Venus Geochemistry: Progress, Prospects, and New Missions, P

Total Page:16

File Type:pdf, Size:1020Kb

Venus Geochemistry: Progress, Prospects, and New Missions, P V6NIA.SV6NIAS '160C 6MISTR.Y: 1>rOertss,1>roeress, 1>ros-ptl)ts,1>ros-ptots, A~ New Mtssto""-SMtsstoll\.S Program and Abstract Volume A LUNAR AND Y;~ PLANETARY ii;;; INSTITUTE LPI Contribution No. 1470 February 26–27, 2009 • Houston, Texas Sponsors Lunar and Planetary Institute NASA Science Mission Directorate NASA Mars Exploration Program Conveners Allan Treiman Lunar and Planetary Institute Adriana Ocampo NASA Science Mission Directorate Ellen Stofan Proxemy, VEXAG Stephen Mackwell Lunar and Planetary Institute Scientific Organizing Committee Allan Treiman Lunar and Planetary Institute Linda Elkins-Tanton Massachusetts Institute of Technology George Hashimoto Kobe University Natasha Johnson NASA Goddard Space Flight Center Eric Essene University of Michigan Stephen Mackwell Lunar and Planetary Institute Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Contribution No. 1470 Compiled in 2009 by LUNAR AND PLANETARY INSTITUTE The Lunar and Planetary Institute is operated by the Universities Space Research Association under a cooperative agreement with the Science Mission Directorate of the National Aeronautics and Space Administration. Any opinions, findings, and conclusions or recommendations expressed in this volume are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. Abstracts in this volume may be cited as Author A. B. (2009) Title of abstract. In Workshop on Venus Geochemistry: Progress, Prospects, and New Missions, p. XX. LPI Contribution No. 1470, Lunar and Planetary Institute, Houston. This volume is distributed by ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113, USA Phone: 281-486-2172 Fax: 281-486-2186 E-mail: [email protected] A limited number of copies are available for the cost of shipping and handling. Visit the LPI Online Store at https://www.lpi.usra.edu/store/products.cfm. ISSN No. 0161-5297 Preface This volume contains abstracts that have been accepted for presentation at the Workshop on Venus Geochemistry: Progress, Prospects, and New Missions, February 26–27, 2009, Houston, Texas. Administration and publications support for this meeting were provided by the staff of the Publications and Program Services Department at the Lunar and Planetary Institute. Workshop on Venus Geochemistry: Progress, Prospects, and New Missions v Contents Program .........................................................................................................................................................................1 In-Situ Aerial Exploration of Venus by Balloon — Science Objectives and Mission Architecture K. H. Baines, S. K. Atreya, D. Crisp, J. L. Hall, V. V. Kerzhanovich, S. S. Lamaye, and K. Zahnle ...........................................................................................................................7 Geochemical Aspects of the Geological History of Venus A. T. Basilevsky and J. W. Head .....................................................................................................................8 The Role of Sulfur in Detecting Recent Climate Change on Venus M. A. Bullock and D. H. Grinspoon .............................................................................................................10 Venus Geochemical Analysis by Remote Raman — Laser Induced Breakdown Spectroscopy (Raman-LIBS) S. M. Clegg, J. E. Barefield, R. C. Wiens, C. R. Quick, S. K. Sharma, A. K. Misra, M. D. Dyar, M. C. McCanta, and L. Elkins-Tanton .....................................................................................12 Magmatism on Venus: Upside-Down Melting in Gravitational Instabilities and a Possible Analog in the Siberian Large Igneous Province L. T. Elkins-Tanton and S. E. Smrekar .........................................................................................................14 Magmatic Diversity on Venus: Constraints from Terrestrial Analog Experiments J. Filiberto ....................................................................................................................................................16 Tessera Terrain is a Fundamental Geochemical Target M. S. Gilmore ...............................................................................................................................................18 Magnetotelluric Sounding of the Interior of Venus R. E. Grimm and G. T. Delory ......................................................................................................................20 The History of Venus D. H. Grinspoon, M. A. Bullock, and J. W. Head .........................................................................................22 Is There a Genetic Association Between Ribbon Tessera Terrain and Shield Terrain, Venus? V. L. Hansen .................................................................................................................................................24 Geological Evidence for Petrogenetic Diversity on Venus: Implications for Future Exploration Strategies J. W. Head, M. A. Ivanov, and A. T. Basilevsky ...........................................................................................25 Facing the Heat — Obtaining Near Infrared Real Emissivity Spectra at Venus Surface Temperatures J. Helbert, A. Maturilli, and N. Müller .........................................................................................................27 An Analysis of the Nature of Tessera Materials on Venus M. A. Ivanov and J. W. Head ........................................................................................................................29 Core Formation on the Terrestrial Planets: Comparative Planetology of the Earth, Moon, Mars, Vesta, and Venus J. H. Jones ....................................................................................................................................................31 vi LPI Contribution No. 1470 Soviet Lander and Magellan Data Point Toward Earthlike Venus Geochemistry and Volcanology, With Some Differences, and Many Questions J. S. Kargel ...................................................................................................................................................33 Melting Venus: Potential Geochemical Diagnostics of Mantle Source Depth W. S. Kiefer and J. Filiberto .........................................................................................................................35 Surficial Deposits and Access to Materials with Known Geological Context on Venus M. A. Kreslavsky ...........................................................................................................................................37 Trace Gas Constituents of the Venus Mesosphere Measured by SPICAV/SOIR Onboard Venus Express A. Mahieux, V. Wilquet, R. Drummond, A. C. Vandaele, A. Fedorova, D. Belyaev, O. Korablev, and J. L. Bertaux .................................................................................................39 VENERA and VEGA Missions to Venus: Historical Highlights M. Ya. Marov ................................................................................................................................................40 Interactions of Mechanical Controls on Magma Emplacement with the Petrology of Volcanic Edifice-building Flows on Venus P. J. McGovern and J. Filiberto ...................................................................................................................41 Sulfur Behavior in Terrestrial Basaltic Magmas: Insights for the Behavior of Volcanic Sulfur on Venus P. J. Michael .................................................................................................................................................43 Thermal Structure in the Venusian Atmosphere: Diurnal and Annual Variations A. Migliorini, D. Grassi, G. Piccioni, P. Drossart, A. Cardesin-Moinelo, and the VIRTIS-VEX Team .......................................................................................44 Venus Surface Thermal Emission Observed by VIRTIS on Venus Express N. Mueller, J. Helbert, G. L. Hashimoto, C. C. C. Tsang, S. Erard, G. Piccioni, P. Drossart, and the VIRTIS-VEX Team ......................................................................................................45 Venus’ Bulk and Mantle Compositions: Are Venus and Earth Really Twins? A. H. Treiman ...............................................................................................................................................47 Basalt–Atmosphere Interaction on Venus: Preliminary Results on Weathering of Minerals and Bulk Rock A. H. Treiman and S. P. Schwenzer ..............................................................................................................49 Planetary Raman Spectroscopic Study for Understanding Venus Evolution History A. Wang ........................................................................................................................................................51 Atmospheric Constraints on Sulfur Reactions Fluxes at the Surface of Venus Y. L. Yung and M. C. Liang ..........................................................................................................................52
Recommended publications
  • Mathematics Is a Gentleman's Art: Analysis and Synthesis in American College Geometry Teaching, 1790-1840 Amy K
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 Mathematics is a gentleman's art: Analysis and synthesis in American college geometry teaching, 1790-1840 Amy K. Ackerberg-Hastings Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Higher Education and Teaching Commons, History of Science, Technology, and Medicine Commons, and the Science and Mathematics Education Commons Recommended Citation Ackerberg-Hastings, Amy K., "Mathematics is a gentleman's art: Analysis and synthesis in American college geometry teaching, 1790-1840 " (2000). Retrospective Theses and Dissertations. 12669. https://lib.dr.iastate.edu/rtd/12669 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margwis, and improper alignment can adversely affect reproduction. in the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Geochemistry - (2021-2022 Catalog) 1
    Geochemistry - (2021-2022 Catalog) 1 GEGN586 NUMERICAL MODELING OF GEOCHEMICAL 3.0 Geochemistry SYSTEMS GEOL512 MINERALOGY AND CRYSTAL CHEMISTRY 3.0 Degrees Offered GEOL513 HYDROTHERMAL GEOCHEMISTRY 3.0 • Master of Science (Geochemistry) GEOL523 REFLECTED LIGHT AND ELECTRON 2.0 MICROSCOPY * • Doctor of Philosophy (Geochemistry) GEOL535 LITHO ORE FORMING PROCESSES 1.0 • Certificate in Analytical Geochemistry GEOL540 ISOTOPE GEOCHEMISTRY AND 3.0 • Professional Masters in Analytical Geochemistry (non-thesis) GEOCHRONOLOGY • Professional Masters in Environmental Geochemistry (non-thesis) GEGN530 CLAY CHARACTERIZATION 2.0 Program Description GEGX571 GEOCHEMICAL EXPLORATION 3.0 The Graduate Program in Geochemistry is an interdisciplinary program * Students can add one additional credit of independent study with the mission to educate students whose interests lie at the (GEOL599) for XRF methods which is taken concurrently with intersection of the geological and chemical sciences. The Geochemistry GEOL523. Program consists of two subprograms, administering two M.S. and Ph.D. degree tracks, two Professional Master's (non-thesis) degree programs, Master of Science (Geochemistry degree track) students must also and a Graduate Certificate. The Geochemistry (GC) degree track pertains complete an appropriate thesis, based upon original research they have to the history and evolution of the Earth and its features, including but not conducted. A thesis proposal and course of study must be approved by limited to the chemical evolution of the crust and
    [Show full text]
  • BERMAN-THESIS-2020.Pdf (4.226Mb)
    The Attributes and Formation Mechanisms of Kallistos Vallis, Venus by Derek A. Berman, B.S. A Thesis In Geosciences Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Approved David W. Leverington, Ph.D. Chair of Committee Haraldur R. Karlsson, Ph.D. Harold Gurrola, Ph.D. Dr. Mark Sheridan Dean of the Graduate School December, 2020 Copyright 2020, Derek A. Berman Texas Tech University, Derek A. Berman, December 2020 ACKNOWLEDGMENTS I would like give my heartfelt gratitude and thanks to all my committee members. I would like to thank Dr. David Leverington for working with me these past years to accomplish this research and further my knowledge of planetary geology, geomorphology, and remote sensing. I hope this will be just the start to future collaborations, and that in 20 years we can still consider each other friends and colleagues in science. Thank you to Dr. Hal Karlsson for all your thoughtful comments and feedback on my thesis and a thank you to Dr. Harold Gurrola for serving on my thesis committee. I would also like to thank Lucia Barbato, Cameron Griffith, and Dr. Callum Hetherington for all the thoughtful advice, mentoring, and academic training. The three of you definitely helped to enrich my academic experience at TTU. The past several years have represented a huge personal growth period, full of challenges and triumphs. I want to thank all my friends and family members who lent me their undying support and motivation. I especially want to thank my sister Nicole, who was with me through the toughest of times, and my friends Giovanni, Luka, and Matteo, as well as all the members of the “Italian Club”, for your camaraderie and kind words of encouragement.
    [Show full text]
  • Organic Geochemistry
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ZENODO Organic Geochemistry Organic Geochemistry 37 (2006) 1–11 www.elsevier.com/locate/orggeochem Review Organic geochemistry – A retrospective of its first 70 years q Keith A. Kvenvolden * U.S. Geological Survey, 345 Middlefield Road, MS 999, Menlo Park, CA 94025, USA Institute of Marine Sciences, University of California, Santa Cruz, CA 95064, USA Received 1 September 2005; accepted 1 September 2005 Available online 18 October 2005 Abstract Organic geochemistry had its origin in the early part of the 20th century when organic chemists and geologists realized that detailed information on the organic materials in sediments and rocks was scientifically interesting and of practical importance. The generally acknowledged ‘‘father’’ of organic geochemistry is Alfred E. Treibs (1899–1983), who discov- ered and described, in 1936, porphyrin pigments in shale, coal, and crude oil, and traced the source of these molecules to their biological precursors. Thus, the year 1936 marks the beginning of organic geochemistry. However, formal organiza- tion of organic geochemistry dates from 1959 when the Organic Geochemistry Division (OGD) of The Geochemical Soci- ety was founded in the United States, followed 22 years later (1981) by the establishment of the European Association of Organic Geochemists (EAOG). Organic geochemistry (1) has its own journal, Organic Geochemistry (beginning in 1979) which, since 1988, is the official journal of the EAOG, (2) convenes two major conferences [International Meeting on Organic Geochemistry (IMOG), since 1962, and Gordon Research Conferences on Organic Geochemistry (GRC), since 1968] in alternate years, and (3) is the subject matter of several textbooks.
    [Show full text]
  • W. M. White Geochemistry Chapter 5: Kinetics
    W. M. White Geochemistry Chapter 5: Kinetics CHAPTER 5: KINETICS: THE PACE OF THINGS 5.1 INTRODUCTION hermodynamics concerns itself with the distribution of components among the various phases and species of a system at equilibrium. Kinetics concerns itself with the path the system takes in T achieving equilibrium. Thermodynamics allows us to predict the equilibrium state of a system. Kinetics, on the other hand, tells us how and how fast equilibrium will be attained. Although thermo- dynamics is a macroscopic science, we found it often useful to consider the microscopic viewpoint in developing thermodynamics models. Because kinetics concerns itself with the path a system takes, what we will call reaction mechanisms, the microscopic perspective becomes essential, and we will very often make use of it. Our everyday experience tells one very important thing about reaction kinetics: they are generally slow at low temperature and become faster at higher temperature. For example, sugar dissolves much more rapidly in hot tea than it does in ice tea. Good instructions for making ice tea might then incor- porate this knowledge of kinetics and include the instruction to be sure to dissolve the sugar in the hot tea before pouring it over ice. Because of this temperature dependence of reaction rates, low tempera- ture geochemical systems are often not in equilibrium. A good example might be clastic sediments, which consist of a variety of phases. Some of these phases are in equilibrium with each other and with porewater, but most are not. Another example of this disequilibrium is the oceans. The surface waters of the oceans are everywhere oversaturated with respect to calcite, yet calcite precipitates from sea- water only through biological activity.
    [Show full text]
  • The Role of Geochemistry and Stress on Fracture Development And
    Geothermal Technologies Program 2010 Peer Review Public Service of Colorado Ponnequin Wind Farm The Role of Geochemistry and Principal Investigator (Joseph Moore) Stress on Fracture Development Presenter Name (John McLennan) and Proppant Behavior in EGS Organization University of Utah Reservoirs Track Name Reservoir Characterization May 18, 2010 This presentation does not contain any proprietary confidential,1 | US DOE or Geothermalotherwise restricted Program information. eere.energy.gov Timeline DOE Start Date:9/30/2008 DOE Contract Signed: 9/26/2008 Ends 11/30/2011 Project ~40% Complete 2 | US DOE Geothermal Program eere.energy.gov Budget Overview DOE Awardee Total Share Share Project $972,751 $243,188 $1,215,939 Funding FY 2009 $244,869 $107,130 $351,999 FY 2010 $383,952 $64,522 $448,474 FY 2011 $343,930 $71,536 $415,466 DOE Start Date:9/30/2008 DOE Contract Signed: 9/26/2008 Ends 11/30/2011 Project ~40% Complete 3 | US DOE Geothermal Program eere.energy.gov Overview: Barriers and Partners . Barriers to EGS Reservoir Development Addressed: . Reservoir Creation . Long-Term Reservoir and Fracture Sustainability . Zonal Isolation . Partners . Independent Evaluation 4 | US DOE Geothermal Program eere.energy.gov Relevance/Impact of Research Problem . Maximizing initial conductivity of EGS domains . Maintaining long-term conductivity . Facilitate development of extensive stimulated domain via diversion Solution . Proppant placed in fractures Challenge . Proppant behavior at geothermal conditions poorly understood Use of proppant recognized as potential technology under Task “Keep Flow Paths Open” in DOE EGS Technology Evaluation Report 5 | US DOE Geothermal Program eere.energy.gov Relevance/Impact of Research OBJECTIVE Develop Improved Methods For Maintaining Permeable Fracture Volumes In EGS Reservoirs .
    [Show full text]
  • Radiogenic Isotope Geochemistry
    W. M. White Geochemistry Chapter 8: Radiogenic Isotope Geochemistry CHAPTER 8: RADIOGENIC ISOTOPE GEOCHEMISTRY 8.1 INTRODUCTION adiogenic isotope geochemistry had an enormous influence on geologic thinking in the twentieth century. The story begins, however, in the late nineteenth century. At that time Lord Kelvin (born William Thomson, and who profoundly influenced the development of physics and ther- R th modynamics in the 19 century), estimated the age of the solar system to be about 100 million years, based on the assumption that the Sun’s energy was derived from gravitational collapse. In 1897 he re- vised this estimate downward to the range of 20 to 40 million years. A year earlier, another Eng- lishman, John Jolly, estimated the age of the Earth to be about 100 million years based on the assump- tion that salts in the ocean had built up through geologic time at a rate proportional their delivery by rivers. Geologists were particularly skeptical of Kelvin’s revised estimate, feeling the Earth must be older than this, but had no quantitative means of supporting their arguments. They did not realize it, but the key to the ultimate solution of the dilemma, radioactivity, had been discovered about the same time (1896) by Frenchman Henri Becquerel. Only eleven years elapsed before Bertram Boltwood, an American chemist, published the first ‘radiometric age’. He determined the lead concentrations in three samples of pitchblende, a uranium ore, and concluded they ranged in age from 410 to 535 million years. In the meantime, Jolly also had been busy exploring the uses of radioactivity in geology and published what we might call the first book on isotope geochemistry in 1908.
    [Show full text]
  • Geochemistry and Crystallography of Recrystallized Sedimentary Dolomites
    Goldschmidt2019 Abstract Geochemistry and crystallography of recrystallized sedimentary dolomites GEORGINA LUKOCZKI1*, PANKAJ SARIN2, JAY M. GREGG1, CÉDRIC M. JOHN3 1 Oklahoma State University, Boone Pickens School of Geology, Stillwater, OK, USA 2 Oklahoma State University, School of Materials Science and Engineering, Tulsa, OK, USA 3 Imperial College London, Department of Earth Science and Engineering, London, UK (*Correspondence: [email protected]) Most sedimentary dolomites [CaMg(CO3)2] are meta- stable upon formation and either transform into more stable dolomite via recrystallization, or persist as meta-stable phases over deep geological time. The stability of dolomite has long been considered to be influenced by ordering and stoichiometry [1]; however, how recrystallization alters the crystal structure and chemistry of dolomites remains poorly understood. In order to better understand the relationship between various chemical and crystallographic properties and the underlying geological processes, sedimentary dolomites, formed in various diagenetic environments, were investigated in detail. The innovative aspect of this study is the application of high resolution diffraction techniques, such as sychrotron X-ray and neutron diffraction, together with various geochemical proxies, including clumped isotopes, to characterize recrystallized sedimentary dolomites. The age of the studied samples ranges from Holocene to Cambrian. The diagenetic environments of dolomitization and recrystallization were determined primarily on the basis of petrographic and geochemical data [2, 3, 4]. Rietveld refinement of high-resolution diffraction data revealed notable differences in crystallographic parameters across the various dolomite types. Several dolomite bodies have been identified as potential sites for CO2 sequestration [5]; therefore, new insights into what factors control dolomite ordering and stoichiometry will contribute to an improved understanding of dolomite reactivity and may be particularly important for CO2 sequestration studies.
    [Show full text]
  • REFERENCES Abe, K., 2001. Cd in the Western Equatorial Pacific
    REFERENCES Abe, K., 2001. Cd in the western equatorial Pacific. Marine Chemistry 74, 197-211. Åberg, G., Pacyna, J. M., Stray, H. and Skjelkvåle, B. L., 1999. The origin of atmospheric lead in Oslo, Norway, studies with the use of isotopic ratios. Atmospheric Environment 33, 3335-3344. Abraham, E. R., Law, C. S., Boyd, P. W., Lavender, S. J., Maldonado, M. T. and Bowie, A. R., 2000. Importance of stirring in the development of an iron-fertilized phytoplankton bloom. Nature 407, 727-730. Aiken, G. R., McKnight, D. M., Wershaw, R. L. and MacCarthy, P., 1985. An introduction to humic substances in soil, sediment, and water. In: Aiken, G. R., McKnight, D. M., Wershaw, R. L. and MacCarthy, P. (eds.) Humic Substances in Soil, Sediment, and Water. New York: Wiley-Interscience, pp. 1-12. Al-Asasm, I. S., Clarke, J. D. and Fryer, B. J., 1998. Stable isotopes and heavy metal distribution in Dreissena polymorpha (Zebra Mussels) from western basin of Lake Erie, Canada. Environmental Geology 33, 122-129. Al-Farawati, R. and van den Berg, C. M. G., 1999. Metal-sulfide complexation in seawater. Marine Chemistry 63, 331-352. Amano, H., Matsunaga, T., Nagao, S., Hanzawa, Y., Watanabe, M., Ueno, T. and Onuma, Y., 1999. The transfer capability of long-lived Chernobyl radionuclides from surface soil to river water in dissolved forms. Organic Geochemistry 30, 437-442. Anderson, T. F. and Arthur, M. A., 1983. Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems. In: Arthur, M. A., Anderson, T. F., Kaplan, I. R., Veizer, J.
    [Show full text]
  • New Model of Abiogenesis
    Goldschmidt2020 Abstract New model of abiogenesis A. IVANOV1, V. SEVASTYANOV1, A. DOLGONOSOV1 AND E. GALIMOV1 1Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academу of Sciences, Kosygina street 19, Moscow 119334, Russia ([email protected]) Understanding the nature of the causes that led to the beginning of the structural self-organization of protobionts is a fundamental question in finding solutions to the problem of abiogenic origin of life. The main difficulties in understanding the question - how this happened, arise due to the fact that after 4 billion years of geological and biological activity of the planet, direct material evidence, the complex process of spontaneous generation of living matter, was not found. But is it possible, with a detailed examination of the geophysical and geochemical features of the situation of the early Earth, to restore the history of the sequence of prebiological events that predetermined the formation of protocellular precursors of the first living organisms? After all, in fact, having embarked on this path, you can trace the order of formation of prebiotic structures reveal the principle of self-organization of primary biological matter, and eventually come to a pristine type of living matter. Probably, the primary living matter required not only special conditions, but also special location that could protect and maintain its existence for a long time, since the aggressive environment of the primitive Earth would not allow primitive life to develop without such protection. This is due to the various kinds of exposure to hard cosmic radiation, as well as the adverse effects of other physical and chemical factors.
    [Show full text]
  • A History of Organic Geochemistry B
    A History of Organic Geochemistry B. Durand To cite this version: B. Durand. A History of Organic Geochemistry. Oil & Gas Science and Technology - Revue d’IFP Energies nouvelles, Institut Français du Pétrole, 2003, 58 (2), pp.203-231. 10.2516/ogst:2003014. hal-02043852 HAL Id: hal-02043852 https://hal.archives-ouvertes.fr/hal-02043852 Submitted on 21 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Oil & Gas Science and Technology – Rev. IFP, Vol. 58 (2003), No. 2, pp. 203-231 Copyright © 2003, Éditions Technip A History of Organic Geochemistry B. Durand1 1 Bernard Durand, 2, rue des Blés-d’Or, Dizée, 17530 Arvert - france e--mail: [email protected] Résumé — Histoire de la géochimie organique — La géochimie organique est née des interrogations sur l’origine du pétrole. Son développement a pour l’instant été lié à celui de l’exploration pétrolière. Elle ne s’est constituée en science autonome qu’un peu après 1960. Les années 1965-1985 furent particulièrement productives : pendant cette période les mécanismes de la formation des gisements de pétrole et de gaz naturel furent explicités et de nombreux biomarqueurs, témoins de l’origine organique du pétrole furent identifiés.
    [Show full text]
  • Major and Minor Ion Geochemistry of Groundwaters from Bermuda
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 1987 MAJOR AND MINOR ION GEOCHEMISTRY OF GROUNDWATERS FROM BERMUDA JAMES ANDRE KENT SIMMONS University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation SIMMONS, JAMES ANDRE KENT, "MAJOR AND MINOR ION GEOCHEMISTRY OF GROUNDWATERS FROM BERMUDA" (1987). Doctoral Dissertations. 1516. https://scholars.unh.edu/dissertation/1516 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. INFORMATION TO USERS While the most advanced technology has been used to photograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. For example: • Manuscript pages may have indistinct print. In such cases, the best available copy has been filmed. • Manuscripts may not always be complete. In such cases, a note will indicate that it is not possible to obtain missing pages. ® Copyrighted material may have been removed from the manuscript. In such cases, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, and charts) are photographed by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or as a 17”x 23" black and white photographic print.
    [Show full text]