applied sciences Review Research Progress on Conducting Polymer-Based Biomedical Applications Yohan Park 1, Jaehan Jung 2,* and Mincheol Chang 3,4,5,* 1 School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
[email protected] 2 Department of Materials Science and Engineering, Hongik University, Sejong 30016, Korea 3 Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea 4 School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea 5 Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea * Correspondence:
[email protected] (J.J.);
[email protected] (M.C.); Tel.: +82-62-530-1771 (M.C.) Received: 23 February 2019; Accepted: 10 March 2019; Published: 14 March 2019 Abstract: Conducting polymers (CPs) have attracted significant attention in a variety of research fields, particularly in biomedical engineering, because of the ease in controlling their morphology, their high chemical and environmental stability, and their biocompatibility, as well as their unique optical and electrical properties. In particular, the electrical properties of CPs can be simply tuned over the full range from insulator to metal via a doping process, such as chemical, electrochemical, charge injection, and photo-doping. Over the past few decades, remarkable progress has been made in biomedical research including biosensors, tissue engineering, artificial muscles, and drug delivery, as CPs have been utilized as a key component in these fields. In this article, we review CPs from the perspective of biomedical engineering. Specifically, representative biomedical applications of CPs are briefly summarized: biosensors, tissue engineering, artificial muscles, and drug delivery.