BENTHICHABITATSOF

THEDELAWAREBAY

BenthicHabitatsoftheDelawareBay

BenthicHabitatsofDelawareBay MarkG.Anderson,JosephA.M.Smith,andBartholomewD.Wilson INTRODUCTION

ThissectiondescribesandmapsthemajorphysicalhabitatsoftheDelawareBayseafloor.Weused informationonbenthicorganisms,theirdistributionandtheirrelationshipstophysicalfeatures,to delimitadistinctsetofenvironmentsrepresentingthevarietyofbenthichabitatsintheBay.As individualareadaptedtovariationsindepth,sedimentsize,seabedtopographyandsalinity,we examinedthesefactorsinrelationshiptotheorganismcompositionandclassifiedthemintobasictypes toillustratethediversityofconditionsexistingontheseafloor.Wehopethatthisbenthichabitatmapof theDelawareBay,basedonpreviouslycollecteddata,willprovideabetterunderstandingofthe abundanceanddistributionofseafloorhabitattypes.

Benthicorganismsarethosethatinhabittheseafloor;fromtheGreekwordbenthos,meaning“depths ofthesea.”Basedonajustasmallsample(246samples),theseafloorhabitatsoftheDelawareBay containover300speciesin8phylaincluding:

 106speciesofarthropods(crabs,lobsters,shrimp,)  75speciesofmollusks(clams,scallops,squid,limpets,seaslugs,snails)  130speciesof(seaworms)  8speciesofechinoderms(seastars,seaurchins,seacucumbers,sanddollars)  5speciesofcnidarians(corals,anemones,jellyfish)  4speciesofchordates(seasquirts)  1speciesofporiferans(sponges)  6speciesofnemerteans(ribbonworms)

Thedistributionsandlifehistoriesofbenthicorganismsaretiedtotheirphysicalenvironment.Filter feederstendtodominateonshallowsandybottomswhiledepositfeeders,maydominateinfine grainedmud.Itisthesedistinctphysicalhabitatsthatweidentified,characterized,andmapped.

Thischapterrepresentsaninitialefforttodefineandmapmarinebenthichabitatsusinginformationon organismdistributionscombinedwithinterpolateddataonbathymetry,sedimentgrainsize,and seafloortopography.Thegoalwastoproduceabaywidemapofbroadlydefined,butdistinctwith respecttotheorganismgroupsfoundwithinthem.

ThisworkisbuildsonthemethodsdevelopedintheNatureConservancy’sNorthwestAtlanticMarine assessment,(Greenetal.2010)particularlythosedescribedinchapter3BenthicHabitats.

Pleasenotethatcriticalstepsofaccuracyassessment,crossvalidationusingindependentdatasets, comparisonswithdemersalfishhabitat,andfinalexpertpeerreviewareongoing

BenthicHabitatsoftheDelawareBay

DefinitionofTargetHabitats

ThegoalofthisworkwastoidentifyandmapthemajorbenthichabitattypesintheDelawareBay.We definedabenthichabitatasagroupoforganismsrepeatedlyfoundtogetherwithinaspecific environmentalsetting.Forexample,siltflatsindeepwatertypifiedbyaspecificsuiteofamphipods, clams,whelksandsnailsmightbeonehabitat,whilesandflatsinshallowwatermightbeanother, providingitsupportsadifferentsetoforganisms.Conservationofthesehabitatsisnecessarytoprotect thefulldiversityofspeciesthatinhabittheseafloor,andtomaintaintheecosystemfunctionsofbenthic communities.

METHODS

TodesignaconservationplanforbenthicdiversityintheDelawareBayitisessentialtohavesome understandingoftheextentandlocationofvariousbenthichabitats(e.g.amap).Fortunately,the challengeofmappingseafloorhabitatshasproducedanextensivebodyofresearch(seeKostylevetal. 2001;Greenetal.2005;Auster2006;WorldWildlifeFund2006;ToddandGreene2008).Inaddition, comprehensiveseafloorclassificationschemeshavebeenproposedbymanyauthors(seeDethier1992; Brown1993,EuropeanEnvironmentalAgency1999;Greeneetal.1999;Alleeetal.2000;Brown2002; Conneretal2004;Daviesetal.2004;Greeneetal.2005;Maddenetal.2009;Valentineetal.2005; Kutcher2006;andseereviewsinNationalEstuarineResearchReserveSystem2000andLundand Wilbur2007).DuringdevelopmentofthebenthicmapfortheNatureConservancy’sNorthwestAtlantic MarineAssessment(Andersonetal.2010inGreeneetal.2010),wereviewedtheliteratureonseafloor classification,andexaminedthevarietyofapproachesalreadyutilizedinordertodevelopthe methodologyusedhere.

Manyoftheexistingschemesbasetheirclassificationsonphysicalfactorssuchasbathymetry,sediment grainsize,sedimenttexture,salinity,bottomtemperature,andtopographicfeatures.Thisislogicalas thereisampleevidencethatbenthicdistributionpatternsareassociatedwithmanyofthesevariables. Forexample,temperatureiscorrelatedwiththecommunitycompositionofbenthicmacroinvertebrates (TherouxandWigley1998);substratetypeiscorrelatedwithcommunitycompositionandabundanceof boththeinvertebratesanddemersalfish(Austeretal.2001;Stevensonetal.2004);habitatcomplexity iscorrelatedwithspeciescomposition,diversity,andrichness(EtterandGrassle1992;Kostylevetal. 2001;SerranoandPreciado2007,reviewsinLevinetal.2001);anddepthiscorrelatedwithabundance, richness,andcommunitycomposition(Stevensonetal.2004).

Theapproachusedherebuildsonexistingschemesbothexplicitlyandimplicitly,andresultscanbe readilycomparedtothem.However,thegoalofthisassessmentwastoproduceamapofbroadly definedbenthichabitatsinBayusingreadilyavailableinformation,andwearenotproposinganew classificationsystem.

BiologicalFactors:BenthicOrganisms

Themapofbenthichabitatspresentedhereisbaseddirectlyonthedistributionandabundanceof benthicorganismsinDelawareBay,andtheknowledgeofthesespeciesandtheirdistributionscomes

BenthicHabitatsoftheDelawareBay largelyfromseafloorsamplesdescribedbelow.Intheanalysisofthisdata,groupsofspecieswithshared distributionpatternswereidentified,thenthresholdsinthephysicalfactorswereidentifiedthat correlatedwiththosepatterns.Specifically,threebasicstepswerefollowed:1)quantitativeanalysisof thegrabsamplestoidentifydistinctandreoccurringassemblagesofbenthicorganisms,2)recursive partitioningtorelatethespeciesassemblagestophysicalfactors(bathymetry,sedimenttypes,and seabedtopographicforms),and3)mappingthehabitatsbasedonthestatisticalrelationshipsbetween theorganismgroupsandthedistributionofthephysicalfactors.Althoughorganismdistributionswere usedtoidentifymeaningfulthresholdsandcutoffsinthephysicalvariables,thefinalhabitatmapsare composedsolelyofcombinationsofenduringphysicalfactorsandarethuscloselyrelatedtothemaps andclassificationschemesproposedbyothers.

Thisstudywasmadepossiblebyaccessto234samplesofabundanceandbiomassdatacollectedbythe DelawareEstuaryBenthicInventoryPartnershipfortheDelawareEstuaryandEPARegion2andRegion 3.DataSamplingoccurredduringSummer2008(forsamplingprotocolseeEPA'sNCAorPDE'sDEBI QAPP)TheDEBIeffortwasmultidisciplinaryandmanyfederal,stateandregionalpartnerscontributed withdesign,sampling,sampleanalysisanddataanalysisproducts.ThePartnershipfortheDelaware Estuary(PDE),aNationalEstuaryProgram,wasthecoordinatingentityandgrantee,workingclosely withEPARegion3andtheEPAAtlanticEcologyDivision.Asreportsandadditionaldataanalysis productsareat:http://www.delawareestuary.org/science_projects_baybottom.asp.

TwelvemoresampleswereprovidedbytheNationalMarineFisheriesService’s(NMFS)Northeast FisheriesScienceCenter(NEFSC).TheNEFSCconductedaquantitativesurveyofmacrobenthic invertebratefaunafromthemid1950stotheearly1990sandafewofthesesamplesincludedDelaware Bay.Organismscollectedineachsamplewereidentifiedtospecies,genus,orfamily.Athorough discussionoftheNEFSCsamplingmethodology,geartypes,history,andananalysisofthebenthic dataset,includingthedistributionandecologyoftheorganisms,canbefoundinthepublicationsof WigleyandTheroux(1981and1998).

ClassificationMethods

Classificationanalysisbeganwiththeentire234seafloorsamplesobtainedfromtheDEBIPandthe12 samplesfromNEFSC.Thesewerecombinedintoasamplebyspeciestableindicatingtheabundance(by count)ofeachspecieswithineachsample.Wherepossibletheanalysiswasdoneatthespecieslevelbut insomecases,whenanorganismwasabundantinmanysamplesbutonlyidentifiedtogenus,thegenus wastreatedasaspecies.Speciesthatonlyoccurredinonesamplewereremovedfromthedataset beforeanalyzingthedataaswasinformationonplants,eggmasses,andorganicdebris.

Sampleswithsimilarspeciescompositionandabundanceweregroupedtogetherusinghierarchical clusteranalysis(PCORD,McCuneandGrace2002).Thistechniquestartswithpairwisecontrastsofevery samplecombinationthenaggregatesthepairsmostsimilarinspeciescompositionintoacluster.Next,it repeatsthepairwisecontrasts,treatingtheclustersasiftheyweresinglesamples,andjoinsthenext mostsimilarsampletotheexistingclusters.Theprocessisrepeateduntilallsamplesareassignedtoone ofthemanyclusters.Forouranalysis,theSorensonsimilarityindexandtheflexiblebetalinkage techniquewithBetasetat25wasusedasthebasisformeasuringsimilarity(McCuneandGrace2002). BenthicHabitatsoftheDelawareBay

Aftergroupingthesamples,indicatorspeciesanalysiswasusedtoidentifythosespeciesthatwere faithfulandexclusivetoeachorganismgroup(DufreneandLegrande1997).Lastly,MonteCarlotestsof significancewererunforeachspeciesrelativetotheorganismgroupstoidentifydiagnosticspeciesfor eachgroupusingthecriterionofapvaluelessthanorequalto0.10(90%probability).Thenumberof setsofclusters(testing10to40)wasdeterminedbyseeingwhichamountgavethelowestaveragep value.

PhysicalFactors:Bathymetry,SubstrateandSeabedForms

Tounderstandhowthebenthicinvertebratecommunitydistributionsrelatedtothedistributionof physicalfactors,aspatiallycomprehensivedatalayerforeachfactorofinterestwasdeveloped.Four aspectsofseafloorstructurewereused:bathymetry,sedimentgrainsize,topographicforms,and salinity.Thesefactorswerechosenbecausetheyarecorrelatedwiththedistributionandabundanceof benthicorganisms.Dataoneachphysicalfactorwerecompiledfromseparatesourcesandthe techniquesusedtocreateacomprehensivemaparediscussedbelow.

Bathymetry

WebasedourbathymetrydatasetonapubliclyavailabledigitalelevationmodelfortheDelawareBay (estuarinebathymetry.noaa.gov).Inordertouseallofthebiologicalsamplesinouranalyses,we extendedthebathymetrycoverageupriverapproximately20kilometers(Figure1).Todothis,weused depthsoundingpointscollectedduringtheDelawareBayandRiverBenthicHabitatMappingProject (projectwebsite).WeinterpolatedthesedatafollowingthemethodsusedforNOAAbathymetry,using linearinterpolationtocreatea30mDEM.Weattributedeachofthe246organismsampleswithan estimateofthebathymetryatthatpoint.

Geographicposition:aproxyforsalinity

Inestuaries,salinityisanimportantdriverofthecompositionofbiologicalcommunities.Thisattribute isdifficulttoestimateoverspacebecauseitisbothannuallyandseasonallydynamic.Sincewedidnot haveaccesstoanaccuratemapofthesalinitygradientinthebay,weusedameasureofEuclidean distancefromtheupperreachofourstudyareaasaproxyforsalinitytoensurethatthisenvironmental aspectwasaccountedfor.Figure2showsacategoricalmapofsalinityforthebaypublishedbyNOAA alongwithbiologicalthresholdsforoursalinityproxymeasurewhereweobservedshiftsinbenthic speciescommunities.

SeafloorSubstrates:SoftSedimentsandHardBottoms

SoftSedimentsandHardBottomsSubstratedatafortheentireBaywasobtainedfromtwosources.The primarysourcewastheDelawareCoastalProgramsofDelawareDepartmentofNaturalResourcesand EnvironmentalControl(DNREC)whichhasinitiatedabenthichabitatandsubbottomsedimentmapping projectusingremoteacoustics(i.e.,RoxannSeabedClassification,ChirpSubBottomProfiler,andmulti beansurfaceimagingsystem).ThisworkwillultimatelybecompletedonboththeDelawareandNew JerseysidesoftheEstuaryandisbeingsupportedbymultipleFederalandStateagencies,nonprofits, andacademicinstitutions.Thishighlydetailedbottomsubstratemapisfurnishingimportantnew BenthicHabitatsoftheDelawareBay informationaboutthegeospatialcharacterofphysicalconditionsacrosstheestuary.Forthepurposes ofthisstudyweobtainedthesamplepointsandtheirattributes.Forinterpolationpurposes,we convertedtheinformationonsedimentfractionstoanaveragegrainsizeestimateforeachsample.

InadditiontotheDNRECsamples,weobtainedsedimentsamplesfromusSEABED,aregionalsystem thatbringsassortednumericanddescriptivesedimentdatatogetherinaunifieddatabase(Reidetal. 2005).Theinformationincludestextural,geophysical,andcompositionalcharacteristicofpoints collectedfromtheseafloor,andisspatiallyexplicit.Intotalwehad3,706,489sedimentsamples(Figure 3).

BenthicHabitatsoftheDelawareBay

Figure1.BathymetrymapofDelawareBay.

BenthicHabitatsoftheDelawareBay

Figure2.SalinityoftheDelawareBay:NOAAcategoricaldelineationandecological thresholdsderivedfromanalysesofspeciescompostion. .

BenthicHabitatsoftheDelawareBay

Figure3.DistributionoftheSedimentSamples.Thedarkareasareareaswithhigh samplingdensityprovidedbytheDNREC.Thesparseareaswerenotsampledbythe DNREC,butfilledinwithsamplesfromusSEABED.

BenthicHabitatsoftheDelawareBay

InterpolationoftheSedimentDataset

WeinterpolatedthesedimentdatasetinGISusingInverseDistanceWeightingwithasquaredexponent ofdistanceandavariablesearchradiusbasedonthenearest12points.Theresulting30mresolution interpolatedmapwasusedtoattributeeachofthe246organismsamplepointswithanestimateofthe averagesedimentgrainsizeatthatpoint.FormapdisplayweusedaKriginginterpolationthatcreatesa smootherversionofthesedimentvariation(Figure4).Aseparatedatasetofhardbottomlocationswas createdfromthepointscodedasrockorshellintheDNRECdatasetor“solid”intheusSeabeddataset. Weoverlaidtheseareasonthesoftsedimentinterpolationtocreatethefinalsedimentmap(Figure5). Thesedataareaconservativerepresentationofhardbottomareasofthebayand,particularlyforshell, donotrepresenttheirentiredistributioninthebay.

SeabedTopographicForms

TheDelawareBayischaracterizedbyamoderatelycomplexcentraltrenchsurroundedbysimplesand. Withthisinmind,theseabedformdatalayerwasdevelopedtocharacterizeseafloortopographyina systematicandcategoricalway,relevanttothescaleofbenthichabitats.Theunitsthatemergefrom thisanalysis,fromhighflatstodepressions,representdepositionalanderosionalenvironmentsthat typicallydifferinfluvialprocesses,sediments,andorganismcomposition(WigleyandTheroux1981).

Seabedtopographicformswerecreatedfromrelativeseabedpositionanddegreeofslopeofeach seafloorcell.Seabedposition(ortopographicposition)describesthetopographyofthearea surroundingaparticular30mcell.CalculationswerebasedonthemethodsofFelsandZobel(1995)that evaluatetheelevationdifferencesbetweenanycellandthesurroundingcellswithinaspecified distance.Forexample,ifthemodelcellis,onaverage,higherthanthesurroundingcells,thenitis consideredtobeclosertotheridgetop(amorepositiveseabedpositionvalue).Conversely,ifthe modelcellis,onaverage,lowerthanthesurroundingcellsthenitisconsideredclosertotheslope bottom(amorenegativeseabedpositionvalue).

Therelativepositionvalueisthemeanofthedistanceweightedelevationdifferencesbetweenagiven pointandallothermodelpointswithinaspecifiedsearchradius.Thesearchradiuswassetat100cells afterexaminingtheeffectsofvariousradii.Positionwasgroupedintosixclassesthatwerelater simplifiedtothreeclasses:Thesecondelementoftheseabedforms,degreeofslope,wasusedto differentiatebetweensteepslopesandflatdepressions.Slopewascalculatedasthedifferencein elevationbetweentwoneighboringrastercells,expressedindegrees.Afterexaminingthedistribution ofslopesacrosstheregion,slopesweregroupedaccordingtothethresholdsoutlinedinTable1.

Slopeandrelativepositionwerecombinedtocreate18possibleseabedformsrangingfromhighflat bankstolowlevelbottoms.Initially,all18typeswereusedintheanalysisoforganismrelationships (Figure6),butresultssuggestedthattheycouldbesimplifiedwhilemaintaining,orimproving,their explanatorypower.Therefore,theanalysiswassimplifiedintothefollowingfourcategories:Highflat lowflat,highslopeandlowslope(Figure7).

BenthicHabitatsoftheDelawareBay

Figure4.InterpolatedmapofsoftsedimentsinDelawareBay.

BenthicHabitatsoftheDelawareBay

Figure5.Softsedimentinterpolationoverlaidwithhardbottomandshellareas.Hardbottomareasarecretaceous outcropscomposedofhighlycompactedsandandsilt.Thesedataareaconservativerepresentationofhardbottom areasofthebayand,particularlyforshell,donotrepresenttheirentiredistributioninthebay. BenthicHabitatsoftheDelawareBay

Figure6.Theeighteenpartseabedformmodelbasedonslopeandposition.

BenthicHabitatsoftheDelawareBay

Figure7.Thesimplifiedfourpartseabedformmodel.

BenthicHabitatsoftheDelawareBay

Table1.Thresholdsandsimplificationusedintheseabedformmodel.

RelativePosition Slope High(positive) Mid(0) Low(negative) 0–0.30levelflat Highflat Highflat Lowflat 0.30–1.15flat Highflat Highflat Lowflat 1.15–2.30gentleslope Highslope Highslope Lowslope 2.30–4.20slope Highslope Highslope Lowslope 4.20–8.0moderateslope Highslope Highslope Lowslope 8.0+steepslope Highslope Highslope Lowslope

LinkingtheOrganismstoPhysicalFactors

Recursivepartitioning(JMPsoftwarepackage)wasusedtouncoverrelationshipsbetweenbenthic communitiesandthephysicalenvironment.Recursivepartitioningisastatisticalmethodthatcreates decisiontreestoclassifymembersofacommonpopulation(theclassificationtypes)basedonasetof dependentvariables(thephysicalvariables).

Theanalysisrequiredeachbenthicgrabsampletobeattributedwiththebenthiccommunitytypethatit belongedto,overlaidonthestandardizedbasemaps,andattributedwiththeinformationondepth, sedimentgrainsizeandseabedformappropriatetothepoint.Additionally,weattributedeachpoint withthedistanceofthesamplefromtheupperfreshwaterreachoftheBayasaproxyforsalinity,aswe hadnodirectmeasureofsalinity.Regressiontreeswerefirstbuiltusingallvariablescollectivelyto identifythevariablesdrivingorganismdifferences.Afterexaminingthevariablecontributions collectively,individualregressiontreeswerebuiltfordepth,grainsize,andseabedformstoidentify criticalthresholdsthatseparatedsetsoforganismgroupsfromeachother.Inrecursivepartitioning, thesecutsareidentifiedbyexhaustivelysearchingallpossiblecutsandchoosingtheonethatbest separatesthedatasetintononoverlappingsubsets.Forexample,thefirstrunoftheorganismgroups onthebathymetrydataseparatedthedeepwatersamplesfromtheshallowwatersampleswhile identifyingtheexactdepththatmostcleanlyseparatedthetwosets.

RESULTS

Basedonthebathymetrydataset,theregionvariedindepthfrom0matthecoastto47malongthe centraltrench.Criticaldepththresholds(Figure1)forbenthicorganismsarediscussedunderthe organismclassification.Thesedimentmapsshowaseafloordominatedbyfinesand,alongwithlarge regionsoffinersilt.Hardbottomareasareconcentratedintheupperestuaryshellareaspredominate inthemidandlowerestuary(Figures4and5).

OrganismClassification

Weclassifiedthe246datasamplesinto20organismgroupsbasedspeciescompositionandabundance. AsummaryofthecharacteristicspeciesandtheirindicatorvaluesforeachisgiveninAppendix1.This

BenthicHabitatsoftheDelawareBay appendixincludesaspeciesbygrouptablethatgivesdiagnosticspeciesforeachorganismgroupand showsitsdistributionacrossalltheorganismsgroups.Themeanindicatorvalueandtheprobabilityof thisdistributionbeingrandomchancewerecalculatedforeachspeciesinthegroupthatitismost closelyassociatedwith.Mostspeciesdon’thaveacommonname,soonlyscientificnamesarelisted. LocalnamescanbefoundinGosner(1979),Weiss(1995)andPollock(1998)buttheyareoftenonlyfor thefamilyorgenus,notthespecies.

Relationshipoftheorganismgroupstothephysicalfactors

Salinity,oratleastaproxyofdistancefromtheupperreach,appearedtobethedrivingexplanatory variable.Thiswasmostapparentintheinitialclusteringofthesamplesintofourbroadorganismgroups. ThesegroupscorrespondedspatiallytoseveralpublishedmapsofsalinitythresholdsintheBay(Figure8 and9,Table2aandb)

Table2a.Organismsassociatedwithgroup1(upperbay)andgroup22(midbay).Thesepatterns correspondspatiallywithfresh/brackishandbrackishareasinthebay,althoughwedidnottestsalinity.

Group1 Importance Group22Importance Fresh/Brackish(023,001m) value P* Brackish(23,00152,240m) value P* Annelida:Oligochaeta Annelida:Oligochaeta Limnodrilushoffmeisteri 44.9 0.0002 Tubificoidesspp. 32.6 0.0002 Limnodrilusmaumeensis 10 0.0026 Annelida:Polychaeta Limnodrilusudekemianus 13 0.0004 Boccardiellaligerica 26.9 0.0002 Tubificidaeimm. 51.7 0.0002 Neanthessuccinea 21.9 0.0002 Annelida:Polychaeta Arthropoda:Amphipoda Marenzelleriaviridis 31 0.0002 Leptocheirusplumulosus 7 0.0952 Arthropoda:Amphipoda Arthropoda:Isopoda Apocorophiumlacustre 26.8 0.0002 Cyathurapolita 45.7 0.0002 Gammarusdaiberi 55.5 0.0002 Mollusca:Bivalvia Arthropoda:Chironomidae Macomabalthica 19.9 0.0002 Cryptochironomussp. 7.8 0.0168 Macomamitchelli 7.2 0.0336 Polypedilumhalteralegrp. 28 0.0002 Mulinialateralis 14.4 0.0126 Procladiussp. 6.5 0.0158 Rangiacuneata 19.7 0.0002 Arthropoda:Isopoda Nemertina Cassidinideaovalis 7.8 0.0092 Carinomatremaphoros 22.1 0.0002 Chiridoteaalmyra 43.2 0.0002 Mollusca:Bivalvia Corbiculafluminea 37.7 0.0002 Sphaeriidae 5.2 0.0356

BenthicHabitatsoftheDelawareBay

Table2b.Organismsassociatedwithgroup92(lowerbay)andgroup59(lowest).Thesepatterns correspondspatiallywithsalineandmarineareasinthebay,althoughwedidnottestsalinity.

Group92 Importance Group59Importance Saline1(52,24097,119m) value P* Saline2(>97,119m) value P* Annelida:Polychaeta Annelida:Oligochaeta Ampharetidae 19 0.0002 Oligochaeta 36.8 0.0002 cuprea 6.2 0.0222 Annelida:Polychaeta Eteoneheteropoda 25.3 0.0002 Amastigoscaperatus 35.1 0.0002 Exogonedispar 7.8 0.0052 Aricideacatherinae 24.3 0.0002 Glyceradibranchiata 6.7 0.0414 Asabellidesoculata 19 0.0004 Glycindesolitaria 58.7 0.0002 Braniawellfleetensis 6.9 0.0208 Heteromastusfiliformis 19.4 0.0036 Caulleriellavenefica 8.1 0.0028 Leitoscoloplosrobustus 18.5 0.0002 Dipolydorasocialis 4.2 0.0820 Mediomastusambiseta 54.5 0.0002 Drilonereislonga 12.1 0.0002 4.7 0.0340 Glyceraamericana 10.8 0.0004 Paraprionospiopinnata 25.1 0.0002 Glyceridae 4.2 0.0780 Pectinariagouldii 38.4 0.0002 Leitoscoloplosspp. 20.8 0.0004 Podarkeopsislevifuscina 4.7 0.0384 Nephtyidae 21.6 0.0002 Polycirruseximius 4.4 0.0648 Nephtysbucera 10.8 0.0016 Polydoracornuta 15.2 0.0014 Nephtyspicta 24.3 0.0002 Sabellariavulgaris 20.8 0.0002 Nereididae 8.1 0.0026 Spiochaetopteruscostarum 36.1 0.0002 Paraonisfulgens 6.6 0.0180 Streblospiobenedicti 32.4 0.0002 Parapionosyllislongicirrata 18.9 0.0002 Arthropoda:Amphipoda Phyllodocearenae 16.5 0.0004 Ampeliscaabdita 48.2 0.0002 Polynoidae 5.4 0.0246 Ampeliscaspp. 5.7 0.0660 Scoloplosspp.OrScolelepisspp 12.1 0.0002 Ampeliscavadorum 17.4 0.0002 Sphaerosylliserinaceus 5.4 0.0222 Bateacatharinensis 5.8 0.0176 Spiophanesbombyx 16.2 0.0002 Cerapustubularis 17.2 0.0008 Tharyxsp.A 38.8 0.0002 Elasmopuslaevis 4.7 0.0328 Arthropoda:Amphipoda Gammaruspalustris 10.9 0.0012 Acanthohaustoriusintermedius 5.4 0.0264 Incisocalliopeaestuarius 4.4 0.0674 Acanthohaustoriusmillsi 5.4 0.0228 Paracaprellatenuis 11.3 0.0042 Americhelidiumamericanum 9.4 0.0030 Arthropoda: Ampeliscaverrilli 23.4 0.0002 Cyclaspisvarians 28 0.0002 Ericthoniusbrasiliensis 10.9 0.0026 Leuconamericanus 35.1 0.0002 Haustoriuscanadensis 8.1 0.0042 Arthropoda:Decapoda Listriellabarnardi 5.4 0.0268 Eurypanopeusdepressus 7.8 0.0056 Microprotopusraneyi 15.9 0.0006 Arthropoda:Isopoda Monocorophiumtuberculatum 22.6 0.0002 Edoteatriloba 37.9 0.0002 Parametopellacypris 5.4 0.0274 Synidotealaticauda 14 0.0012 Protohaustoriuscf.deichmannae 18.9 0.0002 Chordata:Ascidiacea Rhepoxyniushudsoni 20.2 0.0002 Molgulamanhattensis 18.7 0.0002 Unciolaserrata 17.5 0.0004 Cnidaria:Anthozoa Arthropoda:Cumacea Diadumeneleucolena 8 0.0174 Oxyurostylissmithi 23.3 0.0002 Edwardsiaelegans 6.2 0.0210 Arthropoda:Decapoda Mollusca: Brachyura 6.8 0.0130 Acteocinacanaliculata 57.4 0.0002 Pagurusspp. 14.2 0.0002 Astyrislunata 10.6 0.0058 Pinnixaretinens 5.4 0.0266 Booneaseminuda 6.3 0.0152 Pinnixaspp. 5.9 0.0320 Crepidulafornicata 6.2 0.0222 Arthropoda:Isopoda Eupleuracaudata 6.2 0.0186 Chiridoteacaeca 8.1 0.0058 Ilyanassaobsoleta 14.1 0.0002 Arthropoda:Tanaidacea Odostomiaengonia 32.3 0.0002 Tanaissuspsammophilus 8.1 0.0042 Rictaxispunctostriatus 68.3 0.0002 Chordata:Ascidiacea Nemertina Ascidiacea 9.1 0.0046 Amphiporusbioculatus 21.9 0.0002 Chordata:Cephalochordata 5.4 0.0280 Carinomellalactea 13 0.0022 Branchiostomacaribaeum 5.4 0.0280 Micruraleidyi 17.9 0.0004 Mollusca:Bivalvia Platyhelminthes:Turbellaria Cyclocardiaborealis 5.4 0.0244 Stylochusellipticus 25 0.0002 Ensisdirectus 32.3 0.0002 Gemmagemma 9.4 0.0926 Nuculaproxima 18.8 0.0002 Spisulasolidissima 13.5 0.0002 Tellinaagilis 65.3 0.0002 Yoldialimatula 8.1 0.0040 Mollusca:Gastropoda Crepidulaplana 7.5 0.0118 Crepidulaspp. 26.9 0.0002 Kurtziellaatrostyla 5.9 0.0322 Nassariustrivittatus 14.4 0.0006 Nudibranchia 6.3 0.0370 Polinicesduplicatus 5.9 0.0282 Nemertina Cerebratuluslacteus 5.1 0.0638 Nemertina 12.3 0.0090

BenthicHabitatsoftheDelawareBay

Figure8.Thedistributionofthefourbroadorganism groupsacrossthebay.Datasamplesarecolorcoded togroupswherepurplecorrespondstogroup1 (distance023,001m,“fresh/brackish”);brown correspondstogroup22(distance23,001to54,000, “brackish”);greencorrespondstogroup91(distance 54,000to97,119m,“saline”),andbluecorresponds togroup59(distance>97,119m“saline”).Alistof theorganismsfoundineachgroupisgivenintable2 Thesegroupsarestronglyseparatedbypositioninthe baywhichlikelycorrespondswithsalinity(R20.619). Detailsshowninchartbelowwherethebarsshowthe proportionofsamplesthatfallwithintheeach criterion.

Distancefromthefreshwaterupperbaywasthesinglebestexplanatoryvariable(R2=0.61),followedby bathymetry,grainsizeandseabedform.Todeterminewhatthresholdswereimportantforeachvariable werantherecursivepartitioninganalysisseparatelyforeachvariablealonetoseewhatcutoffsbest separatedthe19organismgroupsfromeachother.Wealsorantestedtheseindividuallywithinthe samplesfromthefourpositiongroupsshowninfigure7.Fromthisweextractedthresholdsthatwere consistentbothforthewholedatasetandwithinthefourgroups(Table3) Table3.Thresholdsfordistance,depth,grainsizeandseabedformsderivedfromtheorganismdata. DistancefromFresh DepthZones AveGrainSize SeabedForms (m) (m) (mm) 0 0 0 Lowflat(slope12,position1) 23,001 1.89* 0.04 Highflat(slope12,position2) 52,240 4.44 0.13 Lowslope(slope36,position1) 97,119 5.25*** 0.63*** Highslope(slope36,position2) 7.64 0.85 2

BenthicHabitatsoftheDelawareBay

BenthicHabitatTypesandEcologicalMarineUnits Thebenthichabitattypesweidentifiedarepresentedinthefollowingsectionofthisdocument.Because thefinalresultsareaproductofseveralsteps,e.g.themacrofaunaclassification;theidentificationof relationshipsbetweentheorganismgroupsandthefactorsofdepth,grainsizeandtopography;andthe mappingofbenthicenvironments,theresultsanddetailsoneachstepareprovidedseparatelyinthe appendices.

Twoseparate,butcloselyrelatedfinalmapswerecreated.TheEcologicalMarineUnits(EMU)represent allfourwaycombinationsofdepth,sedimentgrainsize,salinity,andseabedformsbasedonthe ecologicalthresholdsrevealedbythebenthicorganismrelationships(Table3).BenthicHabitatsare EMUsclusteredintogroupsthatcontainthesamespeciesassemblage.Thetwotermsarenot synonymous,buttheyarebasedonthesameinformation,andthus,representtwoperspectivesonthe seafloor.Essentially,theEMUmapsshowthefulldiversityofphysicalfactorcombinations,regardlessof whetheraspecifichabitattypewasidentifiedforthecombination.Thebenthichabitatmapshowsonly thecombinationsoffactors,orgroupsofcombinations,forwhichabenthicorganismgroupwas identified.ItshouldbenotedthatthenumbersoftheEMUsandbenthichabitatswerederivedfromthe statisticalrelationshipsandiscompletelyarbitrary.

TheEcologicalMarineUnitmapisbasedonaslightlysimplerversionofaTable3,toemphasizethe thresholdsthatwerethemostconsistentacrossthewholebayandacrosstheindividualgroups(Table 4,Figure8).

Table4.ThresholdsusedtocreatetheEcologicalMarineUnits(Figure8). DistancefromFresh DepthZones AveGrainSize SeabedForms (m) (m) (mm) 0 0 0 Lowflat(slope12,position1) 23,001 1.89 0.04 Highflat(slope12,position2) 52,240 5.25 0.63 Lowslope(slope36,position1) 97,119 <5.25 2 Highslope(slope36,position2) Thethresholdandmodelsusedtomapthebenthichabitatsweresimplerandthemapsshouldbe consideredschematic(Figure9).Tocreatethehabitatmapaseparatemodelwasdevelopedwithinin “salinity”group(e.g.groupsshowninfigure7basedondistancefromtheupperbay)becausethe analysissuggestedthattherewererelativelydifferentecologicalcorrelatesdrivingthepatternswithin eacharea(Table5).Creatingamorenaturalisticmapwillrequirebetterinformationonsalinity.

BenthicHabitatsoftheDelawareBay

Figure9.EcologicalMarineUnitsofDelawareBay

BenthicHabitatsoftheDelawareBay

Figure10.BenthichabitatsoftheDelawareBay. BenthicHabitatsoftheDelawareBay

Table5.Thresholdsusedincreatingthebenthichabitatmap.Theseparationcriteriaareshowninthe firstcolumnwithdistanceanddepthinmeters,andsedimentgrainsizeinmm.Howwellthe combinationofcriteriaseparateseachgroupfromtheothergroupscanbeseeninthetable.For example,14ofthe18samplesofgroup98weatadistancebetween52,240mand82,640mandon sedimentgrainsizeover0.63mm. "SALINE"GROUP(Distancefromfresh>52,240) Groups Rsquare=0.533,N=100,Splits=9 Mostlikely 59 91 92 98 109 111 113 117 133 Distance>=82,640&depth<5.25m&Slope<3 Group111 1 6 5 3 Distance>=82,640&depth<5.25&Slope>=3 Group113 5 Distance>=82,640&depth>=5.25&Distance<100,567 Group109 1 9 8 1 Distance>=82,640&depth>=5.25&Distance>=100,567&Distance<106,235 Group111 1 4 Distance>=82,640&depth>=5.25&Distance>=100567.609&Distance>=106,235 Group117/133 1 3 3 Distance<82,640&avggrainsize>=0.63 Group98 3 14 1 Distance<82,640&avggrainsize<0.63&Slope<3 Group92 2 19 1 5 Distance<82,640&avggrainsize<0.63&Slope>=3 Group59/91 1211 "BRACKISH"GROUP(Distancefromfresh>23,00152,240) Groups Rsquare=0.533,N=100,Splits=9 Mostlikely 22 34 53 56 81 Distance>=37,367&Slope<3 Group81 1 1 19 Distance>=37,367&Slope>=3 Group56 1 3 3 Distance<37,367&Distance>=13,254&avggrainsize<0.198 Group34 9 1 Distance<37,367&Distance>=13,254&avggrainsize>=0.198 Group53 1251 "FRESH/BRACKISH"GROUP(Distancefromfresh<23,001) Groups Rsquare=0.361,N=73 Mostlikely 1 2 4 5 16 40 avggrainsize<0.64&avggrainsize>=0.26 Group5 2 5 8 4 avggrainsize<0.64&avggrainsize<0.26&Distance>=10,227&Position<3 Group40 1 1 2 1 1 avggrainsize<0.64&avggrainsize<0.26&Distance>=10,227&Position>=3 Group4 1 1 4 avggrainsize<0.64&avggrainsize<0.26&Distance<10,227 Group1 11 4 3 avggrainsize>=0.64&Position<9 Group2or4 3 6 9 avggrainsize>=0.64&Position>=9 Group1 6

BenthicHabitatsoftheDelawareBay

LISTOFFIGURES

Figure1.BathymetrymapofDelawareBay.

Figure3.DistributionoftheSedimentSamples.Thedarkareasareareaswithhighsamplingdensity providedbytheDNREC.ThesparseareaswerenotsampledbytheDNREC,butfilledinwithsamples fromusSEABED. Figure2.SalinityoftheDelawareBay:NOAAcategoricaldelineationandecologicalthresholdsderived fromanalysesofspeciescompostion. Figure4.Softsedimentinterpolation. Figure5.Softsedimentinterpolationoverlaidwithhardbottomandshellareas. Figure6.Theeighteenpartseabedformmodelbasedonslopeandposition Figure7.Thesimplifiedfourpartseabedfrommodel. Figure8.Thedistributionofthefourbroadorganismsgroupsacrossthebay. Figure9EcologicalMarineUnitsofDelawareBay. Figure10.BenthichabitatsoftheDelawareBay.

LITERATURECITED

Allee,R.J.,M.Detheir,D.Brown,L.Deegan,R.G.Ford,T.F.Hourigan,J.Maragos,C.Schoch,K.Sealey,R. Twilley,M.P.WeinsteinandM.Yoklavich.2000.Marineandestuarineecosystemandhabitat classification.NOAATechnicalMemorandumNMFSF/SPO43. Anderson,T.J.andM.M.Yoklavich.2007.Multiscalehabitatassociationsofdeepwaterdemersalfishes offcentralCalifornia.FisheryBulletin105:168179. Auster,P.J.2006.Linkingseafloorhabitatmappingprotocolstomanagementandpolicyneeds. FundingapplicationtoUSEnvironmentalProtectionAgency. Auster,P.J.,K.JoyandP.C.Valentine.2001.Fishspeciesandcommunitydistributionsasproxiesfor seafloorhabitatdistributions:theStellwagenBankNationalMarineSanctuaryexample (NorthwestAtlantic,GulfofMaine).EnvironmentalBiologyofFishes60:331346. Brown,B.1993.AclassificationsystemofmarineandestuarinehabitatsinMaine:anecosystem approachtohabitats.Augusta,Maine:MaineNaturalAreasProgram,DepartmentofEconomic andCommunityDevelopment. Brown,S.K.2002.Ourlivingoceansbenthichabitatclassificationsystem.NOAANMFSOfficeofScience andTechnology.

BenthicHabitatsoftheDelawareBay

Charton,J.A.andA.PerezRuzafa.1998.Correlationbetweenhabitatstructureandarockyreeffish assemblageinthesouthwestMediterranean.MarineEcology19:111128. Connor,D.W.,J.Allen,N.Golding,K.Howell,L.Lieberknecht,K.Northen,andJ.Reker.2004.The nationalmarinehabitatclassificationforBritainandIreland,version04.05.JointNature ConservationCommittee.http://www.jncc.gov.uk/pdf/04_05_introduction.pdf. Danovaro,R.,C.Gambi,A.Dell’Anno,C.Corinaldesi,S.Fraschetti,A.Vanreusel,M.Vincx,andA.J. Gooday.2008.Exponetialdeclineofdeepseaecosystemfunctioninglinkedtobenthic biodiversityloss.CurrentBiology18(1):18. Davies,C.,D.Moss,andM.O.Hill.2004.EUNISHabitatClassification.EuropeanEnvironmentAgency. DeLong,A.K.andJ.S.Collie.2004.Definingessentialfishhabitat:amodelbasedapproach. Narragansett,RhodeIsland:RhodeIslandSeaGrant. Dethier,M.N.1992.Classifyingmarineandestuarinenaturalcommunities:analternativetothe Cowardinsystem.NaturalAreasJournal12(2):90100. Divins,D.L.,andD.Metzger.NGDCCoastalReliefModel. http://www.ngdc.noaa.gov/mgg/coastal/coastal.html.Accessed2008. Dufrene,M.andP.Legendre.1997.Speciesassemblagesandindicatorspecies:theneedforaflexible asymmetricalapproach.EcologicalMonographs67(3):345366. Etter,R.J.,andJ.F.Grassle.1992.Patternsofspeciesdiversityinthedeepseaasafunctionofsediment particlesizediversity.Nature360:576578. EuropeanEnvironmentAgency.1999.EuropeanTopicCentreonNatureConservation.Work Programme:Task4.3EUNISHabitatClassification,DraftFinalReport. http://www.searchmesh.net/. Fels,J.andR.Zobel.1995.LandscapepositionandclassifyinglandtypemappingforstatewideDRASTIC mappingproject.NorthCarolinaStateUniversity.TechnicalReport.VEL.95.1toNorthCarolina DepartmentofEnvironment,HealthandNaturalResources,DivisionofEnvironmental Management. Fogarty,M.J.andC.Keith.2007.DelineationofregionalecosystemunitsontheU.S.Northeast ContinentalShelf.WoodsHole,Massachusetts:NortheastFisheriesScienceCenter,National MarineFisheriesService. Folk,R.L.1954.Thedistinctionbetweengrainsizeandmineralcompositioninsedimentaryrock nomenclature.JournalofGeology62(4):344359. Gaspar,M.B.,S.Carvalho,R.Constantino,J.TataRegala,J.Cúrdia,andC.C.Monteiro.2009.Canwe inferdredgefishingeffortfrommacrobenthiccommunitystructure?ICESJournalofMarine Science66:2121–2132.

BenthicHabitatsoftheDelawareBay

Gosner,K.L.1979.AfieldguidetotheAtlanticseashore.Boston,Massachusetts:HoughtonMifflin. Greene,J.K.,M.G.Anderson,J.Odell,andN.Steinberg,eds.2010.TheNorthwestAtlanticMarine ecoregionalassessment:species,habitatsandecosystems:phaseone.Boston,Massachusetts: TheNatureConservancy,EasternU.S.Division. Greene,H.G.,J.J.Bizzarro,J.E.Tilden,H.L.Lopez,andM.D.Erdey.2005.Thebenefitsandpitfallsof geographicinformationsystemsinmarinebenthichabitatmapping.InPlaceMatters,eds. Wright,D.J.andScholz,A.J.Portland,Oregon:OregonStateUniversityPress. Greene,H.G.,MM.Yoklavich,RM.Starr,VM.O’Connell,WW.Wakefield,DE.Sullivan,J.E.McReaJr., andG.M.Caillet.1999.Aclassificationschemefordeepseafloorhabitats.OceanologicaActa 22:663678. GulfofMaineCouncilontheEnvironment.2005.Workshopproceedings:marinehabitatsintheGulfof Maine.http://www.gulfofmaine.org/council/publications/marinehabitatworkshop proceedings.pdf. Kostylev,V.E,B.J.Todd,G.B.Fader,R.C.Courtney,G.D.M.Cameron,andR.A.Pickrill.2001.Benthic habitatmappingontheScotianShelfbasedonmultibeambathymetry,surficialgeologyandsea floorphotographs.MarineEcologyProgressSeries219:121137. Kutcher,T.E.2006.Acomparisonoffunctionalitybetweentwocoastalclassificationschemesdeveloped withintheNationalOceanicandAtmosphericAdministration.SilverSpring,Maryland:Reportto NOAA/NOS/OCRM. Levin,L.A.,R.J.Etter,M.A.Rex,A.J.Gooday,C.R.Smith,J.Pineda,C.T.Stuart,R.R. Hessler,andD.Pawson.2001.Environmentalinfluencesonregionaldeepseaspeciesdiversity. AnnualReviewofEcology,Evolution,andSystematics32:5193. Lindholm,J.B.,P.J.Auster,andLS.Kaufman.1999.Habitatmediatedsurvivorshipofjuvenile(0year) AtlanticcodGadusmorhua.MarineEcologyProgressSeries180:247255. Lough,R.G.,P.C.Valentine,D.C.Potter,P..Auditore,G.R.Bolz,J.D.Neilson,andR.I.Perry.1989. Ecologyanddistributionofjuvenilecodandhaddockinrelationtosedimenttypeandbottom currentsoneasternGeorgesBank.MarineEcologyProgressSeries56:112. Lund,K.andA.R.Wilbur.2007.HabitatfeasibilitystudyofcoastalandmarineenvironmentsIn Massachusetts.MassachusettsOfficeofCoastalZoneManagement.Boston,MA.31pp. Madden,C.J.,K.Goodin,R.J.Allee,G.Cicchetti,C.Moses,M.Finkbeiner,andD.Bamford.2009. CoastlandMarineEcologicalClassificationStandard.NOAAandNatureServe. Mahon,R.,S.K.Brown,K.C.T.Zwanenburg,D.B.Atkinson,K..Buja,L.Clafin,G.D.Howell,M.E.onaco,R. N.O’Boyle,andM.Sinclair.1998.Assemblagesandbiogeographyofdemersalfishesofthe eastcoastofNorthAmerica.CanadianJournalofFisheriesandAquaticSciences55:17041738.

BenthicHabitatsoftheDelawareBay

McCune,B.andJ.BGrace.2002.AnalysisofEcologicalCommunities.MjMsoftwaredesign.Oregon, USA.www.pcord.com. NERRS(NationalEstuarineResearchReserveSystem).2000.Evaluationsofmarineandestuarine ecosystemandhabitatclassification.NOAATechnicalMemorandumNMFSF/SPO43.National OceanService,OfficeofCoastSurvey,USBathymetric&FishingMaps. http://www.ngdc.noaa.gov/mgg/bathymetry/.Accessed2008. Norse,E.A.1993.Globalmarinebiologicaldiversity.CenterforMarineConservation.Washington,DC: IslandPress. Pollock,L.W.1998.ApracticalguidetothemarineofNortheastNorthAmerica.New Brunswick,NewJersey:RutgersUniversityPress. Reid,J.M.,J.A.Reid,C.J.Jenkins,M.E.Hastings,S.J.Williams,andL.J.Poppe.2005.usSEABED:Atlantic coastoffshoresurficialsedimentdatarelease.U.S.GeologicalSurveyDataSeries118,version 1.0.http://pubs.usgs.gov/ds/2005/118/. Roworth,E.andR.Signell.1998.ConstructionofadigitalbathymetryfortheGulfofMaine.U.S. GeologicalSurveyPublications98901.http://pubs.usgs.gov/of/1998/of98801/bathy/. Schratzberger,M.,andS.Jennings.2002.Impactsofchronictrawlingdisturbanceonmeiofaunal communities.MarineBiology141:9911000. Serrano,A.,andI.Preciado.2007.Environmentalfactorsstructuringcommunitiesin shallowrockyhabitats:roleofphysicalstressversushabitatcomplexity.HelgolandMarine Research61:1729. Shepard,F.P.1954.Nomenclaturebasedonsandsiltclayratios.JournalofSedimentaryPetrology24: 151158. StevensonD.,L.Chiarella,D.Stephan,R.Reid,K.Wilhelm,J.McCarthyandM.Pentony.2004. CharacterizationofthefishingpracticesandmarinebenthicecosystemsofthenortheastUS shelfandanevaluationofthepotentialeffectsoffishingonessentialhabitat.NOAATechnical MemorandumNMFSNE181. Theroux,R.B.andR.L.Wigley.1998.Quantitativecompositionanddistributionofthemacrobenthic invertebratefaunaofthecontinentalshelfecosystemsofthenortheasternUnitedStates.NOAA TechnicalReportNMFS140. Thrush,S.F.,J.E.Hewitt,V.J.Cummings,P.K.Dayton,M.Cryer,S.J.Turner,G.A.Funnell,R.G.Budd,C.J. Milburn,andM.R.Wilkinson.1998.Disturbanceofthemarinebenthichabitatbycommercial fishing:Impactsatthescaleofthefishery.EcologicalApplications(8):866879. Todd,B.J.andH.G.Greene.2008.MappingtheSeafloorforHabitatCharacterization.Geological AssociationofCanada.

BenthicHabitatsoftheDelawareBay

Valentine,P.C.,B.J.Todd,andV.E.Kostylev.2005.Classificationofmarinesublittoralhabitats,with applicationtothenortheasternNorthAmericaregion.AmericanFisheriesSocietySymposium 41:183200.http://woodshole.er.usgs.gov/projectpages/stellwagen/index.html. Weiss,H.M.1995.MarineanimalsofSouthernNewEnglandandNewYork.Stategeologicaland naturalhistorysurveyofConnecticut.ConnecticutDepartmentofEnvironmentalProtection Bulletin115. Wentworth,C.K.1922.Ascaleofgradeandclasstermsforclasticsediments.JournalofGeology30: 377–392. Wigley,R.L.andR.B.Theroux.1981.AtlanticcontinentalshelfandslopeoftheUnitedStates macrobenthicinvertebratefaunaoftheMiddleAtlanticBightregionfaunalcompositionand quantitativedistribution.DepartmentofInterior,GeologicalSurvey.ProfessionalPaper529N. WorldWildlifeFundandConservationLawFoundation.2006.MarineecosystemconservationforNew EnglandandMaritimeCanada:asciencebasedapproachtoidentifyingpriorityareasfor conservation.Boston,Massachusetts:ConservationLawFoundationandHalifax:NovaScotia, Canada:WorldWildlifeFund.

BenthicHabitatsoftheDelawareBay

APPENDIX:DescriptionsoftheBenthicHabitats. Table1a.Organismsassociatedwithgroups(clusters)1through53.ThelasttwocolumnsgivetheP valueforaMonteCarlotestofsignificanceasanindicatorofthegroup,andtheaverageimportance valueinthegroup(averageabundancetimesaveragefrequency.

Cluster TaxaGroup SpeciesName Averageofp* AverageofIV 1 Annelida:Oligochaeta Isochaetidesfreyi 0.2979 8.3 Tubificidaeimm.withcapilliformchaetae 0.0002 21.9 Arthropoda:Amphipoda Leptocheirusplumulosus 0.0836 12.1 Arthropoda:Chironomidae Chironomidaepupae 0.8596 4.2 Chironomussp. 0.8610 4.2 Cryptochironomussp. 0.0706 13.0 Procladiussp. 0.0182 20.8 Arthropoda:Diptera Ceratopogonidae 0.3005 8.3 Arthropoda:Isopoda Cyathurapolita 0.0006 12.6 Arthropoda:Chironomidae Stenochironomusspp. 0.8646 4.2 Mollusca:Bivalvia Musculiumspp. 0.8616 4.2 Pisidiumspp. 0.1630 12.5 1Total 0.3651 2 Annelida:Polychaeta Marenzelleriaviridis 0.0018 16.7 Arthropoda:Isopoda Chiridoteaalmyra 0.0002 33.1 2Total 0.0010 24.9 4 Annelida:Oligochaeta Branchiurasowerbyi 0.6549 5.0 Arthropoda:Amphipoda Apocorophiumlacustre 0.0012 18.8 Arthropoda:Chironomidae Axarussp. 0.4127 7.1 Rheotanytarsussp. 0.6549 5.0 Mollusca:Gastropoda Littoridinopstenuipes 0.2084 10.0 4Total 0.3864 9.2 5 Arthropoda:Amphipoda Gammarusdaiberi 0.0124 18.0 Arthropoda:Chironomidae Polypedilumhalteralegrp. 0.0014 27.2 Tanypusneopunctipennis 0.2719 10.0 Arthropoda:Cirripedia Balanusimprovisus 0.0108 25.5 Arthropoda:Decapoda Rhithropanopeusharrisii 0.0010 32.6 Arthropoda:Isopoda Cassidinideaovalis 0.0018 45.5 Arthropoda:Mysidacea Mysidae 0.2707 10.0 Mollusca:Bivalvia Corbiculafluminea 0.0004 35.5 Sphaeriidae 0.7660 3.7 Mollusca:Gastropoda Laevapexfuscus 0.2769 10.0 5Total 0.1613 21.8 16 Annelida:Oligochaeta Limnodrilushoffmeisteri 0.0002 40.3 Limnodrilusmaumeensis 0.0656 13.2 Limnodrilusspp. 0.1880 11.1 Limnodrilusudekemianus 0.3023 7.3 Quistidrilusmultisetosus 0.1880 11.1 Tubificidaeimm.withcapilliformchaetae 0.3035 8.1 16Total 0.1746 15.2 22 Arthropoda:Amphipoda Ameroculodesspeciescomplex 0.1698 9.8 22Total 0.1698 9.8 34 Arthropoda:Chironomidae Coelotanypussp. 0.3785 8.3 Mollusca:Bivalvia Rangiacuneata 0.0018 30.9 34Total 0.1902 19.6 53 Annelida:Polychaeta Boccardiellaligerica 0.0002 54.1 Platyhelminthes:Turbellaria Euplanagracilis 0.1452 12.5 53Total 0.0727 33.3

BenthicHabitatsoftheDelawareBay

Table1b.Organismsassociatedwithgroups(clusters)56through91.ThelasttwocolumnsgivetheP valueforaMonteCarlotestofsignificanceasanindicatorofthegroup,andtheaverageimportance valueinthegroup(averageabundancetimesaveragefrequency.

Cluster TaxaGroup SpeciesName Averageofp* AverageofIV 56 Arthropoda:Amphipoda Caprellidae 0.0736 20.0 Arthropoda:Chironomidae Harnischiasp. 0.0964 16.6 Cnidaria:Anthozoa Anthozoa 0.1976 10.9 Diadumeneleucolena 0.0078 29.7 Mollusca:Bivalvia Macomabalthica 0.0178 19.0 Mollusca:Gastropoda Pyramidellidae 0.5263 6.0 Turbonillainterrupta 0.2160 10.7 56Total 0.1622 16.1 81Annelida:Polychaeta Heteromastusfiliformis 0.0036 18.9 Arthropoda:Chironomidae Parakiefferiellasp. 0.7506 4.3 Arthropoda:Cumacea Leuconamericanus 0.0002 26.1 Mollusca:Bivalvia Mulinialateralis 0.0070 23.5 Myaarenaria 0.4021 6.4 Nemertina Carinomatremaphoros 0.1938 9.5 81Total 0.2262 14.8 91 Annelida:Polychaeta Eteonefoliosa 0.0768 20.0 Leitoscoloplosspp. 0.0054 21.4 Paraonisfulgens 0.0004 55.9 Scoloplosspp. 0.0232 18.9 Arthropoda:Amphipoda Haustoriuscanadensis 0.0040 29.5 Pseudohaustoriuscaroliniensis 0.0760 20.0 Rhepoxyniushudsoni 0.1158 12.0 Arthropoda:Decapoda Ovalipesocellatus 0.0760 20.0 Arthropoda:Isopoda Chiridoteacaeca 0.0040 32.0 Mollusca:Bivalvia Gemmagemma 0.0056 22.3 Mytilidae 0.0768 20.0 Tellinidae 0.1272 15.2 Nemertina Micruraleidyi 0.0066 19.5 91Total 0.0460 23.6 92 Annelida:Oligochaeta Tubificoidesspp. 0.0002 16.6 Annelida:Polychaeta Leitoscoloplosfragilis 1.0000 3.1 Onuphidae 0.2681 9.4 Polygordiusspp. 0.2655 9.4 Arthropoda:Decapoda Paguruslongicarpus 1.0000 3.1 Mollusca:Gastropoda Ilyanassaobsoleta 0.0178 20.0 Platyhelminthes:Turbellaria Turbellaria 0.9646 2.3 92Total 0.5023 9.1

BenthicHabitatsoftheDelawareBay

Table1c.Organismsassociatedwithgroups(clusters)92through98.ThelasttwocolumnsgivetheP valueforaMonteCarlotestofsignificanceasanindicatorofthegroup,andtheaverageimportance valueinthegroup(averageabundancetimesaveragefrequency.

Cluster TaxaGroup SpeciesName Averageofp* AverageofIV 92 Annelida:Oligochaeta Tubificoidesspp. 0.0002 16.6 Annelida:Polychaeta Leitoscoloplosfragilis 1.0000 3.1 Onuphidae 0.2681 9.4 Polygordiusspp. 0.2655 9.4 Arthropoda:Decapoda Paguruslongicarpus 1.0000 3.1 Mollusca:Gastropoda Ilyanassaobsoleta 0.0178 20.0 Platyhelminthes:Turbellaria Turbellaria 0.9646 2.3 92Total 0.5023 9.1 98 Annelida:Polychaeta Exogonedispar 0.0044 31.2 Glyceradibranchiata 0.1090 10.9 Glycindesolitaria 0.0002 18.3 Hydroidesdianthus 0.3247 7.2 Maldanidae 0.5447 4.9 Mediomastusambiseta 0.0002 15.6 Neanthessuccinea 0.0002 30.4 Paranaitisspeciosa 0.1600 12.5 Pectinariagouldii 0.0030 26.4 Podarkeopsislevifuscina 0.2480 10.0 Polycirruseximius 0.0476 17.9 Polydoracornuta 0.0008 35.8 Sabellariavulgaris 0.0002 37.3 Sabellidae 0.5695 6.2 Scoloplosrubra 0.1154 12.4 Streblospiobenedicti 0.0002 16.9 Arthropoda:Amphipoda Bateacatharinensis 0.0664 15.5 Elasmopuslaevis 0.0508 18.8 Gammaruspalustris 0.0016 43.8 Incisocalliopeaestuarius 0.0420 18.3 Melitanitida 0.0196 19.4 Mucrogammarusmucronatus 0.7636 4.2 Paracaprellatenuis 0.0160 21.6 Unciolaserrata 0.0128 20.1 Arthropoda:Cumacea Cyclaspisvarians 0.0030 24.4 Arthropoda:Decapoda Dyspanopeussayi 0.5695 6.2 Euceramuspraelongus 0.5695 6.2 Eurypanopeusdepressus 0.0026 31.2 Arthropoda:Isopoda Edoteatriloba 0.0004 19.3 Synidotealaticauda 0.0158 21.7 Chordata:Ascidiacea Molgulamanhattensis 0.0004 49.1 Mollusca:Bivalvia Anadaraovalis 0.5695 6.2 Anomiasimplex 0.5715 6.2 Crassostreavirginica 0.5673 6.2 Geukensiademissa 0.8230 3.7 Ischadiumrecurvum 0.5673 6.2 Lyonsiahyalina 0.1370 12.6 Mercenariamercenaria 0.4147 6.3 Mollusca:Gastropoda Astyrislunata 0.0438 14.1 Booneaseminuda 0.1264 12.0 Busyconcarica 0.5719 6.2 Crepidulafornicata 0.0078 25.0 Epitoniumrupicola 0.1746 12.5 Epitoniumspp. 0.9636 2.3 Eupleuracaudata 0.1078 14.1 Nudibranchia 0.0574 13.9 Odostomiaengonia 0.0044 23.7 Urosalpinxcinerea 0.8608 3.1 98Total 0.2256 16.4

BenthicHabitatsoftheDelawareBay

Table1d.Organismsassociatedwithgroups(clusters)109through111.ThelasttwocolumnsgivetheP valueforaMonteCarlotestofsignificanceasanindicatorofthegroup,andtheaverageimportance valueinthegroup(averageabundancetimesaveragefrequency.

Cluster TaxaGroup SpeciesName Averageofp* AverageofIV 109 Annelida:Polychaeta Diopatracuprea 0.0758 16.1 Dispiouncinata 0.5697 6.2 Eteonelonga 0.5661 6.2 Loimiamedusa 0.5625 6.2 Lumbrinereshebes 0.5541 6.2 Paraprionospiopinnata 0.0010 34.3 Scolelepistexana 0.5697 6.2 Spiochaetopteruscostarum 0.0002 24.8 Spionidae 0.5625 6.2 Arthropoda:Amphipoda Ampeliscaabdita 0.0002 23.0 Ampeliscavadorum 0.0300 18.3 Cerapustubularis 0.0020 28.7 Arthropoda:Decapoda Caridea 0.5541 6.2 Arthropoda:Merostomata Limuluspolyphemus 0.1264 11.8 Arthropoda:Mysidacea Americamysisspp. 0.5697 6.2 Cnidaria:Anthozoa Edwardsiaelegans 0.3709 7.1 Echinodermata:Holothuroidea Leptosynaptatenuis 0.5625 6.2 Mollusca:Gastropoda Acteocinacanaliculata 0.0002 22.4 Rictaxispunctostriatus 0.0002 32.9 Nemertina Amphiporusbioculatus 0.0158 17.1 Platyhelminthes:Turbellaria Stylochusellipticus 0.0344 14.5 109Total 0.2728 14.6 111 Annelida:Oligochaeta Haplotaxissp. 0.3219 9.1 Annelida:Polychaeta Arabellidae 0.3163 9.1 Aricideacatherinae 0.0044 35.2 Asabellidesoculata 0.0002 35.9 Eteoneheteropoda 0.0322 14.5 Glyceraamericana 0.0432 20.0 Lumbrineridae 0.6337 5.4 Microphthalmussczelkowii 0.4331 6.8 Microphthalmusspp. 0.0648 14.8 Nereididae 0.1892 11.7 Orbiniidae 0.3231 9.1 Paranaitisspeciosa 0.6327 5.4 Phyllodocearenae 0.0002 42.5 Polynoidae 0.0594 18.2 Terebellidae 0.3163 9.1 Arthropoda:Amphipoda Americhelidiumamericanum 0.0946 13.9 Ampeliscaspp. 0.6269 4.9 Ampeliscaverrilli 0.0006 39.3 Caprellapenantis 0.3245 9.1 Caprellaspp. 0.2999 9.1 Ericthoniusbrasiliensis 0.0514 14.4 Microprotopusraneyi 0.0208 18.8 Monocorophiumtuberculatum 0.0192 20.5 Arthropoda:Cumacea Oxyurostylissmithi 0.0002 36.7 Arthropoda:Decapoda Crangonseptemspinosa 0.2999 9.1 Pinnixaspp. 0.3587 7.9 Arthropoda:Mysidacea Neomysisamericana 0.3289 8.0 Echinodermata:Asteroidea Asteroidea 0.3163 9.1 Echinodermata:Echinoidea Echinoidea 0.3193 9.1 Echinodermata:Holothuroidea Pentamerapulcherrima 0.6341 5.4 Mollusca:Bivalvia Nuculaproxima 0.0004 38.8 Pandoragouldiana 0.3177 9.1 Tellinaagilis 0.0090 21.0 Mollusca:Gastropoda Busyconcanaliculatum 0.3187 9.1 Crepidulaconvexa 0.2999 9.1 Crepidulaplana 0.5549 5.4 Crepidulaspp. 0.0086 24.5 Kurtziellaatrostyla 0.0354 18.7 Polinicesduplicatus 0.3421 8.1 Nemertina Carinomellalactea 0.0150 20.7 Cerebratuluslacteus 0.0644 16.2 111Total 0.2203 15.7

BenthicHabitatsoftheDelawareBay

Table1e.Organismsassociatedwithgroups(clusters)113through133.ThelasttwocolumnsgivetheP valueforaMonteCarlotestofsignificanceasanindicatorofthegroup,andtheaverageimportance valueinthegroup(averageabundancetimesaveragefrequency. Cluster TaxaGroup SpeciesName Averageofp* AverageofIV 113 Annelida:Polychaeta Amastigoscaperatus 0.0012 35.0 Apoprionospiopygmaea 0.2621 10.0 Capitellacapitatacomplex 0.2663 10.0 Caulleriellavenefica 0.1328 13.7 Cirriformiagrandis 0.2721 10.0 Clymenellatorquata 0.5055 6.2 Dipolydoracommensalis 0.2681 10.0 Dipolydorasocialis 0.7694 3.9 Drilonereislonga 0.0066 26.4 Glyceridae 0.6769 4.5 Harmothoeextenuata 0.2681 10.0 Nephtyspicta 0.0022 38.9 Polydorawebsteri 0.2663 10.0 Polygordiusspp. 0.3841 8.1 Scoloplosspp. 0.2667 10.0 Sigambratentaculata 0.2667 10.0 Spiosetosa 0.2621 10.0 Spiophanesbombyx 0.0344 15.8 Arthropoda:Amphipoda Listriellabarnardi 0.0556 20.0 Listriellasmithi 0.2603 10.0 Arthropoda:Decapoda Pinnixachaetopterana 0.2603 10.0 Pinnixaretinens 0.0530 20.0 Chordata:Cephalochordata Branchiostomacaribaeum 0.0582 20.0 Echinodermata:Echinoidea Echinoidea 0.2667 10.0 Mollusca:Bivalvia Ensisdirectus 0.0012 33.1 Tellinatenella 0.2721 10.0 Mollusca:Gastropoda Nassariustrivittatus 0.0790 12.4 Vitrinellaspp. 0.2721 10.0 113Total 0.2370 14.0 117 Annelida:Polychaeta Ampharetidae 0.0130 18.1 Glyceraspp. 0.4813 5.7 Leitoscoloplosrobustus 0.1520 9.6 Nephtyidae 0.0590 14.7 Nephtysincisa 0.1122 14.3 Tharyxsp.A 0.0030 24.4 Arthropoda:Amphipoda Parametopellacypris 0.2410 8.7 Arthropoda:Decapoda Paguruspollicaris 0.0998 14.3 Pagurusspp. 0.0228 17.2 Arthropoda:Mysidacea Americamysisbigelowi 0.1058 14.3 Mollusca:Bivalvia Yoldialimatula 0.4287 6.1 117Total 0.1562 13.4 133 Annelida:Oligochaeta Oligochaeta 0.0034 28.2 Annelida:Polychaeta Braniawellfleetensis 0.0002 74.6 Euclymenezonalis 0.0124 33.3 Nephtysbucera 0.0004 41.7 Parapionosyllislongicirrata 0.0002 71.4 Sphaerosylliserinaceus 0.0260 25.6 Travisiasp.A 0.0124 33.3 Arthropoda:Amphipoda Acanthohaustoriusintermedius 0.0002 66.7 Acanthohaustoriusmillsi 0.0002 66.7 Bathyporeiaparkeri 0.0134 33.3 Protohaustoriuscf.deichmannae 0.0012 34.4 Protohaustoriuswigleyi 0.0134 33.3 Arthropoda:Decapoda Brachyura 0.0438 19.2 Arthropoda:Tanaidacea Tanaissuspsammophilus 0.0002 100.0 Chordata:Ascidiacea Ascidiacea 0.0040 31.4 Mollusca:Bivalvia Cyclocardiaborealis 0.0002 66.7 Macomamitchelli 0.0996 11.5 Spisulasolidissima 0.1080 13.3 Nemertina Nemertina 0.0184 19.9 133Total 0.0188 42.3