POLYMER-PLASTICS TECHNOLOGY and ENGINEERING June 1999 Aims and Scope

Total Page:16

File Type:pdf, Size:1020Kb

POLYMER-PLASTICS TECHNOLOGY and ENGINEERING June 1999 Aims and Scope rJ 31 CY Ls dM F4 B cnY 0 cc z=8 OE 0 U POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING June 1999 Aims and Scope. The joumal Polymer-Plastics Technology and Engineering will provide a forum for the prompt publication of peer-reviewed, English lan- guage articles such as state-of-the-art reviews, full research papers, reports, notes/communications, and letters on all aspects of polymer and plastics tech- nology that are industrial, semi-commercial, and/or research oriented. Some ex- amples of the topics covered are specialty polymers (functional polymers, liq- uid crystalline polymers, conducting polymers, thermally stable polymers, and photoactive polymers), engineering polymers (polymer composites, polymer blends, fiber forming polymers, polymer membranes, pre-ceramics, and reac- tive processing), biomaterials (bio-polymers, biodegradable polymers, biomed- ical plastics), applications of polymers (construction plastics materials, elec- tronics and communications, leather and allied areas, surface coatings, packaging, and automobile), and other areas (non-solution based polymerization processes, biodegradable plastics, environmentally friendly polymers, recycling of plastics, advanced materials, polymer plastics degradation and stabilization, natural, synthetic and graft polymerskopolymers, macromolecular metal com- plexes, catalysts for producing ultra-narrow molecular weight distribution poly- mers, structure property relations, reactor design and catalyst technology for compositional control of polymers, advanced manufacturing techniques and equipment, plastics processing, testing and characterization, analytical tools for characterizing molecular properties and other timely subjects). Identification Statement. Polymer-Plastics Technology and Engineering is pub- lished five times a year in the months of February, April, June, September, and November by Marcel Dekker, Inc., P.O. Box 5005, 185 Cimarron Road, Monti- cello, NY 12701-5185. Periodicals postage paid at Monticello, NY. POSTMAS- TER: Send address changes to Polymer-Plastics Technology and Engineering, P.O. Box 5005, Monticello, NY 12701-5185. 1999 Subscription Rates for Volume 38 (5 issues) Individual Professional International Postage Institutional and Student Surface Airmail Rate Rate Canada Europe Asia Pnnt $1125 $65 $20 $22.50 $27.50 $35 How to Order. Individual professional and student orders must be prepaid by per- sonal check or may be charged to Mastercard, VISA, or American Express. Please mail payment with your order to: Marcel Dekker Journals, P.O. Box 5017, Monticello, New York 12701-5176. Telephone: 800-228-1160; Fax: 914- 796- 1772; E-mail: jmlorders @dekker.com Printed in the U.S.A. Print. CODEN: PPTEC7 38(3) i-xii, 401-580 (1999) ISSN: 0360-2559 POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING EDITOR MUNMAYA K. MISHRA Ethyl Corporation, Research and Development 500 Spring Street, P. 0. Box 2158 Richmond, VA 23218-2158, USA EDITORIAL BOARD T. M. AMINABHAVI, Department of Chemistry, Kamatak University, Dharwad 580 003, India G. CAMPBELL, Department of Chemical Engineering, Clarkson University, Potsdam, NY 13676 M. J. CROCHET, Universite' Catholique de Louvain, Batiment Evler, Ave. G. Lemattre, 4, b-1348 Louvain-la-Neuve, Belgium J. GIACOMIN, Department of Mechanical Engineering, University of Wisconsin, Madison, WI 53706-1572 K. M. IDRISS ALI, Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, Dhaka-1000, Bangladesh H. ISMAIL, School of Industrial Technology, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia J.-I. JIN, Department of Chemistry, Korea University, 1, Anum-Dong, Seoul 136, South Korea B. H. KIM, Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003 E. G. KLESPER, Lehrstuhl fur Makromolekulare Chemie, Technischen Hochschule Aachen, Worringerweg 1,5100 Aachen, Germany A. KOBAYASHI, Ibaraki Polytechnic College, 864, Suifeo-cho Mito, Japan A. L. KOVARSKI, Institute of Chemical Physics, Academy of Science of Moscow, Moscow V-334, Russia S. KUMAR, School of Textile and Fiber Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0295 A. MALKIN, Research Institute of Plastics, Perovskii pr. 35, Moscow E-112, Russia 111112 J. E. MARK, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-01 72 (continued) POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING Editorial Board (continued) C. V. OPREA, Department of Organic & Macromolecular Chemistry & Technology, Polytechnic Institute of Jassy, 23 August Street, IIA, 6600 Jassy, Romania R. C. PROGELHOF, Penn State Erie, The Behrend College, Station Road, Erie, PA 16563-0203 N. SCHOTT, University of Lowell, 1 University Avenue, Lowell, MA 01854 J. P. WAGNER, Food & Protein Research & Development Centre, Texas A&M University, College Station, 7X 77843 J. L. WHITE, Department of Polymer Engineering, University of Akron, Akron, OH 44325 G. E. WNEK, Department of Chemical Engineering, School of Engineering, Vir- ginia Commonwealth University, P.O. Box 843028, Richmond, VA 23284- 3028 rk : c,cn d P0LYM.-PLAST. TECHNOL. ENG., 38(3), vii-viii (1999) CONTRIBUTORS TO THIS ISSUE J. C. Ammons, Georgia Institute of Technology, Atlanta, Georgia, USA. G. Bhat, The University of Tennessee, Knoxville, Tennessee, USA. M. Braun, AlliedSignal Inc., Morristown, New Jersey, USA. E. J. Daniels, Argonne National Laboratory, Argonne, Illinois, USA. M. Dever, The University of Tennessee, Knoxville, Tennessee, USA. W. Ding, Georgia Institute of Technolgy, Atlanta, Georgia, USA. R. Enick, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. A. T. Griffith, Auburn University, Auburn, Alabama, USA. X. Hu, Georgia Institute of Technology, Atlanta, Georgia, USA. E. Karmana, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. K. Khait, Northwestern University, Evanston, Illinois, USA. A. M. Kotliar, Georgia Institute of Technology, Atlanta, Georgia, USA. S. Kumar, Georgia Institute of Technology, Atlanta, Georgia, USA. L. L. LeBoeuf, Georgia Institute of Technology, Atlanta, Georgia, USA. A. B. Levy, AlliedSignal Inc., Morristown, New Jersey, USA. J. D. Muzzy, Georgia Institute of Technology, Atlanta, Georgia, USA. V. Narayanan, The University of Tennessee, Knoxville, Tennessee, USA. D. Newton, Georgia Institute of Technology, Atlanta, Georgia, USA. Y. Park, Auburn University, Auburn, Alabama, USA. M. B. Polk, Georgia Institute of Technology, Atlanta, Georgia, USA. M. J. Realff, Georgia Institute of Technology, Atlanta, Georgia, USA. C. B. Roberts, Auburn University, Auburn, Alabama, USA. vi i viii CONTRIBUTORS TO THIS ISSUE M. Shah, Georgia Institute of Technology, Atlanta, Georgia, USA. S. Sifniades, AlliedSignal Inc., Morristown, New Jersey, USA. S. Simon, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. R. S. Stein, University of Massachusetts, Amherst, Massachusetts, USA. J. M. Torkelson, Northwestern University, Evanston, Illinois, USA. L. Wadsworth, The University of Tennessee, Knoxville, Tennessee, USA. Y. Wang, Georgia Institute of Technology, Atlanta, Georgia, USA. C.-Y. Won, Georgia Institute of Technology, Atlanta, Georgia, USA. Y. Zhang, Georgia Institute of Technology, Atlanta, Georgia, USA. P0LYM.-PLAST. TECHNOL. ENG., 38(3), ix-xi (1999) PREFACE RICHARD S. STEIN University of Massachusetts Amherst. Massachusetts 01003 The problems associated with the accumulation of polymer solid waste is of great public concern. Landfill space in high-population-density areas of the country is often becoming exhausted, and transportation costs to increasingly more distant areas are becoming prohibitive. Although polymers only amount to about 8% by weight of solid waste, their low density and slow decomposi- tion rates make them a very visible component. There is also concern that polymer use represents a consumption of nonrenewable resources. Discarded polymer objects can be unsightly and also can be damaging to wildlife. Although reduced use and substitution by other materials are suggested so- lutions, the performance, convenience, and low cost of synthetic polymers have led to an increasing amount of polymer waste. Recycling is an important means for reducing the fraction of this waste entering landfills and also can lead to the recovery of materials for further use. However, its employment is limited by economic considerations. Polymer manufacturers are unlikely to utilize feedstock of recycle origin if they can use a virgin monomer less ex- pensively. There are several problems that limit the application of recycling. It is well known that many polymers are immiscible with each other and that the phys- ical properties of immiscible polymer blends are often inferior. There are some products that can be made from such “commingled polymers” such as park benches and marine docks, but the applications are often limited to those where mechanical performance requirements are not high. There is not a large market for such use, so most recycling efforts are directed toward dealing with separated polymers. Recycling can be categorized as “preconsumer” and “postconsumer.” Pre- consumer recycling is that carried out by manufacturers using materials aris- ing from their normal production, such as waste from operations (e.g., stamp- ix X PREFACE ing and trimming). Such practices have long been employed and are econom- ically attractive. They benefit from manufacturers being able to readily segre- gate polymers of differing types. The postconsumer problem is more difficult, and its success usually de- pends on either devising
Recommended publications
  • Polymer Processing and Manufacturing Engineer Nushores
    Polymer Processing and Manufacturing Engineer NuShores’ mission is to improve the quality of life for people globally while competing successfully by applying its licensed and internally developed advanced materials portfolio to the Biomaterials industry. NuShores has exclusive global license to patented bone and tissue regeneration technologies developed at University of Arkansas – Little Rock from over $12M in research. We are seeking a Polymer Processing and Manufacturing Engineer to Join our growing team to launch NuCress™ scaffold product family, our award-winning bone void filler line of medical device products. If working with a smart and creative team that designs and builds products that improve quality of life interests you, then consider a career with us. Job Type. Full-time professional employee. Reports To. The Polymer Process and Manufacturing Engineer will report to Chief Technical Officer, Chief Scientist or Product Manager. Salary. Competitive, with benefits. Job Overview. The Polymer Processing and Manufacturing Engineer will be the technical lead for new and existing processes that involve the integration of polymeric biomaterials to biological systems and products such as artificial bone and tissue medical devices. This role is responsible for concept development, equipment design and installation, vendor management, and process development and optimization for small to large-scale manufacturing readiness. A key focus for the Polymer Processing and Manufacturing Engineer is to lead process engineering to create and maintain a manufacturing line/facility. Additionally he/she will provide technical subject matter expertise in polymer structure-property relationships, catalyst, polymerization and to develop and maintain know-how and intellectual property within their relevant area of expertise to support regulatory and business objectives and sustain future growth.
    [Show full text]
  • M.ENGG. Syllabi
    DEPARTMENT OF POLYMER AND PETROCHEMMICAL ENGINEERING SEMESTER SYLLABI OF COURSES FOR M.ENGG. (POLYMER ENGINEERING) PROGRAMME NED UNIVERSITY OF ENGINEERING & TECHNOLOGY, KARACHI-75270 PAKISTAN Compulsory and elective courses for M. Engg. (Polymer Engineering) Compulsory Courses: Credit hours PP-511: Mathematical Methods in Polymer Engineering 3 PP-512: Advanced Polymer Processing 3 PP-513: Polymer Reactor Engineering 3 PP-514: Rheology of Complex Fluids 3 PP-515: Polymer Structure-Property Relationships 3 Elective Courses: PP-525: Advanced Polymer Composites 3 PP-526: Fibre Technology 3 PP-527: Polymer Adhesives and Coatings 3 PP-528: Polymer Product Design 3 PP-529: Specialty and Functional Polymer Materials 3 PP-530: Rubber Technology 3 PP-532: Polymer Degradation, Stability and Recycling 3 PP-531: Polymer Characterization 3 ME-530: Project Management 3 PP-600: Independent Study project 6 PP-601: Dissertation 9 PP-401: Introduction to Polymeric Materials NC Compulsory Courses PP-511: Mathematical Methods in Polymer Engineering Linear Algebra: Algebra of matrices, inverse, rank, system of linear equations, symmetric, skew- symmetric and orthogonal matrices, Hermitian, skew-Hermitian, unitary matrices, eigenvalues and eigenvectors, diagonalisation of matrices, Cayley-Hamilton Theorem. Vector Calculus: Gradient, divergence and curl, vector Identities, directional derivatives, line, surface and volume integrals, Stokes, Gauss and Green’s theorems applications. Tensors: Tensor operations, vector operations using index notation, principal
    [Show full text]
  • Research Progress on Conducting Polymer-Based Biomedical Applications
    applied sciences Review Research Progress on Conducting Polymer-Based Biomedical Applications Yohan Park 1, Jaehan Jung 2,* and Mincheol Chang 3,4,5,* 1 School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; [email protected] 2 Department of Materials Science and Engineering, Hongik University, Sejong 30016, Korea 3 Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea 4 School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea 5 Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea * Correspondence: [email protected] (J.J.); [email protected] (M.C.); Tel.: +82-62-530-1771 (M.C.) Received: 23 February 2019; Accepted: 10 March 2019; Published: 14 March 2019 Abstract: Conducting polymers (CPs) have attracted significant attention in a variety of research fields, particularly in biomedical engineering, because of the ease in controlling their morphology, their high chemical and environmental stability, and their biocompatibility, as well as their unique optical and electrical properties. In particular, the electrical properties of CPs can be simply tuned over the full range from insulator to metal via a doping process, such as chemical, electrochemical, charge injection, and photo-doping. Over the past few decades, remarkable progress has been made in biomedical research including biosensors, tissue engineering, artificial muscles, and drug delivery, as CPs have been utilized as a key component in these fields. In this article, we review CPs from the perspective of biomedical engineering. Specifically, representative biomedical applications of CPs are briefly summarized: biosensors, tissue engineering, artificial muscles, and drug delivery.
    [Show full text]
  • Plastics Guidebook Cover
    PLASTICS INDUSTRY ENERGY BEST PRACTICE GUIDEBOOK Plastics Energy Best Practice Guidebook Provided By: Funding for this guidebook was provided by Focus on Energy. Focus on Energy, a statewide service, works with eligible Wisconsin residents and businesses to install cost-effective energy efficiency and renewable energy projects. We provide technical expertise, training and financial incentives to help implement innovative energy management projects. We place emphasis on helping implement projects that otherwise would not get completed, or to complete projects sooner than scheduled. Our efforts help Wisconsin residents and businesses manage rising energy costs, protect our environment and control the state’s growing demand for electricity and natural gas. With: Science Applications International Corporation Center for Plastic Processing Technology, UW-Platteville Envise, LLC CleanTech Partners, Inc. Tangram Technology Ltd. July 2006 Special thanks to the American Chemistry Council who provided printing and distribution through a grant by the U.S. Department of Energy, administered by CleanTech Partners, Inc. TABLE OF CONTENTS FORWARD ………........................................................................................................ 3 Are you a World Class Energy User?............................................................... 3 What Others Say about the Guidebook............................................................ 3 Development of the Guidebook........................................................................ 4
    [Show full text]
  • Strategies to Support the Plastics Industry in North Central Massachusetts: a Report to the City of Leominster
    UNIVERSITY OF MASSACHUSETTS Amherst Boston Dartmouth Lowell Worcester Strategies to Support the Plastics Industry in North Central Massachusetts: A Report to the City of Leominster University of Massachusetts Donahue Institute Strategies to Support the Plastics Industry in North Central Massachusetts: A Report to the City of Leominster A Project of the University of Massachusetts Donahue Institute, Middlesex House, University of Massachusetts at Amherst, Amherst, MA 01003 University of Massachusetts Donahue Institute Steven Landau Steven Ellis William Ennen University of Massachusetts at Lowell Robert Forrant March 2000 i ACKNOWLEDGEMENTS Our work would not have been possible with out the support we received from Mayor Dean J. Mazzarella to conduct an independent investigation of how best to support the plastics industry. The authors gratefully acknowledge the "hands-on" support of the Leominster Office of Planning and Development, particularly Joseph Viola, Plastics Technology Coordinator, Mary Albertson, Director and Trevor M. Beauregard, Economic Development Coordinator. We especially want to thank Joe for the unstinting assistance he provided through the life of this project. As we began our work, we reached out to the North Central Chamber of Commerce and its Plastics Council. Todd Simkus and Dan Curley of the Chamber's staff provided critical assistance in allowing us to involve plastics companies directly in our research. Dan's assistance, working with Joe Viola, was essential in organizing the forums where we discussed the findings and recommendations that emerged from our research. We also want to thank Mark LaVoie for inviting us to meet with the Plastics Council when our effort was getting underway. Staff of the Donahue Institute, Carolyn Mailler, Rebecca Loveland, Ruth Malkin, James Palma, Jennifer Woods, Carlos Gonzales and Irma Bushati, stepped in at critical times with editorial assistance and research.
    [Show full text]
  • Department Wise Specialization
    Department wise Specialization 1 Applied Geology: Petroleum Geology, Coal Geology, Structural Geology, Mathematical Geology, Geostatistics, Sedimentology and Sequence Stratigraphy, Geomorphology, Quaternary Geology, Neotectonics, Paleontology, Organic Geochemistry, Igneous, Metamorphic Petrology, Marine Geology, Economic Geology, Mineral Exploration, Engineering Geology, Hydrogeology, Remote Sensing and GIS, Nanotechnology in Geosciences, Artificial Intelligence (AI) and Machine Learning (ML) in Geosciences. 2 Applied Geophysics: Earth and Planetary Science, Gravity and Magnetic Methods, Geophysical Signal Processing, Seismic Methods, Well Logging, Electromagnetic Methods, Electrical Methods, Remote Sensing, Seismology, Magneto-telluric Methods, Atmospheric Sciences, Marine Geophysics and Physical Oceanography. 3 Chemical Engineering: Process Systems Engineering and Control, Transport and Separation Processes Modelling and Simulation, Chemical Engineering Thermodynamics, Petroleum Refining and Petrochemicals, Polymer Engineering, Energy Systems Engineering, Coal to Chemicals, Process Integration, Process and Equipment Design, Molecular Simulation, Electrochemical Engineering Membrane Science & Engineering, Industrial, Occupational & Process Safety, Advance Materials, Colloids & Interface Science, Multiphase Reactors 4 Chemistry: Physical Chemistry, Theoretical Chemistry, Computational Chemistry, Medicinal Chemistry, Organic Chemistry, Inorganic Chemistry, Analytical Chemistry, Biochemistry, Pharmaceutical Science / Engineering. 5 Civil
    [Show full text]
  • Introducing Plastic Product Design Into the Machine Design Curriculum
    Session 2566 Introducing Plastic Product Design into the Machine Design Curriculum Reginald G. Mitchiner, Ph.D., and John T. Tester Mechanical Engineering / Industrial and Systems Engineering Virginia Polytechnic Institute and State University Blacksburg, VA 24060 Abstract We present our paradigm of plastic product design as a necessary part of the mechanical engineering design curriculum and how these concepts have been a historical part of the mechanical engineering educational agenda, though in other venues. We discuss the practical and accreditation problems associated with incorporating the "new" design features in an existing machine design course. A separate design course, dedicated to plastic product design, is also outlined. This last alternative is likely the best bridge from a machine design curriculum without plastics concepts to one with metallic/nonmetallic product design. 1 Introduction Plastic products† are a dominant part of the manufacturing world. It is very likely that you the reader could, at this moment, reach out and touch a plastic product from where you sit. Yet, mechanical design curricula at universities, as a general rule, do not have plastic product design integral in their construction. The mechanical design curriculum has embedded within it the classical theory associated with metallic products; usually these products are assumed to be manufactured via metal-removal processes, if their manufacture is assumed in any manner at all. As practicing mechanical design engineers, we (the authors) have frequently been required to design products with a plastic component as part of their basic structure. One of the authors' primary functions for several years was to design solely plastic products as part of electronic product packaging.
    [Show full text]
  • Glossary of Materials Engineering Terminology
    Glossary of Materials Engineering Terminology Adapted from: Callister, W. D.; Rethwisch, D. G. Materials Science and Engineering: An Introduction, 8th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2010. McCrum, N. G.; Buckley, C. P.; Bucknall, C. B. Principles of Polymer Engineering, 2nd ed.; Oxford University Press: New York, NY, 1997. Brittle fracture: fracture that occurs by rapid crack formation and propagation through the material, without any appreciable deformation prior to failure. Crazing: a common response of plastics to an applied load, typically involving the formation of an opaque banded region within transparent plastic; at the microscale, the craze region is a collection of nanoscale, stress-induced voids and load-bearing fibrils within the material’s structure; craze regions commonly occur at or near a propagating crack in the material. Ductile fracture: a mode of material failure that is accompanied by extensive permanent deformation of the material. Ductility: a measure of a material’s ability to undergo appreciable permanent deformation before fracture; ductile materials (including many metals and plastics) typically display a greater amount of strain or total elongation before fracture compared to non-ductile materials (such as most ceramics). Elastic modulus: a measure of a material’s stiffness; quantified as a ratio of stress to strain prior to the yield point and reported in units of Pascals (Pa); for a material deformed in tension, this is referred to as a Young’s modulus. Engineering strain: the change in gauge length of a specimen in the direction of the applied load divided by its original gauge length; strain is typically unit-less and frequently reported as a percentage.
    [Show full text]
  • Alternative Tissue Engineering Scaffolds Based on Starch: Processing Methodologies, Morphology, Degradation and Mechanical Properties
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universidade do Minho: RepositoriUM Materials Science and Engineering C 20 (2002) 19–26 www.elsevier.com/locate/msec Alternative tissue engineering scaffolds based on starch: processing methodologies, morphology, degradation and mechanical properties M.E. Gomes*, J.S. Godinho, D. Tchalamov, A.M. Cunha, R.L. Reis Department of Polymer Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal Abstract An ideal tissue engineering scaffold must be designed from a polymer with an adequate degradation rate. The processing technique must allow for the preparation of 3-D scaffolds with controlled porosity and adequate pore sizes, as well as tissue matching mechanical properties and an appropriate biological response. This communication revises recent work that has been developed in our laboratories with the aim of producing 3-D polymeric structures (from starch-based blends) with adequate properties to be used as scaffolds for bone tissue engineering applications. Several processing methodologies were originally developed and optimised. Some of these methodologies were based on conventional melt-based processing routes, such as extrusion using blowing agents (BA) and compression moulding (combined with particulate leaching). Other developed technologies included solvent casting and particle leaching and an innovative in situ polymerization method. By means of using the described methodologies, it is possible to tailor the properties of the different scaffolds, namely their degradation, morphology and mechanical properties, for several applications in tissue engineering. Furthermore, the processing methodologies (including the blowing agents used in the melt-based technologies) described above do not affect the biocompatible behaviour of starch-based polymers.
    [Show full text]
  • Michael R. Bockstaller
    Michael R. Bockstaller Professor, Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh PA 15213. Phone: (412) 268-2709; Fax: (412) 268-7247; E-mail: [email protected] Professional Preparation University of Karlsruhe, Karlsruhe (Germany) Chemistry (Diplom) 1990-1996 Johannes Gutenberg University, Mainz (Germany) Chemistry (Dr. rer. nat.) 2000-2005 Postdoctoral Associate, MIT, Cambridge MA Mat. Sci. & Eng. 2000-2004 Lecturer, RWTH Aachen, Aachen (Germany) Chemistry 2004-2005 Appointments 07/14 – present Professor, Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 03/11 – present Adjunct Professor, Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213 07/10 – 06/14 Associate Professor, Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 4/05 – 05/10 Assistant Professor, Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 3/04 – 3/05 Emmy-Noether Research Group Leader, Department of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen (Germany) 7/00 – 2/04 Postdoctoral Associate, Department of Materials Science and Engineering, MIT, Cambridge, 02139 MA 4/99 – 12/99 Visiting Scientist, Foundation of Research and Technology Hellas - Institute for Electronic Structure and Laser Technology, Iraklion (Greece) 1/98 – 12/98 Teaching Assistant, Dept. of Chemistry., Johannes Gutenberg University, Mainz (Germany) 9/97 – 7/00 Research Assistant, Max-Planck Institute for Polymer Research, Mainz (Germany) Awards and Honors 2014 Fellow of the American Physical Society 2008 The Philbrook Prize (by the Department of Materials Science and Engineering) 2003 Emmy Noether grant recipient of the German Science Foundation 2000 Feodor-Lynen fellowship award by Alexander von Humboldt Foundation Membership and Activities in Honorary Fraternities, Professional Societies 1.
    [Show full text]
  • Optical Characterization and Properties of Polymeric Materials for Optoelectronic and Photonic Applications
    International Journal of Applied Science and Technology Vol. 3 No. 5; May 2013 Optical Characterization and Properties of Polymeric Materials for Optoelectronic and Photonic Applications A. N. Alias Z. M. Zabidi A.M.M. Ali M. K. Harun Faculty of Applied Sciences, Universiti Teknologi MARA 40450 Shah Alam, Selangor D.E Malaysia M.Z.A. Yahya Faculty of Science & Defence Technology, Universiti Pertahanan Nasional Malaysia, Kemsg. Besi, 57000 Kuala Lumpur Malaysia Abstract The optical properties of polymers attract considerable attention because of their potential optoelectronic applications, such as in polymer-based light-emitting diodes, light electrochemical cells, and solar cells. To optimize the performance of optoelectronic and photonic devices, some polymers are modified through the introduction of specific end groups, copolymerization, grafting, crosslinking, blending, and hybridization with other inorganic polymers. All these techniques affect the optical properties of the polymer. This paper reviews the fundamental emission and optical properties, such as absorption, reflection, and polarization effect, of numerous polymer materials. These aspects are important to be considered in optoelectronic devices. Introduction Polymers are widely used in electrical and electronic applications. In early works, polymers have been used as insulators because of their high resistivity and dielectric properties. Polymer-based insulators are used in electrical equipment to separate electrical conductors without passing current through themselves. The insulator applications of polymers include printed circuit boards, wire encapsulants, corrosion protective electronic devices, and cable sheathing materials [1]. Polymers have several advantages, such as easy processing, low cost, flexibility, high strength, and good mechanical properties. In the microelectronic fabrication industry, polymers are used in the photolithography process.
    [Show full text]
  • Polymer Engineering for Drug/Gene Delivery: from Simple Towards Complex Architectures and Hybrid Materials
    Pure Appl. Chem. 2014; 86(11): 1621–1635 Conference paper Geta David, Gheorghe Fundueanu, Mariana Pinteala, Bogdan Minea, Andrei Dascalu and Bogdan C. Simionescu* Polymer engineering for drug/gene delivery: from simple towards complex architectures and hybrid materials Abstract: The paper summarizes the history of the drug/gene delivery domain, pointing on polymers as a solution to specific challenges, and outlines the current situation in the field – focusing on the newest strate- gies intended to improve systems effectiveness and responsiveness (design keys, preparative approaches). Some recent results of the authors are briefly presented. Keywords: controlled drug delivery systems; gene therapy; magnetic carriers; particulate polymer systems; POC-2014; stimuli-sensitive polymers. DOI 10.1515/pac-2014-0708 Introduction Significant human and financial resources have been always invested in medical research and development. Nowadays, the annual growth of sales for medical systems using biomaterials and the development of con- nected industries is, by far, one of the highest [1]. According to recent healthcare market research reports systems for drug delivery, diagnostics and regenerative medicine are among the global top ten medical device technologies. In this context, a major contribution to medical technologies comes from chemical engineering research, interfacing bioengineering and materials science. One main research direction is aimed at understanding how materials interact with the human body, i.e., twigging the factors affecting materials biocompatibil- ity and therapeutic efficiency, while another one is dealing with new biomaterials and devices to address unsolved medical problems. Specific requirements are to be met in the effort towards macromolecular materials with correct engi- neering, chemical and biological properties for the intended medical application.
    [Show full text]