Comparison of Numerical Weather Prediction Solar Irradiance Forecasts in the US, Canada and Europe

Total Page:16

File Type:pdf, Size:1020Kb

Comparison of Numerical Weather Prediction Solar Irradiance Forecasts in the US, Canada and Europe Available online at www.sciencedirect.com Solar Energy 94 (2013) 305–326 www.elsevier.com/locate/solener Comparison of numerical weather prediction solar irradiance forecasts in the US, Canada and Europe Richard Perez a,⇑, Elke Lorenz b, Sophie Pelland c, Mark Beauharnois a, Glenn Van Knowe d, Karl Hemker Jr. a, Detlev Heinemann b, Jan Remund e, Stefan C. Mu¨ller e, Wolfgang Traunmu¨ller f, Gerald Steinmauer g, David Pozo h, Jose A. Ruiz-Arias h, Vicente Lara-Fanego h, Lourdes Ramirez-Santigosa i, Martin Gaston-Romero j, Luis M. Pomares k a Atmospheric Sciences Research Center, The University at Albany, 251 Fuller Rd., Albany, NY 12203, USA b University of Oldenburg, Oldenburg, Germany c Natural Resource Canada, Montreal, Canada d MESO, Inc., Albany, New York, USA e Meteotest, Zurich, Switzerland f Bluesky Wetteranalysen, Attnang-Puchheim, Austria g Austria Solar Innovation Center, Wels, Austria h University of Jaen, Jaen, Spain i CIEMAT, Madrid, Spain j CENER, Sarriguren, Spain k IrSOLaV, Madrid, Spain Received 5 November 2012; received in revised form 8 May 2013; accepted 9 May 2013 Available online 17 June 2013 Communicated by: Associate Editor Frank Vignola Abstract This article combines and discusses three independent validations of global horizontal irradiance (GHI) multi-day forecast models that were conducted in the US, Canada and Europe. All forecast models are based directly or indirectly on numerical weather prediction (NWP). Two models are common to the three validation efforts – the ECMWF global model and the GFS-driven WRF mesoscale model – and allow general observations: (1) the GFS-based WRF- model forecasts do not perform as well as global forecast-based approaches such as ECMWF and (2) the simple averaging of models’ output tends to perform better than individual models. Ó 2013 Elsevier Ltd. All rights reserved. Keywords: Irradiance; Forecast; Validation; Solar resource; Numerical weather prediction 1. Introduction requires reliable forecasts of the expected power produc- tion as a basis for management and operation strategies. Solar power generation is highly variable due its During the last years the contribution of solar power to dependence on meteorological conditions. The integration the electricity supply has been increasing fast leading to of this fluctuating resource into the energy supply system a strong need for accurate solar power predictions (in Germany, for instance, the PV production already exceeds 40% of electrical demand on sunny summer ⇑ Corresponding author. Tel.: +1 5184378751. E-mail address: [email protected] (R. Perez). days). 0038-092X/$ - see front matter Ó 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.solener.2013.05.005 306 R. Perez et al. / Solar Energy 94 (2013) 305–326 Nomenclature AEMet Spanish Weather Service KSI Kolmogorov–Smirnov test integral ARPS Advanced Multiscale Regional Prediction MASS Mesoscale Atmospheric Simulation System System [model] CDFmeas cumulative measured frequency distribu- MAE mean absolute error tion MBE mean bias error CDFpred cumulative predicted frequency distribu- MOS Model Output Statistics tion MSE mean square error CENER Centro National de Energias Renovables NCEP National Centers for Environmental Pre- (National Renewable Energy Center) diction CIEMAT Centro de Investigaciones Energeticas, NDFD National Digital Forecast Database [mod- Medioambientales y Tecnologicas(Center el] for Research on Energy, Environment and NOAA National Oceanic and Atmospheric Admin- Technology) istration DSWRF downward shortwave radiation flux at the N number of evaluated prediction-measure- surface ment pairs ECMWF European Center for Medium Range Weath- NWP numerical weather prediction er Forecasts [model] RMSE root mean square error GEM Global Environmental Multiscale [model] SURFRAD Surface Radiation Network NOAA GHI global irradiance WRF Weather Research and Forecasting [model] GFS Global Forecast System [model] WRF-ASRC WRF-Model from Atmospheric Sciences HIRLAM High Resolution Limited Area Model Research Center Imas maximum possible irradiance value WRF-AWS WRF Model from AWSTruepower Imeas measured Irradiance WRF-Meteotest WRF Model from Meteotest Ipred predicted irriadiance WRF-UJAEN WRF Model from University of Jaen IEA SHC International Energy Agency Solar Heating and Cooling Programme Following this new and rapidly evolving situation on the horizons. Day-ahead predictions are of particular impor- energy market, substantial research effort is currently being tance for application in the energy market, where day- spent on the development of irradiance and solar power ahead power trading plays a major role in many countries. prediction models, and several models have been proposed This article combines and discusses three independent recently by research organizations as well as by private validations of global horizontal irradiance (GHI) multi- companies. Common operational approaches to short-term day forecast models that were performed in the US, Can- solar radiation forecasting include (1) numerical weather ada and Europe in the framework of the IEA SHC Task prediction (NWP) models that infer local cloud informa- 36 “Solar resource knowledge management” (http://archi- tion – hence, indirectly, transmitted radiation – through ve.iea-shc.org/task36/). Comparing the performance of the dynamic modeling of the atmosphere up to several days different models gives valuable information both to ahead (e.g., see Remund et al., 2008); (2) models using researchers, to rank their approaches and inform further satellite remote sensing or ground based sky measurements model development, and to forecast users, to assist them to infer the motion of clouds and project their impact in the in choosing between different forecasting products. It is future. Earlier contributions by some of the authors have important that a standardized methodology for evalua- shown that satellite-derived cloud motion tends to outper- tion is used for the comparison in order to achieve mean- form NWP models for forecast horizons up to 4–5 h ahead ingful results when comparing different approaches. depending on location (e.g., Perez et al., 2010; Heinemann Therefore, a common benchmarking procedure has been et al., 2006). Short-term forecasting using ground-based set up in the framework of the IEA SHC Task 36. As sky imagery with very high spatial and temporal resolution a basis for the benchmarking we have prepared several is suitable for intra-hour forecasting (Chow et al., 2011); ground measurement data sets covering different climatic (3) statistical time series models based on measured irradi- regions and a common set of accuracy measures has been ance data are applied for very short term forecasting in the identified. range of minutes to hours (e.g., see Pedro and Coimbra, The paper first gives an overview of the different fore- 2012). In this paper we focus our attention on solar radia- casting approaches. Then we present the ground measure- tion forecasts based on NWP models which are most ment datasets used for the validation. Next, the concept of appropriate for day-ahead and multi-day forecast evaluation is introduced, and finally, we provide the results R. Perez et al. / Solar Energy 94 (2013) 305–326 307 of the forecast comparison along with a short discussion 10. Forecasts based on meteorologists’ cloud cover fore- and conclusions. casts by Bluesky (BLUESKY-meteorologists). The first two models are directly based on global (plan- 2. Forecast models etary) NWP systems, respectively GEM, and ECMWF. The native time step of the regional configuration of the The evaluation includes forecasts based on global, mul- GEM model and its ground resolution are 7.5 min and tiscale and mesoscale NWP models. Hourly site-specific 15 km, respectively. GEM forecasts of downward short- forecasts are derived from direct NWP model output with wave radiation flux at the surface (DSWRF) originating different methods ranging from simple averaging and inter- at 00:00Z and 12:00Z were de-archived by the Canadian polation techniques to advanced statistical postprocessing Meteorological Centre at an hourly time step for this anal- tools and meteorologists’ interpretation to combine the ysis. The de-archived forecasts cover North America and output of various NWP models. The models considered adjacent waters. As described by Pelland et al. (2011), the for this evaluation are listed below, along with the acro- GEM solar forecasts were postprocessed by taking an aver- nyms that will be used to present results: age of the irradiance forecasts over a square region cen- tered on the location of each site used in the validation. 1. The Global Environmental Multiscale (GEM) model The size of this square grid was optimized for each station from Environment Canada in its regional determinis- by selecting a size that minimized forecast root mean tic configuration (Mailhot et al., 2006). square error during a 1 year training period prior to the 2. An application of the European Centre for Medium- evaluation period used here. Range Weather Forecasts (ECMWF) model (Lorenz ECMWF irradiance forecasts used here had a temporal et al., 2009a,b). resolution of 3 h and a spatial resolution of 25 km. The 3. Several versions of the Weather Research and Fore- ECMWF site-specific, hourly data prepared for the present casting (WRF) model (Skamarock et al., 2005, analysis according to Lorenz et al. (2009b) are obtained via 2008) initialized with Global Forecast System time interpolation of the 3-hourly global clear sky indices.
Recommended publications
  • Emulation of a Full Suite of Atmospheric Physics
    Emulation of a Full Suite of Atmospheric Physics Parameterizations in NCEP GFS using a Neural Network Alexei Belochitski1;2 and Vladimir Krasnopolsky2 1IMSG, 2NOAA/NWS/NCEP/EMC email: [email protected] 1 Introduction is captured by periodic functions of day and month, and variability of solar energy output is reflected in the solar constant. In addition to the full atmospheric state, NN receives full land-surface model (LSM) state to Machine learning (ML) can be used in parameterization development at least in two different ways: 1) as an capture impact of surface boundary conditions. All NN outputs are increments of dynamical core's prognostic emulation technique for accelerating calculation of parameterizations developed previously, and 2) for devel- variables that the original atmospheric physics package modifies. opment of new \empirical" parameterizations based on reanalysis/observed data or data simulated by high resolution models. An example of the former is the paper by Krasnopolsky et al. (2012) who have developed highly efficient neural network (NN) emulations of both long{ and short-wave radiation parameterizations for 4 Hybrid Coupling of Full Atmospheric Physics NN to GFS a high resolution state-of-the-art short{ to medium-range weather forecasting model. More recently, Gentine Full atmospheric physics NN only et al. (2018) have used a neural network to emulate 2D cloud resolving models (CRMs) embedded into columns updates the state of the atmo- of a \super-parameterized" general circulation model (GCM) in an aqua-planet configuration with prescribed sphere and does not update the invariant zonally symmetric SST, full diurnal cycle, and no annual cycle.
    [Show full text]
  • INTEGRATED FORECAST and MANAGEMENT in NORTHERN CALIFORNIA – INFORM a Demonstration Project
    CPASW March 23, 2006 INTEGRATED FORECAST AND MANAGEMENT IN NORTHERN CALIFORNIA – INFORM A Demonstration Project Present: Eylon Shamir HYDROLOGIC RESEARCH CENTER GEORGIA WATER RESOURCES INSTITUTE Eylon Shamir: [email protected] www.hrc-web.org INFORM: Integrated Forecast and Management in Northern California Hydrologic Research Center & Georgia Water Resources Institute Sponsors: CALFED Bay Delta Authority California Energy Commission National Oceanic and Atmospheric Administration Collaborators: California Department of Water Resources California-Nevada River Forecast Center Sacramento Area Flood Control Agency U.S. Army Corps of Engineers U.S. Bureau of Reclamation Eylon Shamir: [email protected] www.hrc-web.org Vision Statement Increase efficiency of water use in Northern California using climate, hydrologic and decision science Eylon Shamir: [email protected] www.hrc-web.org Goal and Objectives Demonstrate the utility of climate and hydrologic forecasts for water resources management in Northern California Implement integrated forecast-management systems for the Northern California reservoirs using real-time data Perform tests with actual data and with management input Eylon Shamir: [email protected] www.hrc-web.org Major Resevoirs in Nothern California Application Area 41.5 Sacramen to River Capacity of Major Reservoirs 41 (million acre-feet): Pit River Trinit y Trinity - 2.4 Trinity Shasta 40.5 Trinity River Shasta Shasta - 4.5 Oroville - 3.5 Feather River 40 Folsom - 1 39.5 Degrees North Latitude Oroville Oroville N.
    [Show full text]
  • 5Th International Conference on Reanalysis (ICR5)
    5th International Conference on Reanalysis (ICR5) 13–17 November 2017, Rome IMPLEMENTED BY Contents ECMWF | 5th International Conference on Reanalysis (ICR5) 2017 2 Introduction It is our pleasure to welcome the Climate research has benefited over the • Status and plans for future reanalyses • Evaluation of reanalyses reanalysis community at the 5th years from the continuing development Global and regional production, inclusive Comparisons with observations, International Conference on Reanalysis of reanalysis. As reanalysis datasets of all WCRP thematic areas: atmosphere, other types of analysis and models, (ICR5). We are delighted that we are become more diverse (atmosphere, land, ocean and cryosphere – Session inter-comparisons, diagnostics – all able to come together in Rome. ocean and land components), more organisers: Mike Bosilovich (NASA Session organisers: Franco Desiato This five-day international conference complete (moving towards Earth-system GMAO), Shinya Kobayashi (JMA), (ISPRA), Masatomo Fujiwara (Hokkaido is the worldwide leading event for the coupled reanalysis), more detailed, and Simona Masina (CMCC) University), Sonia Seneviratne (ETH), continuing development of reanalysis of longer timespan, community efforts Adrian Simmons (ECMWF) • Observations for reanalyses for climate research, which provides a to evaluate and intercompare them Preparation, organisation in large • Applications of reanalyses comprehensive numerical description become more important. archives, data rescue, reanalysis Generating time-series of Essential
    [Show full text]
  • Evaluation of Cloud Properties in the NOAA/NCEP Global Forecast System Using Multiple Satellite Products
    Clim Dyn DOI 10.1007/s00382-012-1430-0 Evaluation of cloud properties in the NOAA/NCEP global forecast system using multiple satellite products Hyelim Yoo • Zhanqing Li Received: 15 July 2011 / Accepted: 19 June 2012 Ó Springer-Verlag 2012 Abstract Knowledge of cloud properties and their vertical are similar to those from the model, latitudinal variations structure is important for meteorological studies due to their show discrepancies in terms of structure and pattern. The impact on both the Earth’s radiation budget and adiabatic modeled cloud optical depth over storm track region and heating within the atmosphere. The objective of this study is to subtropical region is less than that from the passive sensor and evaluate bulk cloud properties and vertical distribution sim- is overestimated for deep convective clouds. The distributions ulated by the US National Oceanic and Atmospheric of ice water path (IWP) agree better with satellite observations Administration National Centers for Environmental than do liquid water path (LWP) distributions. Discrepancies Prediction Global Forecast System (GFS) using three global in LWP/IWP distributions between observations and the satellite products. Cloud variables evaluated include the model are attributed to differences in cloud water mixing ratio occurrence and fraction of clouds in up to three layers, cloud and mean relative humidity fields, which are major control optical depth, liquid water path, and ice water path. Cloud variables determining the formation of clouds. vertical structure data are retrieved from both active (Cloud- Sat/CALIPSO) and passive sensors and are subsequently Keywords Cloud fraction Á NCEP global forecast system Á compared with GFS model results.
    [Show full text]
  • HIRLAM-B Review September 2016
    External review of the HIRLAM-B programme 2011 – 2015 Peter Lynch Dominique Marbouty Tiziana Paccagnella September 2015 External review of the HIRLAM-B programme, September 2015 Page 2 Table of contents List of recommendations page 4 Summary page 5 Part one Introduction page 7 Background to the review Composition of the Review Team and its organisation Part two The HIRLAM programme page 10 Structure and governance of the programme Staffing resources Achievements of the HIRLAM-B programme Recommendations of the previous review, follow-up Part three Model performance, forecasters’ feedback page 17 Part four Towards an expanded programme page 22 Scope of the single Consortium, core and optional activities Organisation and governance Staffing resources and code-development Data policy and code ownership Branding of the new collaboration and system Part five Conclusion page33 Annexes page 35 Annex 1 – Scope and Term of Reference for HIRLAM-B External Review Annex 2 – Joint HIRLAM-ALADIN Declaration Annex 3 – List of acronyms External review of the HIRLAM-B programme, September 2015 Page 3 Summary The Review Team appointed by the HIRLAM Council examined the governance, resources and achievement of the HIRLAM-B programme. It reviewed the implementation of the recommendations made by the previous review team in 2010 at the end of HIRLAM-A. The HIRLAM cooperation has a long history and is now well organised. As a result the Review Team made few comments concerning HIRLAM in isolation from the wider collaboration with ALADIN. The review team also met forecasters in most of HIRLAM centers. Benefits of using regional high resolution model for short range forecasts, as compared to ECMWF global forecasts, is no longer questioned.
    [Show full text]
  • NAEFS Status and Future Plan
    NAEFS Status and Future Plan Yuejian Zhu Ensemble team leader Environmental Modeling Center NCEP/NWS/NOAA Presentation for International S2S conference February 14 2014 Warnings Warnings Coordination Coordination Assessments Forecasts Guidance Forecasts Guidance Watches Watches Outlook Outlook Threats & & Alert Alert Products Forecast Lead Time Minutes Minutes Life & Property NOAA Hours Hours Aviation Days Days Spanning 1 Maritime 1 Week Week Seamless 2 Space Operations 2 Week Week Fire Weather Fire Weather Months Months Emergency Mgmt Climate/Weather/Water Commerce Suite Benefits Seasons Seasons Energy Planning Hydropower of Reservoir Control Forecast O G O O H C U D R C R D Y L T P S Agriculture I Years Years Recreation Weather Prediction Climate Prediction Ecosystem Products Health Products Uncertainty ForecastForecast Uncertainty Forecast Uncertainty Environment Warnings Warnings Coordination Coordination Assessments Forecasts Guidance Forecasts Guidance Watches Watches Outlook Outlook Threats & & Alert Alert Forecast Lead Time Products Service CenterPerspective Minutes Minutes Life & Property NOAA Hours Hours Aviation Days Days 1 1 Maritime Spanning Week Week Seamless SPC 2 Space Operations 2 Week Week Fire Weather HPC Fire Weather Months Months Emergency Mgmt AWC Climate/Weather Climate OPC Commerce Suite Linkage Benefits Seasons Seasons SWPC Energy Planning CPC TPC Hydropower of and Reservoir Control Forecast Reservoir Control Fire WeatherOutlooks toDay8 Week 2HazardsAssessment Winter WeatherDeskDays1-3 Seasonal Predictions NDFD,
    [Show full text]
  • CFS Reanalysis Design
    Design of the 30-year NCEP CFSRR T382L64 Global Reanalysis and T126L64 Seasonal Reforecast Project (1979-2009) Suru Saha and Hua-Lu Pan, EMC/NCEP With Input from Stephen Lord, Mark Iredell, Shrinivas Moorthi, David Behringer, Ken Mitchell, Bob Kistler, Jack Woollen, Huug van den Dool, Catherine Thiaw and others Operational Daily CFS • 2 9-month coupled forecasts at 0000GMT • (1) GR2 (d-3) atmospheric initial condition • (2) Avg [GR2(d-3),GR2(d-4)] • T62L28S2 – MOM3 • GODAS (d-7) oceanic initial condition 2004 CFS Reforecasts The CFS includes a comprehensive set of retrospective runs that are used to calibrate and evaluate the skill of its forecasts. Each run is a full 9-month integration. The retrospective period covers all 12 calendar months in the 24 years from 1981 to 2004. Runs are initiated from 15 initial conditions that span each month, amounting to a total of 4320 runs. Since each run is a 9-month integration, the CFS was run for an equivalent of 3240 yr! An upgrade to the coupled atmosphere-ocean-seaice-land NCEP Climate Forecast System (CFS) is being planned for Jan 2010. Involves improvements to all data assimilation components of the CFS: • the atmosphere with the new NCEP Gridded Statistical Interpolation Scheme (GSI) and major improvements to the physics and dynamics of operational NCEP Global Forecast System (GFS) • the ocean and ice with the NCEP Global Ocean Data Assimilation System, (GODAS) and a new GFDL MOM4 Ocean Model • the land with the NCEP Global Land Data Assimilation System, (GLDAS) and a new NCEP Noah Land model For a new Climate Forecast System (CFS) implementation Two essential components: A new Reanalysis of the atmosphere, ocean, sea-ice and land over the 31-year period (1979-2009) is required to provide consistent initial conditions for: A complete Reforecast of the new CFS over the 28-year period (1982-2009), in order to provide stable calibration and skill estimates of the new system, for operational seasonal prediction at NCEP There are 4 differences with the earlier two NCEP Global Reanalysis efforts: 1.
    [Show full text]
  • Performance of a Very High-Resolution Global Forecast System Model (GFS T1534) at 12.5 Km Over the Indian Region During the 2016–2017 Monsoon Seasons
    J. Earth Syst. Sci. (2019) 128:155 c Indian Academy of Sciences https://doi.org/10.1007/s12040-019-1186-6 Performance of a very high-resolution global forecast system model (GFS T1534) at 12.5 km over the Indian region during the 2016–2017 monsoon seasons P Mukhopadhyay1,* ,VSPrasad2, R Phani Murali Krishna1, Medha Deshpande1, Malay Ganai1, Snehlata Tirkey1, Sahadat Sarkar1, Tanmoy Goswami1, C J Johny2, Kumar Roy1, M Mahakur1, V R Durai3 and M Rajeevan4 1 Indian Institute of Tropical Meteorology, Dr Homi Bhabha Road, Pashan, Pune 411 008, India. 2National Centre for Medium Range Weather Forecasting, A-50, Sector-62, Noida, UP, India. 3India Meteorological Department, Mausam Bhavan, Lodi Road, New Delhi 110 003, India. 4Ministry of Earth Science, Government of India, Prithvi Bhavan, New Delhi 110 003, India. *Corresponding author. e-mail: [email protected] [email protected] MS received 1 September 2018; revised 17 March 2019; accepted 20 March 2019; published online 4 June 2019 A global forecast system model at a horizontal resolution of T1534 (∼12.5 km) has been evaluated for the monsoon seasons of 2016 and 2017 over the Indian region. It is for the first time that such a high-resolution global model is being run operationally for monsoon weather forecast. A detailed validation of the model therefore is essential. The validation of mean monsoon rainfall for the season and individual months indicates a tendency for wet bias over the land region in all the forecast lead time. The probability distribution of forecast rainfall shows an overestimation (underestimation) of rainfall for the lighter (heavy) categories.
    [Show full text]
  • 5Th International Conference on Reanalysis (ICR5)
    5th International Conference on Reanalysis (ICR5) 13–17 November 2017, Rome IMPLEMENTED BY Contents ECMWF | 5th International Conference on Reanalysis (ICR5) 2017 2 Introduction It is our pleasure to welcome the Climate research has benefited over the • Status and plans for future reanalyses • Evaluation of reanalyses reanalysis community at the 5th years from the continuing development Global and regional production, inclusive Comparisons with observations, other International Conference on Reanalysis of reanalysis. As reanalysis datasets of all WCRP thematic areas: atmosphere, types of analysis and models, inter- (ICR5). We are delighted that we are become more diverse (atmosphere, land, ocean and cryosphere – Session comparisons, diagnostics – Session all able to come together in Rome. ocean and land components), more organizers: Mike Bosilovich (NASA organizers: Franco Desiato (ISPRA), This five-day international conference complete (moving towards Earth-system GMAO), Shinya Kobayashi (JMA), Masatomo Fujiwara (Hokkaido is the worldwide leading event for the coupled reanalysis), more detailed, and Simona Masina (CMCC) University), Sonia Seneviratne (ETH), continuing development of reanalysis of longer timespan, community efforts Adrian Simmons (ECMWF) • Observations for reanalyses for climate research, which provides a to evaluate and intercompare them Preparation, organization in large • Applications of reanalyses comprehensive numerical description become more important. archives, data rescue, reanalysis Generating time-series of
    [Show full text]
  • Numerical Weather Prediction Basics: Models, Numerical Methods, and Data Assimilation
    Cite this entry as: Pu Z., Kalnay E. (2018) Numerical Weather Prediction Basics: Models, Numerical Methods, and Data Assimilation. In: Duan Q., Pappenberger F., Thielen J., Wood A., Cloke H., Schaake J. (eds) Handbook of Hydrometeorological Ensemble Forecasting. Springer, Berlin, Heidelberg Numerical Weather Prediction Basics: Models, Numerical Methods, and Data Assimilation Zhaoxia Pu and Eugenia Kalnay Contents 1 Introduction: Basic Concept and Historical Overview .. .................................... 2 2 NWP Models and Numerical Methods ...................................................... 4 2.1 Basic Equations ......................................................................... 4 2.2 Numerical Frameworks of NWP Model ............................................... 7 2.3 Global and Regional Models ........................................................... 12 2.4 Physical Parameterizations ............................................................. 13 2.5 Land-Surface and Ocean Models and Coupled Numerical Models in NWP . 18 3 Data Assimilation ............................................................................. 22 3.1 Least Squares Theory ................................................................... 22 3.2 Assimilation Methods .................................................................. 24 4 Recent Developments and Challenges ....................................................... 28 References ........................................................................................ 29 Abstract Numerical
    [Show full text]
  • Implementation of Global Ensemble Forecast System (GEFS) at 12Km Resolution
    ISSN 0252-1075 Contribution from IITM Technical Report No.TR-06 ESSO/IITM/MM/TR/02(2020)/200 Implementation of Global Ensemble Forecast System (GEFS) at 12km Resolution Medha Deshpande, C.J. Johny, Radhika Kanase, Snehlata Tirkey, Sahadat Sarkar, Tanmoy Goswami, Kumar Roy, Malay Ganai, R. Phani Murali Krishna, V.S. Prasad, P. Mukhopadhyay , V.R. Durai, Ravi S. Nanjundiah and M. Rajeevan Indian Institute of Tropical Meteorology (IITM) Ministry of Earth Sciences (MoES) PUNE, INDIA http://www.tropmet.res.in/ ISSN 0252-1075 Contribution from IITM Technical Report No.TR-06 ESSO/IITM/MM/TR/02(2020)/200 Implementation of Global Ensemble Forecast System (GEFS) at 12km Resolution Medha Deshpande1, C.J. Johny2, RadhikaKanase1, Snehlata Tirkey1, Sahadat Sarkar1, Tanmoy Goswami1, Kumar Roy1, Malay Ganai1, R.Phani Murali Krishna1, V.S. Prasad2, P. Mukhopadhyay1 , V.R. Durai3, Ravi S. Nanjundiah1, 4and M. Rajeevan5 1 Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Dr.Homi Bhabha Road, Pashan, Pune- 411008 2 National Centre for Medium Range Weather Forecasting, Ministry of Earth Sciences, A-50, Sector-62, NOIDA, UP 3 India Meteorological Department, Ministry of Earth Sciences,MausamBhavan, Lodi Road, New Delhi 4 Center for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bengaluru - 560012 5 Ministry of Earth Science, Government of India, PrithviBhavan, New Delhi *Corresponding Author: Dr. P. Mukhopadhyay Indian Institute of Tropical Meteorology, Dr.Homi Bhabha Road, Pashan, Pune-411008, India. E-mail: [email protected],
    [Show full text]
  • The Reanalysis for the Global Ensemble Forecast System, Version 12
    1 The Reanalysis for the Global Ensemble Forecast System, version 12. 2 Thomas M. Hamill1, Jeffrey S. Whitaker1, Anna Shlyaeva2, Gary Bates3, Sherrie Fredrick,3 Philip 3 Pegion3, Eric Sinsky6, Yuejian Zhu4, Vijay Tallapragada4, Hong Guan5, Xiaqiong Zhou4, and 4 Jack Woollen4 5 1 NOAA Physical Sciences Laboratory, Boulder, CO 6 2 Joint Center for Satellite Data Assimilation, University Corporation for Atmospheric Research, 7 Boulder CO 8 3Cooperative Institute for Research in the Environmental Sciences, University of Colorado, 9 Boulder CO 10 4National Weather Service, Environmental ModelinG Center, ColleGe Park, MD 11 5 SRG at NOAA/NWS/NCEP/EMC, ColleGe Park, MD 12 6 IMSG at NOAA/NWS/NCEP/EMC, ColleGe Park, MD 13 Submitted to Monthly Weather Review (presumably) 14 9 February 2021 15 Corresponding author: 16 Dr. Thomas M. Hamill, 17 NOAA ESRL/PSL, R/PSL1 18 325 Broadway, Boulder CO 80305 19 [email protected] 20 phone: +1 (303) 497-3060 21 telefax: +1 (303) 497-6449 22 telework: +1 (303) 516-0340 23 1 24 ABSTRACT 25 NOAA has created a global reanalysis data set, intended primarily for initialization of 26 reforecasts for its Global Ensemble Forecast System, version 12 (GEFSv12), which 27 provides ensemble forecasts out to +35 days lead time. The reanalysis covers the period 28 2000-2019. It assimilates most of the observations that were assimilated into the 29 operational data assimilation system used for initializing global predictions. These include a 30 variety of conventional data, infrared and microwave radiances, Global Positioning System 31 radio occultations, and more. The reanalysis quality is generally superior to that from 32 NOAA’s previous-generation Climate Forecast System Reanalysis (CFSR), demonstrated in 33 the fit of short-term forecasts to the observations and in the skill of 5-day deterministic 34 forecasts initialized from CFSR vs.
    [Show full text]