(Myri. Cer.) Botanical Name : Myrica Cerifera Linn. Family

Total Page:16

File Type:pdf, Size:1020Kb

(Myri. Cer.) Botanical Name : Myrica Cerifera Linn. Family MYRICA CERIFERA (Myri. cer.) Botanical name : Myrica cerifera Linn. Family: Myricaceae Common names : English: Wax-myrtle; French: Arbre a’suif; German: Wachsbaum. Description : A slender tree; bark grey, nearly smooth. Leaves narrow, oblong or oblanceolate, mostly acute at the apex, entire or sparingly dentate, narrowest or somewhat cuneate at the base, fragrant when crushed, short petioled, dark green above, paler and sometimes pubescent beneath, golden- resinous, unfolding with or before the aments; staminate aments cylindrical, pistillate aments; shortly oblong; ripe drupes separated, globose, bluish-white, waxy, less than 2.5 cm in diameter, tipped with minute base of style, bracts and bractlets deciduous. Macroscopical : Bark in pieces of varying length and breadth; usually 2.5 cm or less in length rarely upto 5 mm broad; outer surface either silver-grey, reddish- brown or greyish-brown, scaly in rhizome and root barks, bearing occasional warts or slight ridges; fracture short, weak and uneven; fractured surface brown with short projecting fibres near or along inner border of root bark. Microscopical : Cork of several layers, irregular, brick-shaped cells, which vary in staining capacity. Many have highly suberised walls but some have all walls lignified, while other shows lignification only on their inner walls. Phellogen of meristmetic cells usually collapsed. Secondary cortex cells are tangentially elongated and smallest in outer most portions, becoming larger as 1 passed towards phloem. Inner layers show numerous air spaces. Endodermis is like those of adjacent cortex. Phloems are comparatively broad zone of irregular phloem patches, medullary rays, often broaden out towards the cortex in fan-shaped fashion. Habitat : Along the Atlantic Coast from Florida northward. Found in sandy soils and near the seashore. In the South, it is a small evergreen tree, in New Jersy a tall semi-deciduous tree and in the north small dwarf and deciduous. History and authority : Introduced in Homoeopathy after the proving were published in Trans. Mass. Hom. Med. Soc. II, 397 in 1864. Allen’s Encyclop. Mat. Med. Vol. VI, 432. Part used : The bark of the root. Preparation : (a) Mother Tincture φ Drug strength 1/10 Myrica Cerifera in coarse powder 100 g Purified Water 233 ml Strong Alcohol 797 ml to make one thousand millilitres of the Mother Tincture. (b) Potencies: 2x to contain one part tincture, two parts Purified Water and seven parts Strong Alcohol. 3x and higher with Dispensing Alcohol. Old method : Class III .
Recommended publications
  • Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
    Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both.
    [Show full text]
  • Invasive Trees of Georgia Pub10-14
    Pub. No. 39 October 2016 Invasive Trees of Georgia by Dr. Kim D. Coder, Professor of Tree Biology & Health Care Warnell School of Forestry & Natural Resources, University of Georgia Georgia has many species of trees. Some are native trees and some have been introduced from outside the state, nation, or continent. Most of Georgia’s trees are well- behaved and easily develop into sustainable shade and street trees. A few tree species have an extrodinary ability to upsurp resources and take over sites from other plants. These trees are called invasive because they effectively invade sites, many times eliminat- ing other species of plants. There are a few tree species native to Georgia which are considered invasive in other parts of the country. These native invasives, may be well-behaved in Georgia, but reproduce and take over sites elsewhere, and so have gained an invasive status from at least one other invasive species list. Table 1. There are hundreds of trees which have been introduced to Georgia landscapes. Some of these exotic / naturalized trees are considered invasive. The selected list of Georgia invasive trees listed here are notorious for growing rampantly and being difficult to eradicate. Table 2. Table 1: Native trees considered invasive in other parts of the country. scientific name common name scientific name common name Acacia farnesiana sweet acacia Myrica cerifera Southern bayberry Acer negundo boxelder Pinus taeda loblolly pine Acer rubrum red maple Populus deltoides Eastern cottonwood Fraxinus americana white ash Prunus serotina black cherry Fraxinus pennsylvanica green ash Robinia pseudoacacia black locust Gleditsia triacanthos honeylocust Toxicodendron vernix poison sumac Juniperus virginiana eastern redcedar The University of Georgia is committed to principles of equal opportunity and affirmative action.
    [Show full text]
  • Waxmyrtle-- a Shrub for a Natural Riparian Buffer
    Waxmyrtle-- A Shrub for a Natural Riparian Buffer By Susan Camp When you live on a tidal creek or river, as do many of us on the Middle Peninsula, you bear a special responsibility to maintain a healthy interface between land and water. The plants that grow along a shoreline help to protect the adjacent waterway from erosion and pollutants, and they provide valuable habitat for the wildlife that live and feed along the banks. Jim and I are fortunate to live on property that was left in a natural state by the previous owners, and we have maintained the banks for 25 years with a minimum amount of labor and no expense. The native trees, shrubs, and grasses along the water’s edge maintain themselves with minor pruning of dead wood, trimming of greenbriers, and eradication of poison ivy. One of my favorite native shrubs is waxmyrtle (Myrica cerifera or Morella cerifera), also called southern waxmyrtle or southern bayberry. Waxmyrtle is a small tree or large, multi-trunked, fast- growing shrub, depending on how it is pruned. Waxmyrtle produces numerous suckers that lend the shrub an irregular, leggy appearance, but it can be maintained with a single trunk. Waxmyrtle is found from New Jersey south to Mexico, Central America and the Caribbean, and west to Texas and Oklahoma, surviving in a wide range of environments from wet swamps to elevated forestland, although it is most often found in marshes and along tidal creeks and stream banks. The shrub grows well in USDA Hardiness Zones 6b to 11. It is evergreen where winters are mild, but is classified as semi-evergreen in colder environments, which means it will lose its leaves when the temperature drops below 0 F.
    [Show full text]
  • Texas Big Tree Registry a List of the Largest Trees in Texas Sponsored by Texas a & M Forest Service
    Texas Big Tree Registry A list of the largest trees in Texas Sponsored by Texas A & M Forest Service Native and Naturalized Species of Texas: 320 ( D indicates species naturalized to Texas) Common Name (also known as) Latin Name Remarks Cir. Threshold acacia, Berlandier (guajillo) Senegalia berlandieri Considered a shrub by B. Simpson 18'' or 1.5 ' acacia, blackbrush Vachellia rigidula Considered a shrub by Simpson 12'' or 1.0 ' acacia, Gregg (catclaw acacia, Gregg catclaw) Senegalia greggii var. greggii Was named A. greggii 55'' or 4.6 ' acacia, Roemer (roundflower catclaw) Senegalia roemeriana 18'' or 1.5 ' acacia, sweet (huisache) Vachellia farnesiana 100'' or 8.3 ' acacia, twisted (huisachillo) Vachellia bravoensis Was named 'A. tortuosa' 9'' or 0.8 ' acacia, Wright (Wright catclaw) Senegalia greggii var. wrightii Was named 'A. wrightii' 70'' or 5.8 ' D ailanthus (tree-of-heaven) Ailanthus altissima 120'' or 10.0 ' alder, hazel Alnus serrulata 18'' or 1.5 ' allthorn (crown-of-thorns) Koeberlinia spinosa Considered a shrub by Simpson 18'' or 1.5 ' anacahuita (anacahuite, Mexican olive) Cordia boissieri 60'' or 5.0 ' anacua (anaqua, knockaway) Ehretia anacua 120'' or 10.0 ' ash, Carolina Fraxinus caroliniana 90'' or 7.5 ' ash, Chihuahuan Fraxinus papillosa 12'' or 1.0 ' ash, fragrant Fraxinus cuspidata 18'' or 1.5 ' ash, green Fraxinus pennsylvanica 120'' or 10.0 ' ash, Gregg (littleleaf ash) Fraxinus greggii 12'' or 1.0 ' ash, Mexican (Berlandier ash) Fraxinus berlandieriana Was named 'F. berlandierana' 120'' or 10.0 ' ash, Texas Fraxinus texensis 60'' or 5.0 ' ash, velvet (Arizona ash) Fraxinus velutina 120'' or 10.0 ' ash, white Fraxinus americana 100'' or 8.3 ' aspen, quaking Populus tremuloides 25'' or 2.1 ' baccharis, eastern (groundseltree) Baccharis halimifolia Considered a shrub by Simpson 12'' or 1.0 ' baldcypress (bald cypress) Taxodium distichum Was named 'T.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • Diversity of Wisconsin Rosids
    Diversity of Wisconsin Rosids . oaks, birches, evening primroses . a major group of the woody plants (trees/shrubs) present at your sites The Wind Pollinated Trees • Alternate leaved tree families • Wind pollinated with ament/catkin inflorescences • Nut fruits = 1 seeded, unilocular, indehiscent (example - acorn) *Juglandaceae - walnut family Well known family containing walnuts, hickories, and pecans Only 7 genera and ca. 50 species worldwide, with only 2 genera and 4 species in Wisconsin Carya ovata Juglans cinera shagbark hickory Butternut, white walnut *Juglandaceae - walnut family Leaves pinnately compound, alternate (walnuts have smallest leaflets at tip) Leaves often aromatic from resinous peltate glands; allelopathic to other plants Carya ovata Juglans cinera shagbark hickory Butternut, white walnut *Juglandaceae - walnut family The chambered pith in center of young stems in Juglans (walnuts) separates it from un- chambered pith in Carya (hickories) Juglans regia English walnut *Juglandaceae - walnut family Trees are monoecious Wind pollinated Female flower Male inflorescence Juglans nigra Black walnut *Juglandaceae - walnut family Male flowers apetalous and arranged in pendulous (drooping) catkins or aments on last year’s woody growth Calyx small; each flower with a bract CA 3-6 CO 0 A 3-∞ G 0 Juglans cinera Butternut, white walnut *Juglandaceae - walnut family Female flowers apetalous and terminal Calyx cup-shaped and persistant; 2 stigma feathery; bracted CA (4) CO 0 A 0 G (2-3) Juglans cinera Juglans nigra Butternut, white
    [Show full text]
  • Georgia Native Trees Considered Invasive in Other Parts of the Country. Scientific Name Common Name Scientific Name Common Name
    Invasive Trees of Georgia Dr. Kim D. Coder, Professor of Tree Biology & Health Care, Warnell School, UGA Georgia has many species of trees. Some are native trees and some have been introduced from outside the state, nation, or continent. Most of Georgia’s trees are well-behaved and easily develop into sustainable shade and street trees. A few tree species have an extrodinary ability to upsurp resources and take over sites from other plants. These trees are called invasive because they effectively invade sites, many times eliminating other species of plants. There are a few tree species native to Georgia which are considered invasive in other parts of the country. These native invasives, may be well-behaved in Georgia, but reproduce and take over sites elsewhere, and so have gained an invasive status from at least one other invasive species list. Table 1. There are hundreds of trees which have been introduced to Georgia landscapes. Some of these exotic / naturalized trees are considered invasive. The selected list of Georgia invasive trees listed here are notorious for growing rampantly and being diffi- cult to eradicate. Table 2. They should not be planted. Table 1: Georgia native trees considered invasive in other parts of the country. scientific name common name scientific name common name Acacia farnesiana sweet acacia Myrica cerifera Southern bayberry Acer negundo boxelder Pinus taeda loblolly pine Acer rubrum red maple Populus deltoides Eastern Fraxinus americana white ash cottonwood Fraxinus pennsylvanica green ash Prunus serotina black cherry Gleditsia triacanthos honeylocust Robinia pseudoacacia black locust Juniperus virginiana eastern Toxicodendron vernix poison sumac redcedar Table 2: Introduced (exotic) tree / shrub species found in Georgia listed at a regional / national level as being ecologically invasive.
    [Show full text]
  • Quercus Drymeja Unger and Q. Mediterranea Unger
    Review of Palaeobotany and Palynology 241 (2017) 98–128 Contents lists available at ScienceDirect Review of Palaeobotany and Palynology journal homepage: www.elsevier.com/locate/revpalbo Taxonomy and palaeoecology of two widespread western Eurasian Neogene sclerophyllous oak species: Quercus drymeja Unger and Q. mediterranea Unger Thomas Denk a,⁎, Dimitrios Velitzelos b,TuncayH.Günerc, Johannes M. Bouchal a,d, Friðgeir Grímsson d,GuidoW.Grimmd,e a Swedish Museum of Natural History, Department of Palaeobiology, Box 50007, 10405 Stockholm, Sweden b National and Kapodistrian University of Athens, Faculty of Geology and Geoenvironment, Department of Historical Geology and Paleontology, Panepistimiopolis, Athens 15784, Greece c Istanbul University, Faculty of Forestry, Department of Forest Botany, 34473 Bahceköy, Istanbul, Turkey d University of Vienna, Department of Palaeontology, 1090 Vienna, Austria e Unaffiliated, 45100 Orléans, France article info abstract Article history: Sclerophyllous oaks (genus Quercus) play important roles in Neogene ecosystems of south-western Eurasia. Received 31 May 2016 Modern analogues (‘nearest living relatives’) for these oaks have been sought among five of six infrageneric lin- Accepted 30 January 2017 eages of Quercus, distributed across the entire Northern Hemisphere. A revision of leaf fossils from lower Miocene Available online 10 February 2017 to Pliocene deposits suggests that morphotypes of the Quercus drymeja complex are very similar to a number of extant Himalayan, East Asian, and Southeast Asian species of Quercus Group Ilex and may indicate subtropical, Keywords: Quercus Group Ilex relatively humid conditions. Quercus mediterranea comprises leaf morphotypes that are encountered in modern Plant fossil Mediterranean species of Quercus Group Ilex, but also in Himalayan and East Asian members of this group indi- Modern analogue cating fully humid or summer-wet conditions.
    [Show full text]
  • The Ecology of Sweet Fern
    Bulldozers and Bacteria: The Ecology of Sweet Fern Peter Del Tredici Comptonia peregrina, a common roadside plant in eastern North America, provides a case study both of how nature copes with disturbance to the land and of just how convoluted the study of this process can be. Sweet fern, Comptonia peregrina, is a shrubby soils. The first is its use of nitrogen gas from member of the Myricaceae, or bayberry family. the atmosphere to produce mtrates-a feat it Its common name is derived from the pleasing accomplishes by forming root nodules in symbi- fragrance that its tiny, resin-filled, glandular otic association with nitrogen-fixing bacteria. hairs give off when crushed or rubbed, and from The second is an ability to propagate itself veg- its coarsely lobed, somewhat fern-like leaves. etatively by means of long, thick roots that run Comptoma, a distinctly unprepossessing plant, an inch or so beneath the soil surface. These has a natural range that covers a large portion of shallow roots form numerous buds in the fall eastern North America. Forming a rough tri- that grow into shoots the following spring. angle, the eastern flank of this range extends Under the right conditions, Comptonia behaves from Prince Edward Island and Nova Scotia as a shrubby groundcover, spreading over large south into the mountains of north Georgia; the areas by means of these root suckers. western edge reaches from the southern Appala- chians north through Tennessee and Minnesota Historical Considerations all the way to central Manitoba; and the north- Sweet fern’s distinctive form and pungent odor ern edge runs from the Canadian plains through made a strong impression on the early European central Ontario and Quebec to the Atlantic settlers of North America.
    [Show full text]
  • Seed Dispersal and Propagation of Three Myrica Species
    Of Birds and Bayberries : Alfred j. Fordham Seed Dispersal and Propagation of Three Myrica Species The genus Myrica comprises about 50 tral United States and from Europe to north- species (often ill-defined) distributed east Asia. throughout the temperate and subtropical All three of these species have nitrogen- areas of both hemispheres. The Arnold Ar- fixing root nodules, which enable them to boretum collection includes three species: thrive m areas where many other plants M. pensylvanica, M. cerifera, andM. gale. could not survive. They are dioecious - Myrica pensylvanica Lois., the common having staminate (male) and pistillate (fe- bayberry or candleberry, occurs naturally male) flowers on different plants - like hol- from Newfoundland to western New York lies and ashes. and Maryland, chiefly in poor soil. It is suck- The fruits of Myrica pensylvanica and M. ering in habit and tends to form shrubby cerifera are small (2.5-3 mm and 3.5~.5 mm clumps, which at maturity can range from 2 in diameter respectively) globose nuts with to 8 feet in height. Frequently it is found on waxlike coatings. It is this waxlike material roadside cuts, railroad banks, gravel pits, and that provides the fragrance in bayberry- other locations where topsoil has been re- scented candles and soap. It becomes bluish moved completely. In Boston its shiny green gray as it dries, making the thickly clustered leaves remain on the branches until No- fruits conspicuous in the landscape. The vember. They are fragrant when crushed, a fruits ripen in late September and are eaten characteristic of all Myrica species.
    [Show full text]
  • Myrica Cerifera Southern Waxmyrtle1 Edward F
    Fact Sheet ST-410 October 1994 Myrica cerifera Southern Waxmyrtle1 Edward F. Gilman and Dennis G. Watson2 INTRODUCTION Multiple, twisted trunks with smooth, light grey bark, aromatic, olive green leaves, and clusters of grey-blue, waxy berries on female plants which are attractive to wildlife are just some of the reasons Southern Waxmyrtle is such a popular landscape plant (Fig. 1). Most specimens form a multi-stemmed, open, rounded canopy of weak trunks and branches. This rapidly-growing, small, evergreen native tree is capable of reaching a height of 25 feet with an equal spread but is usually seen in the 10 to 20-foot range. Sometimes used as a large shrubbery screen, Southern Waxmyrtle is ideal for use as a small tree, the lower limbs removed to reveal its picturesque form. One, or several clustered together, provide pleasing dappled shade for terraces or patios. Figure 1. Middle-aged Southern Waxmyrtle. GENERAL INFORMATION standard; small parking lot islands (< 100 square feet Scientific name: Myrica cerifera in size); narrow tree lawns (3-4 feet wide); specimen; Pronunciation: MEER-ih-kuh ser-IF-er-uh sidewalk cutout (tree pit); residential street tree; no Common name(s): Southern Waxmyrtle, Southern proven urban tolerance Bayberry Availability: generally available in many areas within Family: Myricaceae its hardiness range USDA hardiness zones: 7B through 11 (Fig. 2) Origin: native to North America DESCRIPTION Uses: Bonsai; container or above-ground planter; hedge; large parking lot islands (> 200 square feet in Height: 15 to 25 feet size); wide tree lawns (>6 feet wide); medium-sized Spread: 20 to 25 feet parking lot islands (100-200 square feet in size); Crown uniformity: irregular outline or silhouette medium-sized tree lawns (4-6 feet wide); Crown shape: round; vase shape recommended for buffer strips around parking lots or Crown density: moderate for median strip plantings in the highway; near a deck Growth rate: fast or patio; reclamation plant; screen; trainable as a 1.
    [Show full text]
  • Taxon: Morella Cerifera Family: Myricaceae Common Name Synonym
    Family: Myricaceae Taxon: Morella cerifera Synonym: Myrica cerifera L. (basionym) Common Name wax-myrtle bayberry candleberry Questionaire : current 20090513 Assessor: Chuck Chimera Designation: H(Hawai'i) Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score 20 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 n 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 n 301 Naturalized beyond native range y = 1*multiplier (see y Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see n Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see y Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see y Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see y Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 y 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 n 405 Toxic to animals y=1, n=0 n 406
    [Show full text]