Herbal Interactions for Patients

Total Page:16

File Type:pdf, Size:1020Kb

Herbal Interactions for Patients Herbal interactions for patients Antifungal Herbal interaction - As Aloe itraconazole Moderate, use carefully. Aloe latex possibly reduces absorption of some drugs. This could reduce the antifungal effect.1 voriconazole Moderate possible, use carefully. Aloe latex possibly reduces absorption of some drugs. This could reduce the antifungal effect.1 posaconazole Unlikely (no interaction found). isavuconazole Unlikely (no interaction found). fluconazole Moderate possible, use carefully. Aloe latex possibly reduces absorption of some drugs. This could reduce the antifungal effect.1 anidulafungin Unlikely. caspofungin Unlikely. micafungin Unlikely. terbinafine Moderate possible, use carefully. Aloe latex possibly reduces absorption of some drugs. This could reduce the antifungal effect.1 Amphotericin B Unlikely. Antifungal Herbal interaction - Cs Cannabidiol (CBD) itraconazole Moderate, use carefully. CBD possibly increases itraconazole levels and side effects.2 Itraconazole also possibly increases CBD levels and side effects. Consider reducing CBD dose.4 voriconazole Major – do not take CBD as it can increase voriconazole levels and its side effects.3 posaconazole Moderate, use carefully. Posaconazole possibly increases CBD levels and its side effects. Consider reducing CBD dose.4 isavuconazole Moderate, use carefully. CBD possibly increases isavuconazole levels and side effects.2 Isavuconazole possibly increases CBD levels and side effects. Consider reducing CBD dose.4 fluconazole Moderate, use carefully. Fluconazole possibly increases CBD levels and side effects. Consider reducing CBD dose.4 anidulafungin Unlikely – no interactions found. caspofungin Unlikely – no interactions found. micafungin Unlikely – no interactions found. terbinafine Unlikely – no interactions found. Amphotericin B Unlikely – no interactions found. Antifungal Herbal interaction - Cs Chaparral itraconazole Theoretical interaction – possible extra side effects on the liver.5 voriconazole Theoretical interaction – possible extra side effects on the liver.5 posaconazole Theoretical interaction – possible extra side effects on the liver.5 Interactions searched via: https://naturalmedicines.therapeuticresearch.com/tools/interaction- checker.aspx#P Interactions key: Mild Moderate Severe isavuconazole Theoretical interaction – possible extra side effects on the liver.5 fluconazole Unknown – no interactions found. anidulafungin Unknown – no interactions found. caspofungin Unknown – no interactions found. micafungin Unknown – no interactions found. terbinafine Theoretical interaction – possible extra side effects on the liver.5 Amphotericin B Unknown – no interactions found. Antifungal Herbal interaction - Cs Chlorella itraconazole Unknown – no interactions found. voriconazole Unknown – no interactions found. posaconazole Unknown – no interactions found. isavuconazole Unknown – no interactions found. fluconazole Unknown – no interactions found. anidulafungin Unknown – no interactions found. caspofungin Unknown – no interactions found. micafungin Unknown – no interactions found. terbinafine Unknown – no interactions found. Amphotericin B Unknown – no interactions found. Antifungal Herbal interaction - Cs Coltsfoot itraconazole Unknown – no interactions found. voriconazole Unknown – no interactions found. posaconazole Unknown – no interactions found. isavuconazole Unknown – no interactions found. fluconazole Unknown – no interactions found. anidulafungin Unknown – no interactions found. caspofungin Unknown – no interactions found. micafungin Unknown – no interactions found. terbinafine Unknown – no interactions found. Amphotericin B Unknown – no interactions found. Antifungal Herbal interaction - Cs Cumin itraconazole Unknown – no interactions found. voriconazole Unknown – no interactions found. posaconazole Unknown – no interactions found. isavuconazole Unknown – no interactions found. fluconazole Unknown – no interactions found. anidulafungin Unknown – no interactions found. caspofungin Unknown – no interactions found. micafungin Unknown – no interactions found. terbinafine Unknown – no interactions found. Interactions searched via: https://naturalmedicines.therapeuticresearch.com/tools/interaction- checker.aspx#P Interactions key: Mild Moderate Severe Amphotericin B Unknown – no interactions found. Antifungal Herbal interaction - Es Elecampne itraconazole Unknown – no interactions found. voriconazole Unknown – no interactions found. posaconazole Unknown – no interactions found. isavuconazole Unknown – no interactions found. fluconazole Unknown – no interactions found. anidulafungin Unknown – no interactions found. caspofungin Unknown – no interactions found. micafungin Unknown – no interactions found. terbinafine Unknown – no interactions found. Amphotericin B Unknown – no interactions found. Antifungal Herbal interaction - Es Eucalyptus itraconazole Moderate – use cautiously or avoid. Eucalyptus oil might increase levels of itraconazole and its side effects.6 voriconazole Moderate – use cautiously or avoid. Eucalyptus oil might increase levels of voriconazole and its side effects.6 posaconazole Unknown – no interactions found. isavuconazole Moderate – use cautiously or avoid. Eucalyptus oil might increase levels of isavuconazole and its side effects.6 fluconazole Unknown – no interactions found. anidulafungin Unknown – no interactions found. caspofungin Unknown – no interactions found. micafungin Unknown – no interactions found. terbinafine Unknown – no interactions found. Amphotericin B Unknown – no interactions found. Antifungal Herbal interaction - Gs Garlic itraconazole Mild - possible interaction. Use cautiously until more is known about this interaction.7 voriconazole Mild – possible interaction. Use cautiously until more is known about this interaction.7 posaconazole Unknown – no interactions found. isavuconazole Mild - possible interaction. Use cautiously until more is known about this interaction.7 fluconazole Unknown – no interactions found. anidulafungin Unknown – no interactions found. caspofungin Unknown – no interactions found. micafungin Unknown – no interactions found. Interactions searched via: https://naturalmedicines.therapeuticresearch.com/tools/interaction- checker.aspx#P Interactions key: Mild Moderate Severe terbinafine Unknown – no interactions found. Amphotericin B Unknown – no interactions found. Antifungal Herbal interaction - Gs Ginger (tea) itraconazole Unknown – no interactions found. voriconazole Unknown – no interactions found. posaconazole Unknown – no interactions found. isavuconazole Unknown – no interactions found. fluconazole Unknown – no interactions found. anidulafungin Unknown – no interactions found. caspofungin Unknown – no interactions found. micafungin Unknown – no interactions found. terbinafine Unknown – no interactions found. Amphotericin B Unknown – no interactions found. Antifungal Herbal interaction - Ks Knotweed itraconazole Unknown – no interactions found. voriconazole Unknown – no interactions found. posaconazole Unknown – no interactions found. isavuconazole Unknown – no interactions found. fluconazole Unknown – no interactions found. anidulafungin Unknown – no interactions found. caspofungin Unknown – no interactions found. micafungin Unknown – no interactions found. terbinafine Unknown – no interactions found. Amphotericin B Unknown – no interactions found. Antifungal Herbal interaction - Ls Licorice itraconazole Mild – might increase itraconazole levels and its side effects. Use cautiously until more is known about this interaction.8 voriconazole Mild – might increase voriconzole levels and its side effects. Use cautiously until more is known about this interaction.8 posaconazole Unknown – no interactions found. isavuconazole Mild – might increase isavuconazole levels and its side effects. Use cautiously until more is known about this interaction.8 fluconazole Unknown – no interactions found. anidulafungin Unknown – no interactions found. caspofungin Unknown – no interactions found. micafungin Unknown – no interactions found. terbinafine Unknown – no interactions found. Amphotericin B Unknown – no interactions found. Interactions searched via: https://naturalmedicines.therapeuticresearch.com/tools/interaction- checker.aspx#P Interactions key: Mild Moderate Severe Antifungal Herbal interaction - Ls Lobelia itraconazole Unknown – no interactions found. voriconazole Unknown – no interactions found. posaconazole Unknown – no interactions found. isavuconazole Unknown – no interactions found. fluconazole Unknown – no interactions found. anidulafungin Unknown – no interactions found. caspofungin Unknown – no interactions found. micafungin Unknown – no interactions found. terbinafine Unknown – no interactions found. Amphotericin B Unknown – no interactions found. Antifungal Herbal interaction - Ls Lungwort itraconazole Unknown – no interactions found. voriconazole Unknown – no interactions found. posaconazole Unknown – no interactions found. isavuconazole Unknown – no interactions found. fluconazole Unknown – no interactions found. anidulafungin Unknown – no interactions found. caspofungin Unknown – no interactions found. micafungin Unknown – no interactions found. terbinafine Unknown – no interactions found. Amphotericin B Unknown – no interactions found. Antifungal Herbal interaction - Ms Marshmallow leaf tea itraconazole Moderate – use cautiously. Possible interaction – mucilage in marshmallow may impair absorption of oral drugs. So this might reduce antifungal effect.1 voriconazole Moderate – use cautiously.
Recommended publications
  • 012402 Voriconazole Compared with Liposomal Amphotericin B
    The New England Journal of Medicine Copyright © 2002 by the Massachusetts Medical Society VOLUME 346 J ANUARY 24, 2002 NUMBER 4 VORICONAZOLE COMPARED WITH LIPOSOMAL AMPHOTERICIN B FOR EMPIRICAL ANTIFUNGAL THERAPY IN PATIENTS WITH NEUTROPENIA AND PERSISTENT FEVER THOMAS J. WALSH, M.D., PETER PAPPAS, M.D., DREW J. WINSTON, M.D., HILLARD M. LAZARUS, M.D., FINN PETERSEN, M.D., JOHN RAFFALLI, M.D., SAUL YANOVICH, M.D., PATRICK STIFF, M.D., RICHARD GREENBERG, M.D., GERALD DONOWITZ, M.D., AND JEANETTE LEE, PH.D., FOR THE NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES MYCOSES STUDY GROUP* ABSTRACT NVASIVE fungal infections are important caus- Background Patients with neutropenia and per- es of morbidity and mortality among patients sistent fever are often treated empirically with am- receiving cancer chemotherapy or undergoing photericin B or liposomal amphotericin B to prevent bone marrow or stem-cell transplantation.1-3 invasive fungal infections. Antifungal triazoles offer IOver the past two decades, empirical antifungal ther- a potentially safer and effective alternative. apy with conventional amphotericin B or liposomal Methods In a randomized, international, multi- amphotericin B has become the standard of care in center trial, we compared voriconazole, a new sec- reducing invasive fungal infections in patients with ond-generation triazole, with liposomal amphoteri- neutropenia and persistent fever.4-9 Amphotericin B, cin B for empirical antifungal therapy. however, is associated with significant dose-limiting Results A total of
    [Show full text]
  • Candida Auris
    microorganisms Review Candida auris: Epidemiology, Diagnosis, Pathogenesis, Antifungal Susceptibility, and Infection Control Measures to Combat the Spread of Infections in Healthcare Facilities Suhail Ahmad * and Wadha Alfouzan Department of Microbiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; [email protected] * Correspondence: [email protected]; Tel.: +965-2463-6503 Abstract: Candida auris, a recently recognized, often multidrug-resistant yeast, has become a sig- nificant fungal pathogen due to its ability to cause invasive infections and outbreaks in healthcare facilities which have been difficult to control and treat. The extraordinary abilities of C. auris to easily contaminate the environment around colonized patients and persist for long periods have recently re- sulted in major outbreaks in many countries. C. auris resists elimination by robust cleaning and other decontamination procedures, likely due to the formation of ‘dry’ biofilms. Susceptible hospitalized patients, particularly those with multiple comorbidities in intensive care settings, acquire C. auris rather easily from close contact with C. auris-infected patients, their environment, or the equipment used on colonized patients, often with fatal consequences. This review highlights the lessons learned from recent studies on the epidemiology, diagnosis, pathogenesis, susceptibility, and molecular basis of resistance to antifungal drugs and infection control measures to combat the spread of C. auris Citation: Ahmad, S.; Alfouzan, W. Candida auris: Epidemiology, infections in healthcare facilities. Particular emphasis is given to interventions aiming to prevent new Diagnosis, Pathogenesis, Antifungal infections in healthcare facilities, including the screening of susceptible patients for colonization; the Susceptibility, and Infection Control cleaning and decontamination of the environment, equipment, and colonized patients; and successful Measures to Combat the Spread of approaches to identify and treat infected patients, particularly during outbreaks.
    [Show full text]
  • Voriconazole
    Drug and Biologic Coverage Policy Effective Date ............................................ 6/1/2020 Next Review Date… ..................................... 6/1/2021 Coverage Policy Number .................................. 4004 Voriconazole Table of Contents Related Coverage Resources Coverage Policy ................................................... 1 FDA Approved Indications ................................... 2 Recommended Dosing ........................................ 2 General Background ............................................ 2 Coding/Billing Information .................................... 4 References .......................................................... 4 INSTRUCTIONS FOR USE The following Coverage Policy applies to health benefit plans administered by Cigna Companies. Certain Cigna Companies and/or lines of business only provide utilization review services to clients and do not make coverage determinations. References to standard benefit plan language and coverage determinations do not apply to those clients. Coverage Policies are intended to provide guidance in interpreting certain standard benefit plans administered by Cigna Companies. Please note, the terms of a customer’s particular benefit plan document [Group Service Agreement, Evidence of Coverage, Certificate of Coverage, Summary Plan Description (SPD) or similar plan document] may differ significantly from the standard benefit plans upon which these Coverage Policies are based. For example, a customer’s benefit plan document may contain a specific exclusion
    [Show full text]
  • Susceptibility of Filamentous Fungi to Voriconazole in Malaysia Tested by Sensititre Yeastone and CLSI Microdilution Methods
    Susceptibility of Filamentous Fungi to Voriconazole in Malaysia Tested by Sensititre YeastOne and CLSI Microdilution Methods Xue Ting Tan ( [email protected] ) National Institute of Health, Malaysia Stephanie Jane Ginsapu National Institute of Health, Malaysia Fairuz binti Amran National Institute of Health, Malaysia Salina binti Mohamed Sukur National Institute of Health, Malaysia Surianti binti Shukor National Institute of Health, Malaysia Research Article Keywords: Voriconazole, Sensititre, CLSI, Mould Posted Date: February 12th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-199013/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/15 Abstract Background: Voriconazole is a trizaole antifungal to treat fungal infection. In this study, the susceptibility pattern of voriconazole against lamentous fungi was studied using Sensititre® YeastOne and Clinical & Laboratory Standards Institute (CLSI) M38 broth microdilution method. Methods: The suspected cultures of Aspergillus niger, A. avus, A. fumigatus, A. versicolor, A. sydowii, A. calidoutus, A. creber, A. ochraceopetaliformis, A. tamarii, Fusarium solani, F. longipes, F. falciferus, F. keratoplasticum, Rhizopus oryzae, R. delemar, R. arrhizus, Mucor sp., Poitrasia circinans, Syncephalastrum racemosum and Sporothrix schenckii were received from hospitals. Their identication had been conrmed in our lab and susceptibility tests were performed using Sensititre® YeastOne and CLSI M38 broth microdilution method. The signicant differences between two methods were calculated using Wilcoxon Sign Rank test. Results: Mean of the minimum inhibitory concentrations (MIC) for Aspergillus spp. and Fusarium were within 0.25 μg/mL-2.00 μg/mL by two methods except A. calidoutus, F. solani and F. keratoplasticum.
    [Show full text]
  • Itraconazole (Sporonox ) & Voriconazole (Vfend )
    Itraconazole (Sporonox) & Voriconazole (Vfend) These are broad spectrum, anti-fungal agents that can be taken orally. They are very expensive approx $800- $1100/month). Although both these prescription medications are FDA approved for the treatment of mold or fungal infections, they do not have a specific indication for the treatment of fungal rhinosinusitis. Molds appear to be present in everyone's nasal and sinus passageways but in some individuals, the molds appear to cause disease. The explanation for this is unknown (See What is Rhinosinusitis?). As such, Insurers resist covering them for treatment of rhinosinusitis associated with the presence of molds. Itraconazole • Your liver enzymes will be monitored by periodically by blood tests. • Take your Itraconazole dose at the same time everyday. • Take your medication after a full meal. • Antacids can reduce absorption of this medication and if need be they should be taken at least 1 hour before or 2 hours after taking Itraconazole. • If you are taking stomach medication, make sure you drink cola beverage with the Itraconazole to help it become absorbed. • Report any signs or symptoms of unusual fatigue, anorexia, nausea and/or vomiting, jaundice (yellowing skin), dark urine, or pale stools. • Other potential side effects include elevated liver enzymes, gastrointestinal disorders, rash, hypertension, orthostatic hypertension, headache, malaise, myalgia, vasculitis, edema, and vertigo. • Contact your practitioner BEFORE beginning any new medications while taking Itraconazole. • Women should use effective measures to PREVENT pregnancy during and up to 2 months after finishing itraconazole. • Itraconazole should not be taken with a class of cholesterol-lowering drugs known as statins, unless your physicians has specifically told you to do so.
    [Show full text]
  • Lactoferrin, Chitosan and Melaleuca Alternifolia—Natural Products That
    b r a z i l i a n j o u r n a l o f m i c r o b i o l o g y 4 9 (2 0 1 8) 212–219 ht tp://www.bjmicrobiol.com.br/ Review Lactoferrin, chitosan and Melaleuca alternifolia—natural products that show promise in candidiasis treatment ∗ Lorena de Oliveira Felipe , Willer Ferreira da Silva Júnior, Katialaine Corrêa de Araújo, Daniela Leite Fabrino Universidade Federal de São João del-Rei/Campus Alto Paraopeba, Minas Gerais, MG, Brazil a r t i c l e i n f o a b s t r a c t Article history: The evolution of microorganisms resistant to many medicines has become a major chal- Received 18 August 2016 lenge for the scientific community around the world. Motivated by the gravity of such a Accepted 26 May 2017 situation, the World Health Organization released a report in 2014 with the aim of providing Available online 11 November 2017 updated information on this critical scenario. Among the most worrying microorganisms, Associate Editor: Luis Henrique species from the genus Candida have exhibited a high rate of resistance to antifungal drugs. Guimarães Therefore, the objective of this review is to show that the use of natural products (extracts or isolated biomolecules), along with conventional antifungal therapy, can be a very promising Keywords: strategy to overcome microbial multiresistance. Some promising alternatives are essential Candida oils of Melaleuca alternifolia (mainly composed of terpinen-4-ol, a type of monoterpene), lacto- Lactoferrin ferrin (a peptide isolated from milk) and chitosan (a copolymer from chitin).
    [Show full text]
  • A Fresh Look at Echinocandin Dosing
    J Antimicrob Chemother 2018; 73 Suppl 1: i44–i50 doi:10.1093/jac/dkx448 We can do better: a fresh look at echinocandin dosing Justin C. Bader1, Sujata M. Bhavnani1, David R. Andes2 and Paul G. Ambrose1* 1Institute for Clinical Pharmacodynamics (ICPD), Schenectady, NY, USA; 2University of Wisconsin, Madison, WI, USA *Corresponding author. Institute for Clinical Pharmacodynamics (ICPD), 242 Broadway, Schenectady, NY 12305, USA. Tel: !1-518-631-8101; Fax: !1-518-631-8199; E-mail: [email protected] First-line antifungal therapies are limited to azoles, polyenes and echinocandins, the former two of which are associated with high occurrences of severe treatment-emergent adverse events or frequent drug interactions. Among antifungals, echinocandins present a unique value proposition given their lower rates of toxic events as compared with azoles and polyenes. However, with the emergence of echinocandin-resistant Candida species and the fact that a pharmacometric approach to the development of anti-infective agents was not a main- stream practice at the time these agents were developed, we question whether echinocandins are being dosed optimally. This review presents pharmacokinetic/pharmacodynamic (PK/PD) evaluations for approved echino- candins (anidulafungin, caspofungin and micafungin) and rezafungin (previously CD101), an investigational agent. PK/PD-optimized regimens were evaluated to extend the utility of approved echinocandins when treating patients with resistant isolates. Although the benefits of these regimens were apparent, it was also clear that anidulafungin and micafungin, regardless of dosing adjustments, are unlikely to provide therapeutic exposures sufficient to treat highly resistant isolates. Day 1 probabilities of PK/PD target attainment of 5.2% and 85.1%, respectively, were achieved at the C.
    [Show full text]
  • The Impact of Lemongrass, Oregano, and Thyme Essential Oils on Candida Albicans’
    Walden University ScholarWorks Walden Dissertations and Doctoral Studies Walden Dissertations and Doctoral Studies Collection 2018 The mpI act of Lemongrass, Oregano, and Thyme Essential Oils on Candida albicans' Virulence Factors Jennifer Marie Eddins Walden University Follow this and additional works at: https://scholarworks.waldenu.edu/dissertations Part of the Alternative and Complementary Medicine Commons, Microbiology Commons, and the Public Health Education and Promotion Commons This Dissertation is brought to you for free and open access by the Walden Dissertations and Doctoral Studies Collection at ScholarWorks. It has been accepted for inclusion in Walden Dissertations and Doctoral Studies by an authorized administrator of ScholarWorks. For more information, please contact [email protected]. Walden University College of Health Sciences This is to certify that the doctoral dissertation by Jennifer M. Eddins has been found to be complete and satisfactory in all respects, and that any and all revisions required by the review committee have been made. Review Committee Dr. Aimee Ferraro, Committee Chairperson, Public Health Faculty Dr. Angela Prehn, Committee Member, Public Health Faculty Dr. Jagdish Khubchandani, University Reviewer, Public Health Faculty Chief Academic Officer Eric Riedel, Ph.D. Walden University 2018 Abstract The Impact of Lemongrass, Oregano, and Thyme Essential Oils on Candida albicans’ Virulence Factors by Jennifer M. Eddins BS, Colorado State University, 1989 Dissertation Submitted in Partial Fulfillment
    [Show full text]
  • Updates in Ocular Antifungal Pharmacotherapy: Formulation and Clinical Perspectives
    Current Fungal Infection Reports (2019) 13:45–58 https://doi.org/10.1007/s12281-019-00338-6 PHARMACOLOGY AND PHARMACODYNAMICS OF ANTIFUNGAL AGENTS (N BEYDA, SECTION EDITOR) Updates in Ocular Antifungal Pharmacotherapy: Formulation and Clinical Perspectives Ruchi Thakkar1,2 & Akash Patil1,2 & Tabish Mehraj1,2 & Narendar Dudhipala1,2 & Soumyajit Majumdar1,2 Published online: 2 May 2019 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Purpose of Review In this review, a compilation on the current antifungal pharmacotherapy is discussed, with emphases on the updates in the formulation and clinical approaches of the routinely used antifungal drugs in ocular therapy. Recent Findings Natamycin (Natacyn® eye drops) remains the only approved medication in the management of ocular fungal infections. This monotherapy shows therapeutic outcomes in superficial ocular fungal infections, but in case of deep-seated mycoses or endophthalmitis, successful therapeutic outcomes are infrequent, as a result of which alternative therapies are sought. In such cases, amphotericin B, azoles, and echinocandins are used off-label, either in combination with natamycin or with each other (frequently) or as standalone monotherapies, and have provided effective therapeutic outcomes. Summary In recent times, amphotericin B, azoles, and echinocandins have come to occupy an important niche in ocular antifungal pharmacotherapy, along with natamycin (still the preferred choice in most clinical cases), in the management of ocular fungal infections.
    [Show full text]
  • Estonian Statistics on Medicines 2016 1/41
    Estonian Statistics on Medicines 2016 ATC code ATC group / Active substance (rout of admin.) Quantity sold Unit DDD Unit DDD/1000/ day A ALIMENTARY TRACT AND METABOLISM 167,8985 A01 STOMATOLOGICAL PREPARATIONS 0,0738 A01A STOMATOLOGICAL PREPARATIONS 0,0738 A01AB Antiinfectives and antiseptics for local oral treatment 0,0738 A01AB09 Miconazole (O) 7088 g 0,2 g 0,0738 A01AB12 Hexetidine (O) 1951200 ml A01AB81 Neomycin+ Benzocaine (dental) 30200 pieces A01AB82 Demeclocycline+ Triamcinolone (dental) 680 g A01AC Corticosteroids for local oral treatment A01AC81 Dexamethasone+ Thymol (dental) 3094 ml A01AD Other agents for local oral treatment A01AD80 Lidocaine+ Cetylpyridinium chloride (gingival) 227150 g A01AD81 Lidocaine+ Cetrimide (O) 30900 g A01AD82 Choline salicylate (O) 864720 pieces A01AD83 Lidocaine+ Chamomille extract (O) 370080 g A01AD90 Lidocaine+ Paraformaldehyde (dental) 405 g A02 DRUGS FOR ACID RELATED DISORDERS 47,1312 A02A ANTACIDS 1,0133 Combinations and complexes of aluminium, calcium and A02AD 1,0133 magnesium compounds A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 811120 pieces 10 pieces 0,1689 A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 3101974 ml 50 ml 0,1292 A02AD83 Calcium carbonate+ Magnesium carbonate (O) 3434232 pieces 10 pieces 0,7152 DRUGS FOR PEPTIC ULCER AND GASTRO- A02B 46,1179 OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 2,3855 A02BA02 Ranitidine (O) 340327,5 g 0,3 g 2,3624 A02BA02 Ranitidine (P) 3318,25 g 0,3 g 0,0230 A02BC Proton pump inhibitors 43,7324 A02BC01 Omeprazole
    [Show full text]
  • VORICONAZOLE Persists, Consult Your Doctor
    may come back. If the infection worsens or should avoid driving, using machinery or VORICONAZOLE persists, consult your doctor. doing something that may be dangerous if your vision is impaired. Notify your doctor if Other NAMES: Vfend What should you do if you FORGET a your vision changes or if bright lights are dose? bothersome. WHY is this drug prescribed? If you miss a dose voriconazole, take it as What other PRECAUTIONS should you Voriconazole is an antifungal drug. It is used soon as possible. However, if it is time for follow while using this drug? to treat a variety of fungal infections (candida, your next dose, do not double the dose, just aspergillosis) in the mouth (like thrush), carry on with your regular schedule. Before starting voriconazole, please inform esophagus, lungs, blood and in other areas. your doctor if you have ever developed an What ADVERSE EFFECTS can this drug allergy to voriconazole or to similar drugs HOW should this drug be taken? cause? What should you do about them? [ketoconazole (Nizoral ), fluconazole (Diflucan ), itraconazole (Sporanox ). Also Voriconazole is available as 50 mg and 200 Voriconazole may cause some stomach notify your doctor if you have kidney, liver or mg tablets. During the first days of therapy, it upset, nausea, vomiting and loss of vision problems. can also be given by intravenous (I.V.: in the appetite . Some other potential adverse veins) injections. The intravenous injections effects are abdominal pain, diarrhea, and Certain drugs can increase or decrease the will be given over a 1 to 2 hour period, likely headache .
    [Show full text]
  • In Vitro Synergistic Interactions of Isavuconazole and Echinocandins Against Candida Auris
    antibiotics Article In Vitro Synergistic Interactions of Isavuconazole and Echinocandins against Candida auris Unai Caballero 1, Sarah Kim 2 , Elena Eraso 3 , Guillermo Quindós 3 , Valvanera Vozmediano 2, Stephan Schmidt 2 and Nerea Jauregizar 1,* 1 Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; [email protected] 2 Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; [email protected]fl.edu (S.K.); [email protected]fl.edu (V.V.); [email protected]fl.edu (S.S.) 3 Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; [email protected] (E.E.); [email protected] (G.Q.) * Correspondence: [email protected] Abstract: Candida auris is an emergent fungal pathogen that causes severe infectious outbreaks globally. The public health concern when dealing with this pathogen is mainly due to reduced susceptibility to current antifungal drugs. A valuable alternative to overcome this problem is to investigate the efficacy of combination therapy. The aim of this study was to determine the in vitro interactions of isavuconazole with echinocandins against C. auris. Interactions were determined using a checkerboard method, and absorbance data were analyzed with different approaches: the fractional inhibitory concentration index (FICI), Greco universal response surface approach, and Bliss interaction model. All models were in accordance and showed that combinations of isavu- conazole with echinocandins resulted in an overall synergistic interaction. A wide range of concen- Citation: Caballero, U.; Kim, S.; Eraso, trations within the therapeutic range were selected to perform time-kill curves.
    [Show full text]