRID CODE CONTENTS CHAPTER SUBJECT PAGE NO. 1 GENERAL 4-7 2 DEFINITIONS 8-17 3 MANAGEMENT OF THE GRID CODE 18-20 4 SYSTEM PLANNING 21-23 5 CONNECTIVITY CONDITIONS 41-44 6 SYSTEM SECURITY ASPECT 45-48 7 OPERATIONAL PLANNING 55-59 8 SCHEDULING AND DISPATCH 60-62 9 FREQUENCY AND VOLTAGE MANAGEMENT 65-67 10 MONITORING OF GENERATION AND DRAWL 68-69 11 CONTINGENCY PLANNING 70-72 12 CROSS BOUNDARY SAFETY 73-74 13 OPERATIONAL EVENT / INCIDENT REPORTING 75-78 14 PROTECTION 79-83 15 METERING, COMMUNICATION AND DATA 84-87 ACQUISITION 16 GRANT OF TRANSMISSION LICENCE 88-89 17. DATA REGISTRATION 90-91 Deleted: Page Break GRID CODE REVISION (S) REVISION REVISION ISSUE DATE NO 2 3 CHAPTER -I GENERAL 1.1 INTRODUCTION The Uttar Pradesh Government has declared UP Power Corporation Limited (UPPCL) as State Transmission Utility (STU) under section 27-B of Indian Electricity Act, 1910. As per the Indian Electricity Act, 1910 following are the functions of State Transmission Utility to a. Undertake transmission of energy through intra-State transmission system; b. Discharge all functions of planning and coordination relating to intra-State transmission system with – i. Central Transmission Utility; ii. State Governments; iii. Generating companies; iv. Regional Electricity Boards; v. Authority; vi. Licensees; vii. Transmission licensees; viii. Any other person notified by the State Government in this behalf. c. The State Transmission utility shall exercise supervision and control over the intra-State transmission system.
    [Show full text]
  • The Quarterly Newsletter Q4
    Q3 2020 EMPLOYED IN THE ENERGY TRANSITION Renewable energy employed 11.5 million people worldwide last year. The coronavirus (COVID-19) pandemic has brought Building the skills base necessary to support this to the fore the close connection between the natural ongoing global energy transition from fossil fuels environment, our economies and patterns of living. to renewables requires more vocational training, A clean, reliable energy supply and durable, healthy, stronger curricula, more teacher training and low-carbon job creation are viewed as essential expanded use of information and communications components to the transformation our societies technology for remote learning. need to undertake to limit further degradation of the planet’s natural systems. Worldwide, most renewable energy jobs are still held by men. The share of women in the renewables workforce is about 32%, compared to 22% in the Countries must energy sector overall, surveys indicate. align their COVID-19 The post-COVID agenda put forward by the International Renewable Energy Agency (IRENA) response with the could bring renewables jobs to nearly 30 million globally by 2030 and pave the way for longer-term energy transition resilience, development and equality. Q3 2020 Renewable energy fuels job growth The renewable energy sector employed at least Jobs in biofuel meanwhile reached 2.5 million 11.5 million people, directly and indirectly, in 2019. worldwide, driven by output growth of 2% for ethanol Solar photovoltaic (PV), bioenergy, hydropower and and 13% for biodiesel. Production expanded robustly wind power industries are the biggest employers. in Brazil, Colombia, Malaysia, the Philippines and Increasingly, decentralised PV serves communities Thailand, all with labour-intensive supply chains, that previously lacked access, creating new jobs in whereas biofuel output fell in the United States and the European Union.
    [Show full text]
  • Final Energy Report Tanzania
    Final Energy report Tanzania Commissioned by the Netherlands Enterprise Agency Report Tanzania Author: Kees Mokveld & Steven von Eije (RVO.nl) Date: 30-7-2018 Version: 6 (final) RVO 1. Tanzania general overview ...................................................................................................... 2 2. Energy overview ....................................................................................................................... 3 3. Renewable energy ................................................................................................................... 6 4. Energy efficiency ...................................................................................................................... 9 5. Governmental framework ..................................................................................................... 11 6. Regulatory framework ........................................................................................................... 14 7. Access to finance.................................................................................................................... 16 8. Opportunities and barriers for Dutch renewable energy companies in Tanzania ................ 18 9. Dutch companies active in Tanzania ...................................................................................... 22 10. Relevant Dutch support schemes .......................................................................................... 23 11. Relevant international donors ..............................................................................................
    [Show full text]
  • Revisiting Public-Private Partnerships in the Power Sector
    Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized Revisiting Public-Private Partnerships in the Power Sector A WORLD BANK STUDY Revisiting Public-Private Partnerships in the Power Sector Maria Vagliasindi Washington, D.C. © 2013 International Bank for Reconstruction and Development / The World Bank 1818 H Street NW, Washington DC 20433 Telephone: 202-473-1000; Internet: www.worldbank.org Some rights reserved 1 2 3 4 16 15 14 13 World Bank Studies are published to communicate the results of the Bank’s work to the development community with the least possible delay. The manuscript of this paper therefore has not been prepared in accordance with the procedures appropriate to formally edited texts. This work is a product of the staff of The World Bank with external contributions. Note that The World Bank does not necessarily own each component of the content included in the work. The World Bank therefore does not warrant that the use of the content contained in the work will not infringe on the rights of third parties. The risk of claims resulting from such infringement rests solely with you. The findings, interpretations, and conclusions expressed in this work do not necessarily reflect the views of The World Bank, its Board of Executive Directors, or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denomina- tions, and other information shown on any map in this work do not imply any judgment on the part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries.
    [Show full text]
  • Grid Code Development for PV System Integration in Partnership with the Clean Energy Solutions Center (CESC)
    International Solar Alliance Expert Training Course Grid Code Development for PV System Integration In partnership with the Clean Energy Solutions Center (CESC) Professor Oriol Gomis-Bellmunt September 2019 Supporters of this Expert Training Series Expert Trainer: Prof Oriol Gomis-Bellmunt . Professor in the Electrical Power Department of Technical University of Catalonia (UPC) . Directive board member of the research group CITCEA-UPC, where he leads the group of power systems dominated by power electronics, including renewable energy (PV and wind), HVDC transmission systems and other power converter based systems (energy storage, EV chargers) . 20+ years of experience in the fields of renewable energy, power electronics and power systems. Involved in a number of research projects and contracts of technology transfer to industry. Coauthor of 3 books, 7 patents and > 100 journal publications, mainly in the field of power electronics in power systems and grid integration of renewables. Supervision of 18 doctoral theses and >60 Bachelor and Master theses. Overview of Training Course Modules This Training is part of Module 4, and focuses on the issue of grid codes for PV integration 4 Outline Context: the electrical power system From PV farms to PV power plants Grid codes Voltage support Frequency support Inertia emulation Black-start Ramp control Other requirements 5 Electric power system • Simple conversion, transport and control. • Mainly AC generation, transmission and distribution • Equilibrium between demand and generation required http://electricalacademia.com 6 Electric power system Classic system 1. Primary energy source to mechanical energy (for example, steam turbine) 2. Electromechanical conversion (generator) 3. Stepping up of the voltage (transformer) 4.
    [Show full text]
  • Lake Tanganyika Strategic Action Programme
    ,,,,/ The Strategic Action Programme for the Protection of Biodiversity and Sustainable Management of the Natural Resources of Lake Tanganyika and its Basin November 2010 1 Page for Signature 2 Contents ACKNOWLEDGMENTS ............................................................................................................................. 5 FOREWORD ............................................................................................................................................. 6 EXECUTIVE SUMMARY ............................................................................................................................. 8 ABBREVIATIONS AND ACRONYMS .......................................................................................................... 9 GLOSSARY OF TERMS ............................................................................................................................ 12 1 INTRODUCTION .................................................................................................................. 15 1.1 NEED FOR JOINT ACTION - SHARED RESOURCES IN LAKE TANGANYIKA AND ITS BASIN ............................ 15 1.1.1 The Lake Tanganyika and its Basin .................................................................................. 15 1.1.2 The People ....................................................................................................................... 16 1.1.3 Causes of Threats to Biodiversity and Sustainable Use of Natural Resources in the Lake Basin 18 1.1.4 Previous Projects
    [Show full text]
  • Effects of Intermittent Generation on the Economics and Operation Of
    Effects of Intermittent Generation on the Economics and Operation of Prospective Baseload Power Plants by Jordan Taylor Kearns B.S. Physics-Engineering, Washington & Lee University (2014) B.A. Politics, Washington & Lee University (2014) Submitted to the Institute for Data, Systems, & Society and the Department of Nuclear Science & Engineering in partial fulfillment of the requirements for the degrees of Master of Science in Technology & Policy and Master of Science in Nuclear Science & Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2017 c Massachusetts Institute of Technology 2017. All rights reserved. Author.................................................................................. Institute for Data, Systems, & Society Department of Nuclear Science & Engineering August 25, 2017 Certified by.............................................................................. Howard Herzog Senior Research Engineer, MIT Energy Initiative Executive Director, Carbon Capture, Utilization, and Storage Center Certified by.............................................................................. R. Scott Kemp Associate Professor of Nuclear Science & Engineering Director, MIT Laboratory for Nuclear Security & Policy Certified by.............................................................................. Sergey Paltsev Senior Research Scientist, MIT Energy Initiative Deputy Director, MIT Joint Program Accepted by............................................................................. Munther Dahleh William A. Coolidge
    [Show full text]
  • Implementation of Bio-CCS in Biofuels Production IEA Bioenergy Task 33 Special Report
    Implementation of bio-CCS in biofuels production IEA Bioenergy Task 33 special report IEA Bioenergy Task 33: 07 2018 Implementation of bio-CCS in biofuels production IEA Bioenergy Task 33 special project Authors: G. del Álamo (SINTEF Energy Research) J. Sandquist (SINTEF Energy Research) B.J. Vreugdenhil (ECN part of TNO) G. Aranda Almansa (ECN part of TNO) M. Carbo (ECN part of TNO) Front cover: STEPWISE unit for CO2 capture in Luleå (Sweden). The STEPWISE project that has received funding from the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 640769). Picture courtesy of E. van Dijk (ECN, part of TNO). Copyright © 2015 IEA Bioenergy. All rights Reserved ISBN 978-1-910154-44-1 Published by IEA Bioenergy IEA Bioenergy, also known as the Technology Collaboration Programme (TCP) for a Programme of Research, Development and Demonstration on Bioenergy, functions within a Framework created by the International Energy Agency (IEA). Views, findings and publications of IEA Bioenergy do not necessarily represent the views or policies of the IEA Secretariat or of its individual Member countries. Abstract In combination with other climate change mitigation options (renewable energy and energy efficiency), the implementation of CCS will be necessary to reach climate targets. If CCS is applied in with bioenergy processes (bio-CCS schemes), negative CO2 emissions can be potentially achieved. This study aims to provide an initial overview of the potential of biomass and waste gasification to contribute to carbon capture and sequestration (CCS) through the assessment of two example scenarios. The selected study cases (600 MWth thermal input) represent two different routes to biofuels production via gasification which cover a relevant range of gasification technologies, biofuel products and CCS infrastructure conditions: • Case 1: production of Fischer-Tropsch syncrude from high-temperature, entrained-flow gasification in Norway.
    [Show full text]
  • Building Collaboration Between East African Nations Via Transmission Interconnectors Eng
    Building Collaboration Between East African Nations via Transmission Interconnectors Eng. Christian M.A. Msyani Ag. DEPUTY MANAGING DIRECTOR TRANSMISSION - TANESCO CONTENTS 1. TANESCO - Existing Power System Overview 2. Challenges 3. Transmission Projects on Expansion, Refurbishment And Maintenance. 4. Transmission Interconnectors Enabling Regional Power Trade 5. Solution to Grid System Losses 1.TANESCO – Transmission System Overview Quick Facts (By June 2015) . Customer Base 1,501,162 . Access To Electricity 38% . Connectivity: 28.7% . Electricity Consumption : 101 kWh/Person TANESCO - vertically integrated utility 100% owned by Government Generation Main Grid Installed Capacity Quick Facts: 1250MW 14.0% Grid System Peak 5.7% Load = 934.62MW 45% (Dec 2014) 15.1% Isolated Min-grids 20.2% Installed Capacity = 73.77MW Import = 13MW HYDRO-TANESCO GAS-TANESCO Annual Energy GAS-IPP LIQUID FUEL-TANESCO Demand (2014): LIQUID FUEL-IPPs/EEP 6,028.97GWh Transmission Transmission Voltage Level S/N Total Asset Name 220kv 132kv 66kv Transmission 4,905. 1 Line Route 1,593.5 580.0 2,732.4 9 Length (km) Circuit Segments 2 20 23 8 51 (Nos.) 3 Transmission Losses (%) 6.12 Number Of Grid With Total 2,985 4 41 Substations Capacity MVA 5 Optical Fiber Network Route Length (km) 2,025 Distribution System . 15,165 km of 33kV and 5,687 km of 11kV Lines . 40,822 km of LV ( 400V And 230V Lines). 12,340 Distribution Transformers . Distribution Losses: 11% 2. CHALLENGES S/N Challenge Mitigation 1. High Energy Losses Execution Of New Projects Due To Overloaded On Distributed Generation And Aging (Natural Gas, Coal And Renewables), Transmission Transmission And And Distribution.
    [Show full text]
  • Lake Tanganyika Biodiversity Project Projet Sur La Biodiversité Du Lac Tanganyika
    Lake Tanganyika Biodiversity Project Projet sur la Biodiversité du Lac Tanganyika Lake Tanganyika: Results and Experiences of the UNDP/GEF Conservation Initiative (RAF/92/G32) in Burundi, D.R. Congo, Tanzania, and Zambia prepared by Kelly West 28 February 2001 TABLE of CONTENTS ACRONYMS 08 CHAPTER 1. INTRODUCTION to LAKE TANGANYIKA 11 1.1 Why is Lake Tanganyika Special? 11 1.1.1 Physiographic Considerations 11 1.1.2 Biological Considerations 12 1.1.3 Socio-Political Considerations 17 1.2 Threats to this Resource 19 1.2.1 Pollution 19 1.2.2 Sedimentation 20 1.2.3 Overfishing 21 1.2.4 People 22 CHAPTER 2. ORIGIN, STRUCTURE and EVOLUTION of LTBP 23 2.1 History 23 2.2 Project Objectives 25 2.3 Project Structure 25 2.4 Chronology of LTBP 28 CHAPTER 3. IMPLEMENTATION and OUTPUTS of LTBP 31 3.1 Capacity-Building and Training 31 3.1.1 Material Capacity Building 31 3.1.2 Human Capacity Building and Training 32 3.2 Technical Programmes 35 3.2.1 Biodiversity Special Study 35 3.2.1.1 Objectives and Strategy 35 3.2.1.2 Products 36 3.2.1.2.1 Methodology 37 3.2.1.2.2 Human Capacity 38 3.2.1.2.3 Databases 38 3.2.1.2.4 Biodiversity in Lake Tanganyika 39 Habitats 39 Lakewide Biodiversity Patterns 41 Biodiversity Patterns near PAs 41 3.2.2 Pollution Special Study 45 3.2.2.1 Objectives and Strategy 45 3.2.2.2 Products 46 3.2.2.2.1 Water Quality Studies 46 3.2.2.2.2 Industrial Pollution Inventory 47 Bujumbura, Burundi 48 2 Uvira, D.R.
    [Show full text]