Spin-1/2 Wave Equations in Relativistic Quantum Mechanics

Total Page:16

File Type:pdf, Size:1020Kb

Spin-1/2 Wave Equations in Relativistic Quantum Mechanics Spin-1/2 Wave Equations in Relativistic Quantum Mechanics Donald Stephen Staudte June, 1993 A thesis submitted for the degree of Doctor of Philosophy of The Australian National University. S tatem en t The (1972) idea to construct a spin-1/2 analogue of the spin-0 Feshbach- Villars equation belongs to Dr. B. A. Robson and equation l.VII.l was his (1972) attempt at the construction of such an equation. He (1991) suggested to me that I attempt to obtain the energy spectrum of the hydrogen atom using equation l.VII.l. The (1990) idea to study the representation theory of the Lorentz group belongs to Dr. J. M. C. F. Govaerts. However, all of the material given in chapters 2, 3, 4, 5 and 6 is solely my own original work, except where explicitly acknowledged otherwise. I developed this material in the period from July 1992 to June 1993. My development of this material has benefited from discussions with a number of people who are mentioned in the acknowledgements. Acknowledgements I would like to thank my supervisor Dr. B. A. Robson for introducing me to his problem of developing a spin-1/2 wave equation with indefinite metric in rela­ tivistic quantum mechanics, and for his patience and initial guidance to enable me to understand his studies of the subject. I thank him also in his role as Head of Department for making it possible for me to undertake a PhD at the Australian National University and for arranging the financial support. I would also like to thank Professor C. Jarlskog and Rickard Lindkvist for ar­ ranging a most fruitful and rewarding six month visit to Stockholms Universitet, during the period March-September 1992. It was during this period that I derived the first major results of this thesis. I also wish to thank Dr. J. M. C. F. Govaerts for his invaluable insights, inspira­ tion and constant encouragement throughout the course of this thesis. I wish to thank Dr. A. M. Pendrill for arranging a research position for me in Göteborg, beginning August 1993. This has allowed me to concentrate on my thesis over the last few months, without having to find future employment as well. In my development of the material given in chapters 2, 3, 4, 5 and 6, I have ben­ efited from invaluable discussions with and comments from the following people: Professors K. I. Golden, C. Jarlskog, A. Klein, B. Laurent, I. Lindgren, B. H. J. McKellar, P. Minnhagen, J. Sucher, J. A. Wheeler; Drs F. Bastianelli, J. M. C. F. Govaerts, C. J. Griffin, H. Hansson, H. H. Lee, U. Lindgren, E. Lindroth, H. Nordstrom, A. M. Pendrill, R. G. Staudte, B. Sund- borg; and P. A. Blackmore, J. P. Costella, J. A. Daicic, D. J. Daniel, K. Halliwell, S. Lane, K. Laughlin and S. A. Moten. I wish to thank Drs M. Andrews, J. M. C. F. Govaerts and B. A. Robson for their assistance during the proofreading stage of this thesis. I wish to thank my fellow students at the ANU; Perry and Kim, Kenneth and Kutluyil; Damian, Derek, Kang-Mei, Ken and Simon; Kit and the posture and flexibility group; Blair and all my other friends at the ANU; also those at Stock­ holm; Bo, Erik, Fiorenzo, Hakan and Jan; for all the fun times. I wish to thank the ACT Academy of Sport, Perry Blackmore, Steve Craig, Rob Jessop, Rickard Lindkvist and all my other friends who have contributed to these rewarding years of my life. I wish to gratefully acknowledge Sally Moten for making my life wonderful. Finally I wish to thank my family for their encouragement and support. Abstract This thesis is concerned with the development of a new spin-1/2 wave equa­ tion in relativistic quantum mechanics. This equation is the spin-1/2 analogue of the spin-0 Feshbach-Villars equation. The thesis begins in chapter 1 with a review of the subject of relativistic wave equations and its place in the development of modern physics. Chapter 2 sees the derivation of the new equation (hereafter referred to as the FV1/2 equation). This derivation is presented at three levels of understanding, and is combined with an analysis of the equation using elements of the underlying mathematics of the theories of special relativity and quantum mechanics. The analysis justifies the methods of derivation of the equation, and its suitability as a wave equation in relativistic quantum mechanics. It is shown that the FV1/2 equation is different to the Dirac equation and other equations in the literature. One of the striking features of the FV1/2 equation is that it contains a less restrictive dynamics than the conventional Dirac equation. Chapter 3 examines the solution space and proves some results using the discrete symmetries C, P and T, which enable a subset of the solution space to be used for physical applications. It is possible to use a subset of solutions which contain the usual Dirac negative energy states, or it is possible to use a subset which contains only positive energy states, but includes states of opposite signs of charge. The second subset corresponds to the physical properties of particles and antiparticles and suggests that the FV1/2 equation could be useful in atomic physics. Chapter 4 represents a start on the development of the FV1/2 equation for use in atomic physics. It contains a study of hydrogenic atoms. The energy spectra and wavefunctions for hydrogenic atoms are derived using the FV1/2 equation. The method of solution is of comparable difficulty to that using the Dirac equation. The spectra are found to be identical to that of the Dirac equation, but the wavefunctions differ. A calculation of the expectation value of the Coulomb energy is performed and the results obtained differ from the Dirac equation results by 6 x 10-3% for Z — 1, and 40% for Z = 70. This suggests that physically measureable quantities should be calculated and compared using the FV1/2 and Dirac equations. A calculation is presented to show the energy spectra and wavefunctions obtained are consistent with the literature. The results obtained in this chapter (again) suggest that the FV1/2 equation could be useful for calculations in atomic physics. Chapter 5 discusses important further work which should be undertaken if the FV1/2 equation is to become useful to physics. The development in the previous chapters concentrated on the FV1/2 equation in relativistic quantum mechanics. It should be also considered as a quantised field equation. The two electron problem and the calculation of physical quantities are crucial tests of the FV1/2 equation’s applicability in atomic physics. The mathematical analysis in chapter 2 can be extended. Suggestions for gaining a deeper mathematical understanding of the less restrictive dynamics of the FV1/2 equation are given. Finally some conclusions on what has been achieved in the thesis are pre­ sented in chapter 6. Table of Contents Title page Statement of originality of research Acknowledgements Abstract Table of Contents Preface Notation Chapter 1. Introduction 1.1. The historical development of relativistic wave equations............................... 1 1 .II. A brief overview of R Q M ......................................................................................... 4 1 .III. Operators and expectation values in RQM ...................................................... 7 l.IV . Free particle solutions in R Q M ..............................................................................8 l.V. The non-relativistic lim it....................................................................................... 10 l.V I. Historical development, continued...................................................................... 11 l.VII. Initial motivations for a spin-1/2 analogue of the FVO eq u atio n ............................................................................................................ 13 1. VIII. Outline of this th esis........................................................................................... 17 Chapter 2. Derivations and analysis of the FV1/2 equation 2.1. Introduction................................................................................................................... 21 2.II. A first derivation of the FV1/2 equation .......................................................... 25 2.III. The KG1/2 and Dirac equations in spinor notation .....................................27 2.IV. Comparison of the solutions of the KG 1/2 and Dirac equations...................................................................................... 31 2. V. A second derivation of the FV1/2 equation................................................... 32 2.VI.. The indefinite metric formalism in RQM ........................................................ 36 2.VII. A third derivation of the FV1/2 equation...................................................... 49 2.VIII. Various linearisation procedures applied to the second order equations.......................................................................................... 53 2.IX. Operators and expectation values for the FV1/2 equation ....................... 59 2.X. A study of the FV1/2 equation using the representation theory of the Lorentz group ........................................................ 64 2. XL The eight solutions................................................................................. 65 Chapter 3. The use of the FV1/2 equation in physical problems 3.1. Introduction..........................................................................................................69 3.11. The number of solutions..................................................................................70
Recommended publications
  • Introductory Lectures on Quantum Field Theory
    Introductory Lectures on Quantum Field Theory a b L. Álvarez-Gaumé ∗ and M.A. Vázquez-Mozo † a CERN, Geneva, Switzerland b Universidad de Salamanca, Salamanca, Spain Abstract In these lectures we present a few topics in quantum field theory in detail. Some of them are conceptual and some more practical. They have been se- lected because they appear frequently in current applications to particle physics and string theory. 1 Introduction These notes are based on lectures delivered by L.A.-G. at the 3rd CERN–Latin-American School of High- Energy Physics, Malargüe, Argentina, 27 February–12 March 2005, at the 5th CERN–Latin-American School of High-Energy Physics, Medellín, Colombia, 15–28 March 2009, and at the 6th CERN–Latin- American School of High-Energy Physics, Natal, Brazil, 23 March–5 April 2011. The audience on all three occasions was composed to a large extent of students in experimental high-energy physics with an important minority of theorists. In nearly ten hours it is quite difficult to give a reasonable introduction to a subject as vast as quantum field theory. For this reason the lectures were intended to provide a review of those parts of the subject to be used later by other lecturers. Although a cursory acquaintance with the subject of quantum field theory is helpful, the only requirement to follow the lectures is a working knowledge of quantum mechanics and special relativity. The guiding principle in choosing the topics presented (apart from serving as introductions to later courses) was to present some basic aspects of the theory that present conceptual subtleties.
    [Show full text]
  • Electromagnetic Field Theory
    Electromagnetic Field Theory BO THIDÉ Υ UPSILON BOOKS ELECTROMAGNETIC FIELD THEORY Electromagnetic Field Theory BO THIDÉ Swedish Institute of Space Physics and Department of Astronomy and Space Physics Uppsala University, Sweden and School of Mathematics and Systems Engineering Växjö University, Sweden Υ UPSILON BOOKS COMMUNA AB UPPSALA SWEDEN · · · Also available ELECTROMAGNETIC FIELD THEORY EXERCISES by Tobia Carozzi, Anders Eriksson, Bengt Lundborg, Bo Thidé and Mattias Waldenvik Freely downloadable from www.plasma.uu.se/CED This book was typeset in LATEX 2" (based on TEX 3.14159 and Web2C 7.4.2) on an HP Visualize 9000⁄360 workstation running HP-UX 11.11. Copyright c 1997, 1998, 1999, 2000, 2001, 2002, 2003 and 2004 by Bo Thidé Uppsala, Sweden All rights reserved. Electromagnetic Field Theory ISBN X-XXX-XXXXX-X Downloaded from http://www.plasma.uu.se/CED/Book Version released 19th June 2004 at 21:47. Preface The current book is an outgrowth of the lecture notes that I prepared for the four-credit course Electrodynamics that was introduced in the Uppsala University curriculum in 1992, to become the five-credit course Classical Electrodynamics in 1997. To some extent, parts of these notes were based on lecture notes prepared, in Swedish, by BENGT LUNDBORG who created, developed and taught the earlier, two-credit course Electromagnetic Radiation at our faculty. Intended primarily as a textbook for physics students at the advanced undergradu- ate or beginning graduate level, it is hoped that the present book may be useful for research workers
    [Show full text]
  • What Is the Dirac Equation?
    What is the Dirac equation? M. Burak Erdo˘gan ∗ William R. Green y Ebru Toprak z July 15, 2021 at all times, and hence the model needs to be first or- der in time, [Tha92]. In addition, it should conserve In the early part of the 20th century huge advances the L2 norm of solutions. Dirac combined the quan- were made in theoretical physics that have led to tum mechanical notions of energy and momentum vast mathematical developments and exciting open operators E = i~@t, p = −i~rx with the relativis- 2 2 2 problems. Einstein's development of relativistic the- tic Pythagorean energy relation E = (cp) + (E0) 2 ory in the first decade was followed by Schr¨odinger's where E0 = mc is the rest energy. quantum mechanical theory in 1925. Einstein's the- Inserting the energy and momentum operators into ory could be used to describe bodies moving at great the energy relation leads to a Klein{Gordon equation speeds, while Schr¨odinger'stheory described the evo- 2 2 2 4 lution of very small particles. Both models break −~ tt = (−~ ∆x + m c ) : down when attempting to describe the evolution of The Klein{Gordon equation is second order, and does small particles moving at great speeds. In 1927, Paul not have an L2-conservation law. To remedy these Dirac sought to reconcile these theories and intro- shortcomings, Dirac sought to develop an operator1 duced the Dirac equation to describe relativitistic quantum mechanics. 2 Dm = −ic~α1@x1 − ic~α2@x2 − ic~α3@x3 + mc β Dirac's formulation of a hyperbolic system of par- tial differential equations has provided fundamental which could formally act as a square root of the Klein- 2 2 2 models and insights in a variety of fields from parti- Gordon operator, that is, satisfy Dm = −c ~ ∆ + 2 4 cle physics and quantum field theory to more recent m c .
    [Show full text]
  • Statistics of a Free Single Quantum Particle at a Finite
    STATISTICS OF A FREE SINGLE QUANTUM PARTICLE AT A FINITE TEMPERATURE JIAN-PING PENG Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China Abstract We present a model to study the statistics of a single structureless quantum particle freely moving in a space at a finite temperature. It is shown that the quantum particle feels the temperature and can exchange energy with its environment in the form of heat transfer. The underlying mechanism is diffraction at the edge of the wave front of its matter wave. Expressions of energy and entropy of the particle are obtained for the irreversible process. Keywords: Quantum particle at a finite temperature, Thermodynamics of a single quantum particle PACS: 05.30.-d, 02.70.Rr 1 Quantum mechanics is the theoretical framework that describes phenomena on the microscopic level and is exact at zero temperature. The fundamental statistical character in quantum mechanics, due to the Heisenberg uncertainty relation, is unrelated to temperature. On the other hand, temperature is generally believed to have no microscopic meaning and can only be conceived at the macroscopic level. For instance, one can define the energy of a single quantum particle, but one can not ascribe a temperature to it. However, it is physically meaningful to place a single quantum particle in a box or let it move in a space where temperature is well-defined. This raises the well-known question: How a single quantum particle feels the temperature and what is the consequence? The question is particular important and interesting, since experimental techniques in recent years have improved to such an extent that direct measurement of electron dynamics is possible.1,2,3 It should also closely related to the question on the applicability of the thermodynamics to small systems on the nanometer scale.4 We present here a model to study the behavior of a structureless quantum particle moving freely in a space at a nonzero temperature.
    [Show full text]
  • Dirac Equation - Wikipedia
    Dirac equation - Wikipedia https://en.wikipedia.org/wiki/Dirac_equation Dirac equation From Wikipedia, the free encyclopedia In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it 1 describes all spin-2 massive particles such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity,[1] and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine details of the hydrogen spectrum in a completely rigorous way. The equation also implied the existence of a new form of matter, antimatter, previously unsuspected and unobserved and which was experimentally confirmed several years later. It also provided a theoretical justification for the introduction of several component wave functions in Pauli's phenomenological theory of spin; the wave functions in the Dirac theory are vectors of four complex numbers (known as bispinors), two of which resemble the Pauli wavefunction in the non-relativistic limit, in contrast to the Schrödinger equation which described wave functions of only one complex value. Moreover, in the limit of zero mass, the Dirac equation reduces to the Weyl equation. Although Dirac did not at first fully appreciate the importance of his results, the entailed explanation of spin as a consequence of the union of quantum mechanics and relativity—and the eventual discovery of the positron—represents one of the great triumphs of theoretical physics.
    [Show full text]
  • 5 the Dirac Equation and Spinors
    5 The Dirac Equation and Spinors In this section we develop the appropriate wavefunctions for fundamental fermions and bosons. 5.1 Notation Review The three dimension differential operator is : ∂ ∂ ∂ = , , (5.1) ∂x ∂y ∂z We can generalise this to four dimensions ∂µ: 1 ∂ ∂ ∂ ∂ ∂ = , , , (5.2) µ c ∂t ∂x ∂y ∂z 5.2 The Schr¨odinger Equation First consider a classical non-relativistic particle of mass m in a potential U. The energy-momentum relationship is: p2 E = + U (5.3) 2m we can substitute the differential operators: ∂ Eˆ i pˆ i (5.4) → ∂t →− to obtain the non-relativistic Schr¨odinger Equation (with = 1): ∂ψ 1 i = 2 + U ψ (5.5) ∂t −2m For U = 0, the free particle solutions are: iEt ψ(x, t) e− ψ(x) (5.6) ∝ and the probability density ρ and current j are given by: 2 i ρ = ψ(x) j = ψ∗ ψ ψ ψ∗ (5.7) | | −2m − with conservation of probability giving the continuity equation: ∂ρ + j =0, (5.8) ∂t · Or in Covariant notation: µ µ ∂µj = 0 with j =(ρ,j) (5.9) The Schr¨odinger equation is 1st order in ∂/∂t but second order in ∂/∂x. However, as we are going to be dealing with relativistic particles, space and time should be treated equally. 25 5.3 The Klein-Gordon Equation For a relativistic particle the energy-momentum relationship is: p p = p pµ = E2 p 2 = m2 (5.10) · µ − | | Substituting the equation (5.4), leads to the relativistic Klein-Gordon equation: ∂2 + 2 ψ = m2ψ (5.11) −∂t2 The free particle solutions are plane waves: ip x i(Et p x) ψ e− · = e− − · (5.12) ∝ The Klein-Gordon equation successfully describes spin 0 particles in relativistic quan- tum field theory.
    [Show full text]
  • The Heisenberg Uncertainty Principle*
    OpenStax-CNX module: m58578 1 The Heisenberg Uncertainty Principle* OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract By the end of this section, you will be able to: • Describe the physical meaning of the position-momentum uncertainty relation • Explain the origins of the uncertainty principle in quantum theory • Describe the physical meaning of the energy-time uncertainty relation Heisenberg's uncertainty principle is a key principle in quantum mechanics. Very roughly, it states that if we know everything about where a particle is located (the uncertainty of position is small), we know nothing about its momentum (the uncertainty of momentum is large), and vice versa. Versions of the uncertainty principle also exist for other quantities as well, such as energy and time. We discuss the momentum-position and energy-time uncertainty principles separately. 1 Momentum and Position To illustrate the momentum-position uncertainty principle, consider a free particle that moves along the x- direction. The particle moves with a constant velocity u and momentum p = mu. According to de Broglie's relations, p = }k and E = }!. As discussed in the previous section, the wave function for this particle is given by −i(! t−k x) −i ! t i k x k (x; t) = A [cos (! t − k x) − i sin (! t − k x)] = Ae = Ae e (1) 2 2 and the probability density j k (x; t) j = A is uniform and independent of time. The particle is equally likely to be found anywhere along the x-axis but has denite values of wavelength and wave number, and therefore momentum.
    [Show full text]
  • (Aka Second Quantization) 1 Quantum Field Theory
    221B Lecture Notes Quantum Field Theory (a.k.a. Second Quantization) 1 Quantum Field Theory Why quantum field theory? We know quantum mechanics works perfectly well for many systems we had looked at already. Then why go to a new formalism? The following few sections describe motivation for the quantum field theory, which I introduce as a re-formulation of multi-body quantum mechanics with identical physics content. 1.1 Limitations of Multi-body Schr¨odinger Wave Func- tion We used totally anti-symmetrized Slater determinants for the study of atoms, molecules, nuclei. Already with the number of particles in these systems, say, about 100, the use of multi-body wave function is quite cumbersome. Mention a wave function of an Avogardro number of particles! Not only it is completely impractical to talk about a wave function with 6 × 1023 coordinates for each particle, we even do not know if it is supposed to have 6 × 1023 or 6 × 1023 + 1 coordinates, and the property of the system of our interest shouldn’t be concerned with such a tiny (?) difference. Another limitation of the multi-body wave functions is that it is incapable of describing processes where the number of particles changes. For instance, think about the emission of a photon from the excited state of an atom. The wave function would contain coordinates for the electrons in the atom and the nucleus in the initial state. The final state contains yet another particle, photon in this case. But the Schr¨odinger equation is a differential equation acting on the arguments of the Schr¨odingerwave function, and can never change the number of arguments.
    [Show full text]
  • The S-Matrix Formulation of Quantum Statistical Mechanics, with Application to Cold Quantum Gas
    THE S-MATRIX FORMULATION OF QUANTUM STATISTICAL MECHANICS, WITH APPLICATION TO COLD QUANTUM GAS A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Pye Ton How August 2011 c 2011 Pye Ton How ALL RIGHTS RESERVED THE S-MATRIX FORMULATION OF QUANTUM STATISTICAL MECHANICS, WITH APPLICATION TO COLD QUANTUM GAS Pye Ton How, Ph.D. Cornell University 2011 A novel formalism of quantum statistical mechanics, based on the zero-temperature S-matrix of the quantum system, is presented in this thesis. In our new formalism, the lowest order approximation (“two-body approximation”) corresponds to the ex- act resummation of all binary collision terms, and can be expressed as an integral equation reminiscent of the thermodynamic Bethe Ansatz (TBA). Two applica- tions of this formalism are explored: the critical point of a weakly-interacting Bose gas in two dimensions, and the scaling behavior of quantum gases at the unitary limit in two and three spatial dimensions. We found that a weakly-interacting 2D Bose gas undergoes a superfluid transition at T 2πn/[m log(2π/mg)], where n c ≈ is the number density, m the mass of a particle, and g the coupling. In the unitary limit where the coupling g diverges, the two-body kernel of our integral equation has simple forms in both two and three spatial dimensions, and we were able to solve the integral equation numerically. Various scaling functions in the unitary limit are defined (as functions of µ/T ) and computed from the numerical solutions.
    [Show full text]
  • 13 the Dirac Equation
    13 The Dirac Equation A two-component spinor a χ = b transforms under rotations as iθn J χ e− · χ; ! with the angular momentum operators, Ji given by: 1 Ji = σi; 2 where σ are the Pauli matrices, n is the unit vector along the axis of rotation and θ is the angle of rotation. For a relativistic description we must also describe Lorentz boosts generated by the operators Ki. Together Ji and Ki form the algebra (set of commutation relations) Ki;Kj = iεi jkJk − ε Ji;Kj = i i jkKk ε Ji;Jj = i i jkJk 1 For a spin- 2 particle Ki are represented as i Ki = σi; 2 giving us two inequivalent representations. 1 χ Starting with a spin- 2 particle at rest, described by a spinor (0), we can boost to give two possible spinors α=2n σ χR(p) = e · χ(0) = (cosh(α=2) + n σsinh(α=2))χ(0) · or α=2n σ χL(p) = e− · χ(0) = (cosh(α=2) n σsinh(α=2))χ(0) − · where p sinh(α) = j j m and Ep cosh(α) = m so that (Ep + m + σ p) χR(p) = · χ(0) 2m(Ep + m) σ (pEp + m p) χL(p) = − · χ(0) 2m(Ep + m) p 57 Under the parity operator the three-moment is reversed p p so that χL χR. Therefore if we 1 $ − $ require a Lorentz description of a spin- 2 particles to be a proper representation of parity, we must include both χL and χR in one spinor (note that for massive particles the transformation p p $ − can be achieved by a Lorentz boost).
    [Show full text]
  • Harmonic Oscillator: Motion in a Magnetic Field
    Harmonic Oscillator: Motion in a Magnetic Field * The Schrödinger equation in a magnetic field The vector potential * Quantized electron motion in a magnetic field Landau levels * The Shubnikov-de Haas effect Landau-level degeneracy & depopulation The Schrödinger Equation in a Magnetic Field An important example of harmonic motion is provided by electrons that move under the influence of the LORENTZ FORCE generated by an applied MAGNETIC FIELD F ev B (16.1) * From CLASSICAL physics we know that this force causes the electron to undergo CIRCULAR motion in the plane PERPENDICULAR to the direction of the magnetic field * To develop a QUANTUM-MECHANICAL description of this problem we need to know how to include the magnetic field into the Schrödinger equation In this regard we recall that according to FARADAY’S LAW a time- varying magnetic field gives rise to an associated ELECTRIC FIELD B E (16.2) t The Schrödinger Equation in a Magnetic Field To simplify Equation 16.2 we define a VECTOR POTENTIAL A associated with the magnetic field B A (16.3) * With this definition Equation 16.2 reduces to B A E A E (16.4) t t t * Now the EQUATION OF MOTION for the electron can be written as p k A eE e 1k(B) 2k o eA (16.5) t t t 1. MOMENTUM IN THE PRESENCE OF THE MAGNETIC FIELD 2. MOMENTUM PRIOR TO THE APPLICATION OF THE MAGNETIC FIELD The Schrödinger Equation in a Magnetic Field Inspection of Equation 16.5 suggests that in the presence of a magnetic field we REPLACE the momentum operator in the Schrödinger equation
    [Show full text]
  • Formulation of Einstein Field Equation Through Curved Newtonian Space-Time
    Formulation of Einstein Field Equation Through Curved Newtonian Space-Time Austen Berlet Lord Dorchester Secondary School Dorchester, Ontario, Canada Abstract This paper discusses a possible derivation of Einstein’s field equations of general relativity through Newtonian mechanics. It shows that taking the proper perspective on Newton’s equations will start to lead to a curved space time which is basis of the general theory of relativity. It is important to note that this approach is dependent upon a knowledge of general relativity, with out that, the vital assumptions would not be realized. Note: A number inside of a double square bracket, for example [[1]], denotes an endnote found on the last page. 1. Introduction The purpose of this paper is to show a way to rediscover Einstein’s General Relativity. It is done through analyzing Newton’s equations and making the conclusion that space-time must not only be realized, but also that it must have curvature in the presence of matter and energy. 2. Principal of Least Action We want to show here the Lagrangian action of limiting motion of Newton’s second law (F=ma). We start with a function q mapping to n space of n dimensions and we equip it with a standard inner product. q : → (n ,(⋅,⋅)) (1) We take a function (q) between q0 and q1 and look at the ds of a section of the curve. We then look at some properties of this function (q). We see that the classical action of the functional (L) of q is equal to ∫ds, L denotes the systems Lagrangian.
    [Show full text]