NAEFS Status and Future Plan

Total Page:16

File Type:pdf, Size:1020Kb

NAEFS Status and Future Plan NAEFS Status and Future Plan Yuejian Zhu Ensemble team leader Environmental Modeling Center NCEP/NWS/NOAA Presentation for International S2S conference February 14 2014 Warnings Warnings Coordination Coordination Assessments Forecasts Guidance Forecasts Guidance Watches Watches Outlook Outlook Threats & & Alert Alert Products Forecast Lead Time Minutes Minutes Life & Property NOAA Hours Hours Aviation Days Days Spanning 1 Maritime 1 Week Week Seamless 2 Space Operations 2 Week Week Fire Weather Fire Weather Months Months Emergency Mgmt Climate/Weather/Water Commerce Suite Benefits Seasons Seasons Energy Planning Hydropower of Reservoir Control Forecast O G O O H C U D R C R D Y L T P S Agriculture I Years Years Recreation Weather Prediction Climate Prediction Ecosystem Products Health Products Uncertainty ForecastForecast Uncertainty Forecast Uncertainty Environment Warnings Warnings Coordination Coordination Assessments Forecasts Guidance Forecasts Guidance Watches Watches Outlook Outlook Threats & & Alert Alert Forecast Lead Time Products Service CenterPerspective Minutes Minutes Life & Property NOAA Hours Hours Aviation Days Days 1 1 Maritime Spanning Week Week Seamless SPC 2 Space Operations 2 Week Week Fire Weather HPC Fire Weather Months Months Emergency Mgmt AWC Climate/Weather Climate OPC Commerce Suite Linkage Benefits Seasons Seasons SWPC Energy Planning CPC TPC Hydropower of and Reservoir Control Forecast Reservoir Control Fire WeatherOutlooks toDay8 Week 2HazardsAssessment Winter WeatherDeskDays1-3 Seasonal Predictions NDFD, Days 4-7 NDFD, Days 6-10 DayForecast Agriculture Tropical Storms toDay5 Severe Weather toDay8 Weather Years Years Recreation Ecosystem Health : Uncertainty ForecastForecast Uncertainty Forecast Uncertainty Environment Warnings Warnings Coordination Coordination Assessments Forecasts Guidance Forecasts Guidance Watches Watches Outlook Outlook Threats & & Alert Alert Forecast Lead Time Products NCEP Model Perspective NCEP Model Minutes Minutes Life & Property NWS Hours Hours Aviation Days Days 1 1 Maritime Spanning Seamless Week Week 2 Space Operations 2 Week Week Fire Weather Fire Weather Months Months Rapid Update Cycle forAviation Rapid UpdateCycle Emergency Mgmt Forecast Short-Range Ensemble Dispersion Models forDHS Climate North AmericanForecast Suite North AmericanEnsemble Global ForecastSystem Commerce Benefits Seasons Seasons Energy Planning Forecast System of Hydropower and Forecast Reservoir Control Climate ForecastSystem* Agriculture Weather Years Years Recreation Ecosystem Health Hurricane Models Ocean Model Climate/Weather Uncertainty ForecastForecast Uncertainty Forecast Uncertainty Environment -WRF -GFDL Linkage North American Ensemble Forecast System (NAEFS) International project to produce operational multi‐ center ensemble products Bias correction and combines global ensemble forecasts from Canada & USA Generates products for: Weather forecasters Specialized users End users Operational outlet for THORPEX research using TIGGE archive Statement The North American Ensemble Forecast System (NAEFS) combines state of the art weather forecast tools, called ensemble forecasts, developed at the US National Weather Service (NWS) and the Meteorological Service of Canada (MSC). When combined, these tools (a) provide weather forecast guidance for the 1‐14 day period that is of higher quality than the currently available operational guidance based on either of the two sets of tools separately; and (b) make a set of forecasts that are seamless across the national boundaries over North America, between Mexico and the US, and between the US and Canada. As a first step in the development of the NAEFS system, the two ensemble generating centers, the National Centers for Environmental Prediction (NCEP) of NWS and the Canadian Meteorological Center (CMC) of MSC started exchanging their ensemble forecast data on the operational basis in September 2004. First NAEFS probabilistic products have been implemented at NCEP in February 2006. The enhanced weather forecast products are generated based on the joint ensemble which has been undergone a statistical post‐processing to reduce their systematic errors. NAEFS Milestones • Implementations – First NAEFS implementation –bias correction –IOC, May 30 2006 Version 1 – NAEFS follow up implementation –CONUS downscaling ‐ December 4 2007 Version 2 – Alaska implementation –Alaska downscaling ‐ December 7 2010 Version 3 – Implementation for CONUS/Alaska expansion –Q2FY14 Version 4 • Applications of NAEFS Statistical Post‐Processing: – NCEP/GEFS and NAEFS –at NWS – CMC/GEFS and NAEFS –at MSC – FNMOC/GEFS –at NAVY – NCEP/SREF –at NWS • Publications (or references): – Cui, B., Z. Toth, Y. Zhu, and D. Hou, D. Unger, and S. Beauregard, 2004: “ The Trade‐off in Bias Correction between Using the Latest Analysis/Modeling System with a Short, versus an Older System with a Long Archive” The First THORPEX International Science Symposium. December 6‐10, 2004, Montréal, Canada, World Meteorological Organization, P281‐284. – Zhu, Y., and B. Cui, 2006: “GFS bias correction” [Document is available online] – Zhu, Y., B. Cui, and Z. Toth, 2007: “December 2007 upgrade of the NCEP Global Ensemble Forecast System (NAEFS)” [Document is available online] – Cui, B., Z. Toth, Y. Zhu and D. Hou, 2012: "Bias Correction For Global Ensemble Forecast" Weather and Forecasting, Vol. 27 396‐410 – Cui, B., Y. Zhu , Z. Toth and D. Hou, 2013: "Development of Statistical Post‐processor for NAEFS” Weather and Forecasting (In process) – Zhu, Y., and B. Cui, 2007: “December 2007 upgrade of the NCEP Global Ensemble Forecast System (NAEFS)” [Document is available online] – Zhu, Y, and Y. Luo, 2013: “Precipitation Calibration Based on Frequency Matching Method (FMM)”. Weather and Forecasting (in process) – Glahn, B., 2013: “A Comparison of Two Methods of Bias Correcting MOS Temperature and Dewpoint Forecasts” MDL office note, 13‐1 NAEFS Current Status Updated: February 13 2013 NCEP CMC NAEFS Model GFS GEM NCEP+CMC Initial uncertainty ETR EnKF ETR + EnKF Model Yes (Stochastic Pert) Yes (multi-physics Yes uncertainty/Stochastic and stochastic) Tropical storm Relocation None Daily frequency 00,06,12 and 18UTC 00 and 12UTC 00 and 12UTC Resolution T254L42 (d0-d8)~55km 600*300 (66km) 1*1 degree T190L42 (d8-16)~70km L72 Control Yes Yes Yes (2) Ensemble members 20 for each cycle 20 for each cycle 40 for each cycle Forecast length 16 days (384 hours) 16 days (384 hours) 16 days Post-process Bias correction Bias correction Yes (same bias for all for each member members) Last implementation February 14th 2012 February 13 2013 8 NCEP/GEFS raw forecast 4+ days gain from NAEFS NAEFS final products From Bias correction (NCEP, CMC) Dual-resolution (NCEP only) Down-scaling (NCEP, CMC) Combination of NCEP and CMC 9 NCEP/GEFS raw forecast 8+ days gain NAEFS final products From Bias correction (NCEP, CMC) Dual-resolution (NCEP only) Down-scaling (NCEP, CMC) Combination of NCEP and CMC 10 NH Anomaly Correlation for 500hPa Height Period: January 1st – December 31st 2012 GFS –8.0d GEFS – 9.5d NAEFS – 9.85d Summary of 6th NAEFS workshop 1‐3 May, 2012 Monterey, CA 6th NAEFS workshop was held in Monterey, CA during 1‐3 May 2012. There were about 50 scientists to attend this workshop whose are from Meteorological Service of Canada, Mexico Meteorological Service, UKMet, NAVY, AFWA and NOAA. Following topics have been presented and discussed during workshop: •Review the current status of the contribution of each NWP center to NAEFS •For each NWP center, present plans for future model and product updates, for both the base models and ensemble system (including regional ensembles) •Decide on coordination of plans for the overall future NAEFS ensemble and products (added variables, data transfer for increased resolution grids, FNMOC ensemble added to NAEFS, especially for mesoscale ensemble‐NAEFS‐LAM) •Learn about current operational uses of ensemble forecast guidance, including military and civilian applications. NUOPC –National Unified Operational Prediction Capability NUOPC (National Unified Operational Prediction Capability) is an agreement to coordinate activities between the Department of Commerce (National Oceanic and Atmospheric Administration) and the Department of Defense (Oceanographer and Navigator of the Navy and Air Force Directorate of Weather), in order to accelerate the transition of new technology, eliminate unnecessary duplication, and achieve a superior National global prediction capability. The NUOPC partners determined that the Nation’s global atmospheric modeling capability can be advanced more effectively and efficiently with their mutual cooperation to provide a common infrastructure to perform and support their individual missions. The NUOPC Tri‐Agency (NOAA, Navy, Air Force) agreed to work on a collaborative vision through coordinated research, transition and operations in order to develop and implement the next‐ generation National Operational Global Ensemble modeling system. 14 10‐day forecast AC score CRPS Northern Hemisphere 500hPa height: 30‐day running mean scores of day‐10 CRPS skill score RMS error and ratio of RMS error / spread Anomaly correlation RMS error All other regions could be seen from: http://www.emc.ncep.noaa.gov/gmb/yluo/na efs/VRFY_STATS/T30_P500HGT Research and Operational Applications In Multi-Center Ensemble Forecasting Yuejian Zhu and Zoltan Toth (NCEP) Acknowledgements: Glenn Rutledge (NCDC), Andre Methot (MSC), Michel Rosengaus (NMSM), Dan Collins, Bo Cui, Richard Wobus(NCEP)
Recommended publications
  • Emulation of a Full Suite of Atmospheric Physics
    Emulation of a Full Suite of Atmospheric Physics Parameterizations in NCEP GFS using a Neural Network Alexei Belochitski1;2 and Vladimir Krasnopolsky2 1IMSG, 2NOAA/NWS/NCEP/EMC email: [email protected] 1 Introduction is captured by periodic functions of day and month, and variability of solar energy output is reflected in the solar constant. In addition to the full atmospheric state, NN receives full land-surface model (LSM) state to Machine learning (ML) can be used in parameterization development at least in two different ways: 1) as an capture impact of surface boundary conditions. All NN outputs are increments of dynamical core's prognostic emulation technique for accelerating calculation of parameterizations developed previously, and 2) for devel- variables that the original atmospheric physics package modifies. opment of new \empirical" parameterizations based on reanalysis/observed data or data simulated by high resolution models. An example of the former is the paper by Krasnopolsky et al. (2012) who have developed highly efficient neural network (NN) emulations of both long{ and short-wave radiation parameterizations for 4 Hybrid Coupling of Full Atmospheric Physics NN to GFS a high resolution state-of-the-art short{ to medium-range weather forecasting model. More recently, Gentine Full atmospheric physics NN only et al. (2018) have used a neural network to emulate 2D cloud resolving models (CRMs) embedded into columns updates the state of the atmo- of a \super-parameterized" general circulation model (GCM) in an aqua-planet configuration with prescribed sphere and does not update the invariant zonally symmetric SST, full diurnal cycle, and no annual cycle.
    [Show full text]
  • Snow Modeling and Observations at NOAA's National Operational
    Snow Modeling and Observations at NOAA’S National Operational Hydrologic Remote Sensing Center Thomas R. Carroll National Operational Hydrologic Remote Sensing Center, National Weather Service, National Oceanic and Atmospheric Administration Chanhassen, Minnesota, USA Abstract The National Oceanic and Atmospheric Administration’s (NOAA) National Operational Hydrologic Remote Sensing Center (NOHRSC) routinely ingests all of the electronically available, real-time, ground-based, snow data; airborne snow water equivalent data; satellite areal extent of snow cover information; and numerical weather prediction (NWP) model forcings for the coterminous United States. The NWP model forcings are physically downscaled from their native 13 kilometer2 (km) spatial resolution to a 1 km2 resolution for the coterminous United States. The downscaled NWP forcings drive the NOHRSC Snow Model (NSM) that includes an energy-and-mass-balance snow accumulation and ablation model run at a 1 km2 spatial resolution and at a 1 hour temporal resolution for the country. The ground-based, airborne, and satellite snow observations are assimilated into the model state variables simulated by the NSM using a Newtonian nudging technique. The principle advantages of the assimilation technique are: (1) approximate balance is maintained in the NSM, (2) physical processes are easily accommodated in the model, and (3) asynoptic data are incorporated at the appropriate times. The NSM is reinitialized with the assimilated snow observations to generate a variety of snow products that combine to form NOAA’s NOHRSC National Snow Analyses (NSA). The NOHRSC NSA incorporate all of the information necessary and available to produce a “best estimate” of real-time snow cover conditions at 1 km2 spatial resolution and 1 hour temporal resolution for the country.
    [Show full text]
  • INTEGRATED FORECAST and MANAGEMENT in NORTHERN CALIFORNIA – INFORM a Demonstration Project
    CPASW March 23, 2006 INTEGRATED FORECAST AND MANAGEMENT IN NORTHERN CALIFORNIA – INFORM A Demonstration Project Present: Eylon Shamir HYDROLOGIC RESEARCH CENTER GEORGIA WATER RESOURCES INSTITUTE Eylon Shamir: [email protected] www.hrc-web.org INFORM: Integrated Forecast and Management in Northern California Hydrologic Research Center & Georgia Water Resources Institute Sponsors: CALFED Bay Delta Authority California Energy Commission National Oceanic and Atmospheric Administration Collaborators: California Department of Water Resources California-Nevada River Forecast Center Sacramento Area Flood Control Agency U.S. Army Corps of Engineers U.S. Bureau of Reclamation Eylon Shamir: [email protected] www.hrc-web.org Vision Statement Increase efficiency of water use in Northern California using climate, hydrologic and decision science Eylon Shamir: [email protected] www.hrc-web.org Goal and Objectives Demonstrate the utility of climate and hydrologic forecasts for water resources management in Northern California Implement integrated forecast-management systems for the Northern California reservoirs using real-time data Perform tests with actual data and with management input Eylon Shamir: [email protected] www.hrc-web.org Major Resevoirs in Nothern California Application Area 41.5 Sacramen to River Capacity of Major Reservoirs 41 (million acre-feet): Pit River Trinit y Trinity - 2.4 Trinity Shasta 40.5 Trinity River Shasta Shasta - 4.5 Oroville - 3.5 Feather River 40 Folsom - 1 39.5 Degrees North Latitude Oroville Oroville N.
    [Show full text]
  • 5Th International Conference on Reanalysis (ICR5)
    5th International Conference on Reanalysis (ICR5) 13–17 November 2017, Rome IMPLEMENTED BY Contents ECMWF | 5th International Conference on Reanalysis (ICR5) 2017 2 Introduction It is our pleasure to welcome the Climate research has benefited over the • Status and plans for future reanalyses • Evaluation of reanalyses reanalysis community at the 5th years from the continuing development Global and regional production, inclusive Comparisons with observations, International Conference on Reanalysis of reanalysis. As reanalysis datasets of all WCRP thematic areas: atmosphere, other types of analysis and models, (ICR5). We are delighted that we are become more diverse (atmosphere, land, ocean and cryosphere – Session inter-comparisons, diagnostics – all able to come together in Rome. ocean and land components), more organisers: Mike Bosilovich (NASA Session organisers: Franco Desiato This five-day international conference complete (moving towards Earth-system GMAO), Shinya Kobayashi (JMA), (ISPRA), Masatomo Fujiwara (Hokkaido is the worldwide leading event for the coupled reanalysis), more detailed, and Simona Masina (CMCC) University), Sonia Seneviratne (ETH), continuing development of reanalysis of longer timespan, community efforts Adrian Simmons (ECMWF) • Observations for reanalyses for climate research, which provides a to evaluate and intercompare them Preparation, organisation in large • Applications of reanalyses comprehensive numerical description become more important. archives, data rescue, reanalysis Generating time-series of Essential
    [Show full text]
  • Evaluation of Cloud Properties in the NOAA/NCEP Global Forecast System Using Multiple Satellite Products
    Clim Dyn DOI 10.1007/s00382-012-1430-0 Evaluation of cloud properties in the NOAA/NCEP global forecast system using multiple satellite products Hyelim Yoo • Zhanqing Li Received: 15 July 2011 / Accepted: 19 June 2012 Ó Springer-Verlag 2012 Abstract Knowledge of cloud properties and their vertical are similar to those from the model, latitudinal variations structure is important for meteorological studies due to their show discrepancies in terms of structure and pattern. The impact on both the Earth’s radiation budget and adiabatic modeled cloud optical depth over storm track region and heating within the atmosphere. The objective of this study is to subtropical region is less than that from the passive sensor and evaluate bulk cloud properties and vertical distribution sim- is overestimated for deep convective clouds. The distributions ulated by the US National Oceanic and Atmospheric of ice water path (IWP) agree better with satellite observations Administration National Centers for Environmental than do liquid water path (LWP) distributions. Discrepancies Prediction Global Forecast System (GFS) using three global in LWP/IWP distributions between observations and the satellite products. Cloud variables evaluated include the model are attributed to differences in cloud water mixing ratio occurrence and fraction of clouds in up to three layers, cloud and mean relative humidity fields, which are major control optical depth, liquid water path, and ice water path. Cloud variables determining the formation of clouds. vertical structure data are retrieved from both active (Cloud- Sat/CALIPSO) and passive sensors and are subsequently Keywords Cloud fraction Á NCEP global forecast system Á compared with GFS model results.
    [Show full text]
  • Visibility Forecasts from the RUC20
    5.10 Visibility Forecasts from the RUC20 Tracy Lorraine Smith*, Stanley G. Benjamin, and John M. Brown NOAA Research – Forecast Systems Laboratory Boulder, CO 80305 USA *Also affliliated with the Cooperative Institue for Research in the Atmosphere * email – [email protected] 1. Introduction 2002. The primary model changes in the RUC20 include a new Grell convective parameterization, At least five characteristics of the new 20-km explicit clouds using mixed phase microphysics, Rapid Update Cycle (RUC20, Benjamin et al. an update to the RUC/MM5 Reisner level-4 2002a, this volume), being implemented at NCEP mixed-phase microphysics developed jointly by in April 2002, should contribute to improvements NCAR and FSL, and new land-surface in visibility forecasts. These include higher processes. RUC20 also assimilates GOES horizontal and vertical resolution (from 40 km to cloud-top data to assist in the description of initial 20 km, 40 to 50 levels), improved versions of the cloud/hydrometeor fields. The smaller grid size MM5/RUC mixed-phase cloud microphysics and also allows the RUC20 to resolve smaller areas RUC land-surface schemes, assimilation of of clouds and precipitation, which should benefit GOES cloud information modifying RUC 1-h visibility diagnoses. A more accurate diurnal hydrometeor forecasts (Benjamin et al. 2002b), cycle with a more frequent call to the shortwave and an improved RUC visibility algorithm radiation module should also make a minor (Smirnova et al. 2000), which was originally contribution toward diagnosis of fog/low-level based on the Stoelinga-Warner method. clouds. Ongoing 3-h verification against METAR visibility observations is being conducted for forecasts The visibility field from the RUC is output from a from both the RUC2 (called RUC40 in this paper) visibility translation algorithm that uses near- and the RUC20 to assess the impact of the surface hydrometeor (cloud water, rain water, changes.
    [Show full text]
  • A North American Hourly Assimilation and Model Forecast Cycle: the Rapid Refresh
    APRIL 2016 B E N J A M I N E T A L . 1669 A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh STANLEY G. BENJAMIN,STEPHEN S. WEYGANDT,JOHN M. BROWN,MING HU,* CURTIS R. ALEXANDER,* TATIANA G. SMIRNOVA,* JOSEPH B. OLSON,* ERIC P. JAMES,* 1 DAVID C. DOWELL,GEORG A. GRELL,HAIDAO LIN, STEVEN E. PECKHAM,* 1 TRACY LORRAINE SMITH, WILLIAM R. MONINGER,* AND JAYMES S. KENYON* NOAA/Earth System Research Laboratory, Boulder, Colorado GEOFFREY S. MANIKIN NOAA/NWS/NCEP/Environmental Modeling Center, College Park, Maryland (Manuscript received 8 July 2015, in final form 8 December 2015) ABSTRACT The Rapid Refresh (RAP), an hourly updated assimilation and model forecast system, replaced the Rapid Update Cycle (RUC) as an operational regional analysis and forecast system among the suite of models at the NOAA/National Centers for Environmental Prediction (NCEP) in 2012. The need for an effective hourly updated assimilation and modeling system for the United States for situational awareness and related decision- making has continued to increase for various applications including aviation (and transportation in general), severe weather, and energy. The RAP is distinct from the previous RUC in three primary aspects: a larger geographical domain (covering North America), use of the community-based Advanced Research version of the Weather Research and Forecasting (WRF) Model (ARW) replacing the RUC forecast model, and use of the Gridpoint Statistical Interpolation analysis system (GSI) instead of the RUC three-dimensional variational data assimilation (3DVar). As part of the RAP development, modifications have been made to the community ARW model (especially in model physics) and GSI assimilation systems, some based on previous model and assimilation design innovations developed initially with the RUC.
    [Show full text]
  • HIRLAM-B Review September 2016
    External review of the HIRLAM-B programme 2011 – 2015 Peter Lynch Dominique Marbouty Tiziana Paccagnella September 2015 External review of the HIRLAM-B programme, September 2015 Page 2 Table of contents List of recommendations page 4 Summary page 5 Part one Introduction page 7 Background to the review Composition of the Review Team and its organisation Part two The HIRLAM programme page 10 Structure and governance of the programme Staffing resources Achievements of the HIRLAM-B programme Recommendations of the previous review, follow-up Part three Model performance, forecasters’ feedback page 17 Part four Towards an expanded programme page 22 Scope of the single Consortium, core and optional activities Organisation and governance Staffing resources and code-development Data policy and code ownership Branding of the new collaboration and system Part five Conclusion page33 Annexes page 35 Annex 1 – Scope and Term of Reference for HIRLAM-B External Review Annex 2 – Joint HIRLAM-ALADIN Declaration Annex 3 – List of acronyms External review of the HIRLAM-B programme, September 2015 Page 3 Summary The Review Team appointed by the HIRLAM Council examined the governance, resources and achievement of the HIRLAM-B programme. It reviewed the implementation of the recommendations made by the previous review team in 2010 at the end of HIRLAM-A. The HIRLAM cooperation has a long history and is now well organised. As a result the Review Team made few comments concerning HIRLAM in isolation from the wider collaboration with ALADIN. The review team also met forecasters in most of HIRLAM centers. Benefits of using regional high resolution model for short range forecasts, as compared to ECMWF global forecasts, is no longer questioned.
    [Show full text]
  • An Investigation of Severe Weather Environments in Atmospheric Reanalyses Austin Taylor King
    University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2018 An Investigation Of Severe Weather Environments In Atmospheric Reanalyses Austin Taylor King Follow this and additional works at: https://commons.und.edu/theses Recommended Citation King, Austin Taylor, "An Investigation Of Severe Weather Environments In Atmospheric Reanalyses" (2018). Theses and Dissertations. 2251. https://commons.und.edu/theses/2251 This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. AN INVESTIGATION OF SEVERE WEATHER ENVIRONMENTS IN ATMOSPHERIC REANALYSES by Austin Taylor King Bachelor of Science, University of Oklahoma, 2016 A Thesis Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Master of Science Grand Forks, North Dakota May 2018 Copyright 2018 Austin King ii PERMISSION Title An Investigation of Severe Weather Environments in Atmospheric Reanalyses Department Atmospheric Sciences Degree Master of Science In presenting this thesis in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my thesis work or, in his absence, by the Chairperson of the department or the dean of the School of Graduate Studies.
    [Show full text]
  • COOPERATIVE INSTITUTE for RESEARCH in ENVIRONMENTAL SCIENCES University of Colorado at Boulder UCB 216 Boulder, CO 80309-0216
    CELEB ra TING 0 OF ENVI R ONMENT A L RESE arc H years 4 COOPERATIVE INSTITUTE FOR RESEARCH ANNU A L REPO R T IN ENVIRONMENTAL SCIENCES University of Colorado at Boulder i 00 2 8 COOPERATIVE INSTITUTE FOR RESEARCH IN ENVIRONMENTAL SCIENCES University of Colorado at Boulder UCB 216 Boulder, CO 80309-0216 Phone: 303-492-1143 Fax: 303-492-1149 email: [email protected] http://cires.colorado.edu ANNU A L REPO R T ST A FF Suzanne van Drunick, Coordinator Jennifer Gunther, Designer Katy Human, Editor COVE R PHOTO Pat and Rosemarie Keough part of traveling photographic exhibit Antarctica—Passion and Obsession Sponsored by CIRES in celebration of 40th Anniversary ii From the Director 2 Executive Summary and Research Highlights 4 The Institute Year in Review 12 Contributions to NOAA’s Strategic Vision 13 Administration and Funding 16 Creating a Dynamic Research Environment 21 CIRES People and Projects 26 Faculty Fellows Research 27 Scientific Centers 58 Education and Outreach 68 Visiting Fellows 70 Innovative Research Projects 73 Graduate Student Research Fellowships 83 Diversity and Undergraduate Research Programs 85 Theme Reports 86 Measures of Achievement: Calendar Year 2007 146 Publications by the Numbers 147 Refereed publications 148 Non-refereed Publications 172 Refereed Journals in which CIRES Scientists Published 179 Honors and Awards 181 Service 185 Appendices 188 Governance and Management 189 Personnel Demographics 193 Acronyms and Abbreviations 194 CIRES Annual Report 2008 1 From the Director 2 CIRES Annual Report 2008 am very proud to present the new CIRES annual report for fiscal year 2008. It has been another exciting year with numerous accomplishments, Iawards, and continued growth in our research staff and budget.
    [Show full text]
  • The Wind Forecast Improvement Project (WFIP) Is a U
    WFIP NOAA Final Report - Page i TABLE OF CONTENTS TABLE OF CONTENTS ................................................................................................................................. i Executive Summary .................................................................................................................................. 1 1. Project Overview .................................................................................................................................. 4 1.1 Goals and Key Tasks ........................................................................................................................ 4 1.2 Team Partners, Two Study Areas ....................................................................................................... 8 2. WFIP Observations ............................................................................................................................. 11 2.1 Instrumentation ............................................................................................................................ 11 2.2 Site Selection and Preparation, Leases, Data Transmission and Handling ............................................. 21 2.3 Data Quality Control and Instrument Performance ........................................................................... 22 2.3 Instrument Inter-comparisons ........................................................................................................ 31 3. NOAA Models ...................................................................................................................................
    [Show full text]
  • Guidelines for the Preparation of Final Papers for EUMETSAT Conferences
    Proceedings for the 13th International Winds Workshop 27 June - 1 July 2016, Monterey, California, USA STATUS OF THE OPERATIONAL SATELLITE WINDS PRODUCTION AT CPTEC/INPE AND IT USAGE IN REGIONAL DATA ASSIMILATION OVER SOUTH AMERICA Renato G. Negri, Luiz F. Sapucci, Lucas Avanço, Nelson Ferreira, Luiz G. G. Gonçalves National Institute for Space Research, Center for Weather Forecasting and Climate Research, Rod. Pres. Dutra, km 40, Cachoeira Paulista, SP, 12.630-000, Brazil Abstract Tropospheric winds are estimated using satellite imagery since late 60's and today they are a very important source of information for numerical weather forecasts. The CPTEC/INPE has being producing Atmospheric Motion Vectors (AMV), operationally, since early 2000's, using GOES satellites. The typical spatial coverage is the South America and surrounding oceans covered by the GOES satellites. The wind extraction at CPTEC/INPE is done using the visible, near infrared (3.9 µm) water vapor absorption (6.7 µm) and window infrared (10.2 µm) channels. The visible and 3.9 µm are used only to estimate the low level winds for day and night only respectively, 6.7 µm allows to estimate winds at middle and high troposphere and 10.2 µm is used to estimate the wind at all tropospheric layers. This algorithm makes use of triplets of successive GOES images with at least 30 minutes between each pair, which allow having a new wind field at least half hour. The quality control applied to the wind fields is based on developed at EUMETSAT where each AMV receive a quality indicator and the final users can choose what level is more suitable to their application.
    [Show full text]