Gram's Stain Pack

Total Page:16

File Type:pdf, Size:1020Kb

Gram's Stain Pack Gram’s Stain Pack HS800 Instructions for use v1 06.03.2015 Product identity (name) Intended Use HS800F, HS800NR, HS800S Gram’s Stain Pack IVD, for professional use only. (synonyms: None) CAS-No: N/A Type (s) of material Pack Size 4 x 250ml Air dried heat fixed bacterial smears from culture or tissue sections. The culture can come from a thick Product composition suspension of a liquid culture or a pure colony from a plate suspended in water. 1. HS232 - Crystal Violet Oxalate 250ml Contains: ~1% methanol (CAS-No 67-56-1); Suggested Staining Procedure 1, 2 <2% crystal violet (CAS-No 548-62-9 ) <20% ethanol (CAS-No 64-17-5 ) Principle: The method is named after its inventor, the Danish scientist Hans Christian Gram (1853–1938). Gram staining differentiates bacteria by the chemi- 2. HS305X - Gram’s Iodine Diluent 240ml cal and physical properties of their cell walls by de- 3. HS305Y - Gram’s Iodine Concentrate 10ml tecting peptidoglycan, which is present in a thick 4. HS310 - Gram’s Decolouriser 250ml layer in Gram-positive bacteria. Contains: 75% acetone (CAS-No 67-64-1); In the Gram stain, Gram-positive bacteria retain the 25% Iso-Propanol (CAS-No 67-63-0) crystal violet oxalate dye, while the counterstain (Safranin, Carbol fuchsin or Neutral red ) added after the crystal violet oxalate gives all Gram- negative bacteria a red or pink colouring. 5. i) HS160 - Carbol Fuchsin (Counterstain) 250ml Handling and treatment before staining: Contains: <0.1% methanol (CAS-No 67-56-1); Prepare thin smears using a loopful of a pure cul- <1% phenol (CAS No 108-95-2) ture on grease free slides. Air dry and heat fix. Important Note for Gram’s Iodine HS305X+Y: or The 10ml Gram’s Iodine Concentrate HS305Y must be added to the 240ml Diluent HS305X and mixed ii) HS570 - Neutral Red (Counterstain) 250ml well before use to make 250ml Gram’s Iodine or HS305X+Y. iii) HS720 - Safranin (Counterstain) 250ml Technique: For further information see SDS. 1. Flood the heat fixed smears with Crystal Violet Oxalate (HS232). Allow to stain for up to 1 minute. Handling and storage 2. Wash with tap water. Store in a dry, well-ventilated place and use before 3. Stain with Gram’s Iodine (HS305X+Y) for 1 expiry date. minute. Stable when kept in tightly stoppered plastic bottles 4. Wash with tap water. away from heat and at room temperature. 5. Decolourise with Gram’s Decolouriser (HS310) until no further stain runs from the slide. Page 1 of 2 TCS Biosciences Ltd, Botolph Claydon, Buckingham, MK18 2LR United Kingdom t: +44 (0)1296 714 222, f: +44 (0)1296 714 806, e: [email protected] www.tcsbiosciences.co.uk Gram’s Stain Pack HS800 Instructions for use v1 06.03.2015 Technique continued: stain is the decolourising step. Over- 6. Wash thoroughly with tap water. decolourising will lead to an erroneous result where 7. Counterstain with Safranin O (HS720); Neutral Gram-positive cells may stain pink to red indicating Red (HS570); or Carbol Fuchsin (HS160) for a Gram-negative result, and under-decolourising up to 1 minute will lead to an erroneous result where Gram- 8. Wash, air dry and examine. negative cells may appear blue to purple indicating a Gram-positive result. Expected Results 1, 2 It is important to recognise that not all species of As shown below, organisms that retain the violet- bacteria can be usefully stained by Gram's method. iodine complexes after washing in decolouriser Some species are Gram variable and some are stain purple and are termed Gram-positive. Those called Gram indeterminant. that lose the violet iodine complexes are termed If more or less intense staining is required the times Gram negative. of immersion in the various solutions should be al- tered accordingly. Users must determine the suitability of the kit for their particular use. Bibliography 1. Bergey, David H.; John G. Holt; Noel R. Krieg; Peter H.A. Sneath (1994). Bergey's Manual of Determinative Bacteriology (9th ed.). Lippincott Williams & Wilkins. ISBN 0-683-00603-7. 2. Beveridge, T.J (March 1990). "Mechanism of Gram variability in select bacteria". Journal of Bacteriology 172 (3): 1609–20. Additional Information The thickness of the smear used in the Gram stain will affect the result of the stain. The step that is most crucial in affecting the outcome of the European conformity according to the "IN-VITRO DIAGNOSTIC MEDICAL DEVICES DIRECTIVE 98/79/EC, ANNEX III". Manufactured by TCS Biosciences Ltd. Page 2 of 2 IFU HS800 06.03.2015 V1 .
Recommended publications
  • Gst Gram Staining Learning Objectives the Student Will  Use Aseptic Techniques in the Safe Inoculation of Various Forms of Media
    GSt Gram Staining Learning Objectives The student will Use aseptic techniques in the safe inoculation of various forms of media. Follow oral and written instructions and manage time in the lab efficiently. Use the bright field light microscope to view microbes under oil immersion, make accurate observations and appropriate interpretations and store the microscope according to lab procedures. Properly prepare a bacterial smear for accurate staining and describe the chemical basis for simple staining and negative staining. Background/Theory Differential staining distinguishes organisms based on their interactions with multiple stains. In other words, two organisms may appear to be different colors. Differential staining techniques commonly used in clinical settings include Gram staining, acid-fast staining, endospore staining, flagella staining, and capsule staining. This link to the OpenStax Microbiology text provides more detail on these differential staining techniques. (OpenStax CNX, 2018) The Gram stain is a differential staining procedure that involves multiple steps. It was developed by Danish microbiologist Hans Christian Gram in 1884 as an effective method to distinguish between bacteria containing the two most common types of cell walls. (OpenStax CNX, 2018) One type consists of an inner plasma membrane and a thick outer layer of peptidoglycan. The other type consists of a double phospholipid Figure 1 Simplified structures of Gram negative cells (left) and Gram positive bilayer with a thin layer of cells (right) peptidoglycan between the two. The Gram Staining technique remains one of the most frequently used staining techniques. The steps of the Gram stain procedure are listed below and illustrated in Figure. (OpenStax CNX, 2018) 1.
    [Show full text]
  • The Suitability of Certain Stains 3R Studying Lignification in Balsam Fir, Ibies Balsamea (L.) Mill
    The suitability of certain stains 3r studying lignification in balsam fir, ibies balsamea (L.) Mill Kutscha and Gray Technical bulletin 53 March 1972 Life Sciences and Agriculture Experiment Station Cover photo: Safranin and aniline blue, showing blue unlignified cambium (top of photo) and contrasting red lignified tissue (lower part of photo). Imma­ ture, secondary walls appear blue-blue green and can be seen approximately five to eight cells down from the cambial region. Section of FAA-killed and celloidm embedded compression wood sample collected July 6, 1966; X 320. ABSTRACT An investigation was conducted to examine the suitability of ten staining reactions for studying lignification in balsam fir, Abies balsamea (L.) Mill. Two experiments were carried out on material collected on two different dates. In each experiment slides of fresh, FAA-killed and FAA-killed celloldin-embedded material of normal and compression wood were stained and evaluated. No significant difference in staining reactions was found between material collected on different dates. In each experiment, the embedded material showed somewhat superior results compared with the fresh and FAA-killed material with at least half of the stains. No marked difference was observed between normal and compression wood. This study emphasized the need for considsring each of the ten staining reactions on an individual basis, since each has particular ad­ vantages and disadvantages as emphasized throughout the study. Stain­ ing schedules were prepared and tables compiled to determine
    [Show full text]
  • Revisions Inserts Rev from Rev to JOB
    BALTSO0191 Version 11.0 Template 4 Revisions Inserts Rev from Rev to JOB # 06 07 52-17 Notes: 1. BD Catalog Number: 212525, 212526, 212527, 212528, 212531, 212532, 212539, 212542, 212543, 212544, 212545 2. Blank (Sheet) Size: Length: 25.5” Width: 22” 3. Number of Pages: 28 Number of Sheets: 1 4. Page Size: Length: 8.5” Width: 5.5” Final Folded Size: 4.25” x 5.5” 5. Ink Colors: No. of Colors: 2 PMS#: 032 Red; Standard Black 6. Printed two sides: Yes X No 7. Style (see illustrations below): # 5 W W W W W W W 8. Vendor Printed X Online/In House Printed Web 9. See specication control no. N/A for material information. 10. Graphics are approved by Becton, Dickinson and Company. Supplier has the responsibility for using the most current approved revision level. Label Design COMPANY CONFIDENTIAL. THIS DOCUMENT IS THE PROPERTY OF BECTON, DICKINSON AND Becton, Dickinson and Company Proofer COMPANY AND IS NOT TO BE USED OUTSIDE THE COMPANY WITHOUT WRITTEN PERMISSION. 7 Loveton Circle Sparks, MD 21152 USA Checked By Category and Description Sheet: 1 of 29 Part Number: Package Insert, 8820191JAA Gram Stain Kits and Reagents Scale: N/A A B Gram Stain Kits and Reagents English: pages 1 – 5 Italiano: pagine 14 – 18 8820191JAA(07) Français : pages 5 – 9 Español: páginas 19 – 23 2017-09 Deutsch: Seiten 10 – 14 Contact your local BD representative for instructions. / Свържете се с местния представител на BD за инструкзии. / Pokyny vám poskytne místní zástupce společnosti BD. / Kontakt den lokale BD repræsentant for at få instruktioner.
    [Show full text]
  • Carbol Fuchsin Acc. to Ziehl-Neelsen
    Rev.07– 27/10/2011 Carbol Fuchsin acc. to Ziehl-Neelsen Manufacturer: Diapath Via Savoldini,71- 24057 MARTINENGO- BG- PH+39.0363.986.411 [email protected] CODE PACKAGING C0421 125 ml C0422 500 ml C0423 1000 ml Description Carbol fuchsin solution is used for the staining of acid resistant bacteria in the Ziehl-Neelsen method (see, also special stain kit code 010201). This staining is suitable to highlight mycobacteria, Nocardia and parasites on histological sections, smears, excreta and cultures. The protocol is based on typical structure of acid resistant bacteria, which acquire and keep dyes so that following decolorizing treatments are possible. Dark blue background is obtained with Methylene blue. Composition Phenol CAS No. 108-95-2 EC No. 203-6327 Basic fuchsine CAS No. 58969-01-0 EC No. 221-816-5 C.I. 42510 Ethanol CAS No.64-17-5 EC No.20-578-6 Staining protocol Histological sections (Ziehl-Neelsen staining) 1. Dewax sections and hydrate to distilled water 2. Carbol fuchsin solution for 30 minutes 3. Wash very well in running cold water 4. Acid alcohol* till sections are pale pink 5. Water for 5 minutes 6. Methylene blue solution for 30 seconds 7. Distilled water 8. Dehydrate very quickly, clarify and mount *Acid alcohol: 100 ml of ethyl alcohol 70° + 3 ml hydrochloric acid Cytological specimens (Ziehl-Neelsen staining) 1. Carbol fuchsin for 30 minutes 2. Wash in distilled water 3. Acid alcohol* 10 seconds 4. Wash in distilled water 5. Methylene blue for 30 seconds 6. Distilled water 7. Dehydrate very quickly, clarify and mount NOTE: Methylene blue could cover the possible presence of acid resistant bacteria in the specimen.
    [Show full text]
  • Solarbio Science & Technology Co., Ltd Tel: 010-56371207 Solarbio Fax: 010-56371281/82
    Beijing Solarbio Science & Technology Co., Ltd Tel: 010-56371207 Fax: 010-56371281/82 Solarbio Http://www.solarbio.cn Neutral Red CAS Number: 553-24-2 Storage Temperature: 2-8 °C Product Description : Appearance: Fine dark green-black powder Molecular Formula: C15H17ClN4 Molecular Weight: 288.78 Synonyms: toluylene red, basic red 5 Neutral Red is a weak cationic azine dye that is used extensively as a nuclear stain in a variety of biological stain applications. It is a pH indicator as well, changing color from red to yellow over the pH range 6.8-8.0. It is also incorporated into bacteriological growth media. This product is often used for supravital staining of fresh peripheral blood. It can also be used for staining Nissl granules of neuroglial cells. However, this stain is not as permanent as another dye, Cresyl Violet acetate, for this application. Buffered 0.5% Neutral Red solutions are used as a counterstain for Naphthol AS acetate esterase, peroxidase and iron stains. Solutions can also be used to stain plankton for viability. Using 1 part Neutral Red to 10,000 parts sea water, dead cells were stained red and live cells remained unchanged. In addition, aqueous solutions of Neutral Red (0.1% in saline, pH 6.5) can be used as a fluorescent stain for lipids. Lipids will fluoresce blue-geen or yellow, depending on their composition. It has been used also as a Twort's stain for parasites in combination with Light Green SF, as a general histological stain for embryonic tissue in combination with Janus green,and for demostrating hydrolysis of fats.
    [Show full text]
  • STUDIES of MITOCHONDRIAL STAINING with PINACYANOLE, EMPLOYI}.TG YOSHIDA Ascittss SARCOMA CEI-L
    247 STUDIES OF MITOCHONDRIAL STAINING WITH PINACYANOLE, EMPLOYI}.TG YOSHIDA ASCITtsS SARCOMA CEI-L KryosARU TexrrAwA, Kyoreno Aen, Krsuro Kero, Tnnuo Yosnloa AND Kyorcnr MesurANr Department of Internal Meclictne, I(omatsujima RerI Cross Hospital (Chief : Dr. Riyoharu Takikau)a) 7st Departntent of Internal Medicine, Nagoya Uniuersity School of Medicine (Director : Prof . Susumu Hibino) Because of potent activities of respiratory enzymes found in isolated mito- chondria, morphological changes in mitochondria have again attracted attention as indicative of cell's functional potentialities. Mitochondria in the cell can be visualized by employing, 1) Altmann's stain- ing method or Heidenhain's iron hematoxylin stain on fixed preparations, 2) the supravital staining method using Janus green, and recently 3) the supravital observation by means of the phase contrast microscope. Among these, the supravital method with Janus green is widely employed because of its simplicity and high specificity. But this Janus green method is not free from faults : namely difficulty in differentiating the types of cells and quick fading of the stained mitochondria. In 1936 Hetheringtonl) introduced a dyestuff named pinacyanole into the su- pravital staining method of mitochondria, and this method has been investigated by J. L. Schwind,2) showing that nuclei are stained supravitally and the types of cells are easily differentiated, stainability of neutral red vacuoleg is not dis- turbed and the colored mitochondria do not fade away for several hours. This pinacyanole (Consolidated Midland Corporation) and vital neutral red have been obtained lately, and we are discussing the usefulness of the former dyestuff in the study of mitochondria, comparing it with the above-mentioned various mitochondrial methods, and the nature of its staining mechanism.
    [Show full text]
  • GRAM STAIN REAGENTS - for in Vitro Use Only - Catalogue No
    GRAM STAIN REAGENTS - For in vitro use only - Catalogue No. SG51-55 Our Gram-Stain Reagents are intended to be The last step is the application of a counterstain. The used as a differential stain for the microscopic most common counterstain is safranin, which colors examination of bacterial cultures and laboratory decolorized cells pink. An alternate counterstain is basic specimens. fuchsin, which gives the decolorized cells more of a Gram staining is the single most useful test in bright pink or fuchsia coloration. The basic fuchsin the microbiology laboratory given its simplicity and counterstain works particularly well for anaerobic ability to differentiate bacteria into two main bacteria, but poorly for Legionella and Bordetella groups: gram-positive organisms and gram negative species. organisms. Hans Christian Joachim Gram first devised the original procedure in the late 19 th century, and although modifications have since been Formulation per Litre made, the basic principles and results remain the same. Our formulation is often referred to as the SG51 Gram Crystal Violet Hucker Modification. The staining spectrum includes almost all Crystal Violet ................................................ 20.0 g bacteria, many fungi, and parasites such as Ammonium Oxalate ....................................... 8.0 g Trichomonas , Strongyloides , and protozoan cysts. Methanol ................................................. 200.0 mL The notable exceptions include intracellular pathogens such as Chlamydia and Rickettsia , and SG52 Gram Iodine those organisms lacking a true cell wall such as Mycobacterium , Mycoplasma , and Ureaplasma . Iodine Crystals .............................................. 3.33 g The differential properties of the staining Potassium Iodide ........................................... 6.67 g process are attributed to the differences in composition between gram-positive and gram- SG53 Gram Decolorizer negative cell walls.
    [Show full text]
  • How to Construct and Use a Simple Device to Prevent the Formation of Precipitates When Using Sudan Black B for Histology
    Acta Botanica Brasilica 29(4): 489-498. 2015. doi: 10.1590/0102-33062015abb0093 How to construct and use a simple device to prevent the formation of precipitates when using Sudan Black B for histology João Marcelo Santos de Oliveira1 Received: April 17, 2015. Accepted: July 1, 2015 ABSTRACT The present work aims to demonstrate the stages of fabrication and use of a simple device to avoid the formation or fixa- tion of precipitates from Sudan Black B solution on tissues. The device consists of four coverslip fragments attached to a histology slide, which serve as points of support for the histological slide under analysis. To work properly, the histology slide with the sections should be placed with the sections facing downwards the device. A small space between the device and the histology slide is thereby created by the height of the coverslip fragments. When Sudan Black B is applied, the solution is maintained within the edges of the device and evaporation is minimized by the small space, thereby reducing the consequent formation of precipitates. Furthermore, by placing the sections facing downward the device, any sporadically formed precipitates are prevented from settling on and fixing to the sectioned tissues or organs. By avoiding the formation of precipitates, plant cells, tissues and organs can be better observed, diagnosed and photomicrographically recorded. Keywords: histochemical tests, histology, lipids, plant anatomy, Sudan Black B Introduction for organic solvents, printer ink, varnishes, resins, oils, fats, waxes, cosmetics and contact lenses. Sudan reagents, including the traditional Sudan III, IV Lansink (1968) isolated two pure fractions of Sudan and Sudan Black B (SBB), are widely utilized to determine Black B, in addition to impurities, and denominated them lipids (Horobin 2002) in animals, plants and hydrophobic SBB-I and SBB-II.
    [Show full text]
  • CARBOL FUCHSIN STAIN (ZIEHL-NEELSEN) - for in Vitro Use Only - Catalogue No
    CARBOL FUCHSIN STAIN (ZIEHL-NEELSEN) - For in vitro use only - Catalogue No. SC24K Our Carbol Fuchsin (Ziehl-Neelsen) Stain is Formulation per 100 mL used in the microscopic detection of acid-fast microorganisms such as Mycobacterium . SC25 Carbol Fuchsin Stain (Ziehl-Zeelsen) Acid-fast organisms such as Mycobacterium Basic Fuchsin ..................................................... 0.3 g have cell walls that are resistant to conventional Phenol ................................................................ 5.0 g staining by aniline dyes such as the Gram stain. Ethanol ............................................................ 10 mL However methods that promote the uptake of dyes De-ionized Water ............................................. 90 mL are available; once stained these organisms are not easily decolorized even with acid-alcohol or acid- SC26 Carbol Fuchsin Decolorizer acetone solutions therefore they are described as Hydrochloric Acid .......................................... 3.0 mL acid-fast. Their resistance to destaining is a useful Ethanol .......................................................... 97.0 mL characteristic in differentiating these organisms from contaminating organisms and host cells. SC27 Carbol Fuchsin Counterstain (Methylene Blue) The Ziehl-Neelsen staining procedure is often Methylene Blue ................................................. 0.3 g referred to as hot carbolfuchsin because of the need De-ionized Water ............................................100 mL to apply heat during the staining
    [Show full text]
  • AFB Smear Microscopy
    AFB Smear Microscopy 1 Terminology • AFB Smear Microscopy: Microscopic examination of specially stained smears to detect acid-fast organisms such as Mycobacterium tuberculosis and non- tuberculous mycobacteria (NTM) • Acid Fast Bacilli (AFB): organisms (including mycobacteria) that resist decolorization with acid alcohol due to the lipid-rich mycolic acids in the cell wall thereby retaining the primary stain 2 Terminology • Processing: digestion, decontamination, and/or concentration of a primary patient specimen prior to setting up culture and smear • Smear: A small amount of primary patient specimen (direct or processed) is placed on a slide for the purpose of microscopic examination 3 AFB Microscopy • Examination of smears is a rapid, convenient and inexpensive test • All types of specimens can be evaluated – sputum, tissue, body fluids, etc. • Positive AFB smear results provide a first indication of mycobacterial infection and potential TB disease • Must be accompanied by additional testing including culture for confirmatory diagnosis 4 AFB Microscopy Results Guide Decisions • Clinical management – Patient therapy may be initiated for TB based on smear result and clinical presentation – Changes in smear status important for monitoring response to therapy • Laboratory testing – Algorithms for use of nucleic acid amplification tests are often based on smear positivity • Public health interventions – Smear status and grade useful for identifying the most infectious cases – Contact investigations prioritized based on smear result – Decisions regarding respiratory isolation based on smear result 5 Smear-positive TB Cases • Smear-positivity and grade indicates relative bacterial burden and correlates with disease presentation • Patients that are sputum smear-positive are 5–10 times more infectious than smear negative patients • Untreated or treated with an inappropriate regimen, a sputum smear-positive patient may infect 10-15 persons/year 6 Sputum Smear Results • In 2010, 43% of pulmonary TB cases in the U.S.
    [Show full text]
  • ||||||||||||III USO0575109A United States Patent (19) 11) Patent Number: 5,175,109 Sakata Et Al
    ||||||||||||III USO0575109A United States Patent (19) 11) Patent Number: 5,175,109 Sakata et al. (45) Date of Patent: " Dec. 29, 1992 54 REAGENT FOR CLASSIFYING 4,666.82 5/1987 Wiedemann et al. ................. 430/78 LEUKOCYTES BY FLOW CYTOMETRY 4,751,179 6/1988 Ledis et al. ........... ... 424/3 X 4,751,188 6/1988 Valet ............. 436/10 X 4.760.006 7/1988 Pawlowski ............................ 430/78 75) Inventors: Takashi Sakata; Tomoyuki Kuroda, both of Kakogawa, Japan 4.882,284 1 1/1989 Kirchanski et al. .. ... 436/63 73 Assignee: Toa Medical Electronics Co., Ltd., 4,933,293 6/1990 Kuroda et al. ........................ 436/63 Kobe, Japan FOREIGN PATENT DOCUMENTS *) Notice: The portion of the term of this patent O086951 8/1983 European Pat. Off. subsequent to Jun. 12, 2007 has been 1560729 2/1980 France . disclaimed. 55-18860 5/1980 Japan . (21) Appl. No.: 663,090 OTHER PUBLICATIONS Kamentsky, Blood Cells, 6, 121-140 (1980). (22 Filed: Feb. 28, 1991 Shapiro et al., J. Histochem. Cytochem., 24, 396-41 1, Related U.S. Application Data (1976). Shapiro et al., J. Histochem. Cytochem., 25, 976–989 63 Continuation of Ser. No. 91.663, Sep. 1, 1987, aban (1977). doned. Colour Index, vol. 4, published by The Society of Dyers (30) Foreign Application Priority Data and Colourists, pp. 4417-4459 (1971). Sep. 10, 1986 JP Japan ................................ 6-21376 Steinkamp, "Flow Cytometry," Rey. Sci. Instrum... pp. Nov. 27, 1986 JP Japan ................................ 6.-28.2697 1375-1400 (1974). W. Groner & D. Tycko, "Characterizing Blooc Cells 51) Int. Cl. .............................................. C09K11/06 52) U.S.
    [Show full text]
  • DIFFERENTIAL STAINING, Part I
    DIFFERENTIAL STAINING, Part I Differential staining is a procedure that takes advantage of differences in the physical and chemical properties of different groups of bacteria. It allows us to differentiate between different kinds of bacterial cells or different parts of a bacterial cell. I. GRAM STAIN The most commonly used differential stain is the Gram stain, first described in 1884 by Christian Gram, a Danish physician. The Gram reaction divides bacteria into two groups, those which are Gram-positive and those which are Gram-negative. Those organisms which retain the primary stain (crystal violet) are stained purple and are designated Gram-positive; those which lose the crystal violet and are subsequently stained by a safranin counterstain appear red and are designated Gram-negative. The conventional Gram-stain technique is described in the Procedure part of this handout; however, it is important to recognize early on that two aspects of the procedure are crucial: 1. The crystal violet treatment must precede iodine treatment. Iodine acts as a mordant, i.e., it increases the affinity of the cells for the crystal violet. Iodine alone has no bacterial staining capabilities. 2. Decolorization must be short and precise. Too long an exposure to 95% alcohol will decolorize Gram-positive as well as Gram-negative cells. The Gram stain has been used as a taxonomic tool for many years, aiding in the classification and identification of bacterial cells. However, it is also useful in a broader sense, as there appears to be a close correlation between the Gram reaction and many other morphological and physiological characteristics of bacterial cells.
    [Show full text]