The Hi's and Lo's of Cytarabine in Acute Myeloid Leukemia

Total Page:16

File Type:pdf, Size:1020Kb

The Hi's and Lo's of Cytarabine in Acute Myeloid Leukemia Author Manuscript Published OnlineFirst on April 13, 2020; DOI: 10.1158/1078-0432.CCR-20-0462 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. The Hi’s and Lo’s of cytarabine in acute myeloid leukemia Running title: Cytarabine dose in AML induction Authors: Justin M. Watts, MD1; Terrence Bradley, MD1 Affiliations: 1Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL Corresponding author: Justin M. Watts, MD University of Miami Sylvester Comprehensive Cancer Center 1120 NW 14th Street, Suite 610C Miami, FL 33136 USA Ph: 305-243-8986 Email: [email protected] Disclosure: J. M. Watts is a paid consultant for Takeda, Rafael Pharma, Genentech, and Jazz Pharma, and reports receiving commercial research grants from Takeda. T. Bradley reports receiving speakers bureau honoraria from Novartis and is a paid consultant/advisory board member for AbbVie. No other potential conflicts of interest were disclosed. Acknowledgment: J.M. Watts is supported by the National Institutes of Health/National Cancer Institute (5R21CA202488-02) and the Sylvester Cancer Center Support Grant 1P30CA240139- 01. 1 Downloaded from clincancerres.aacrjournals.org on September 27, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on April 13, 2020; DOI: 10.1158/1078-0432.CCR-20-0462 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Summary: Cytarabine is the backbone of AML therapy, but the dose used during induction has remained controversial. Using an intermediate dose of cytarabine, compared to conventional dose, was shown to improve disease-free and overall survival in adult patients in China up to age 55, particularly in patients with intermediate cytogenetic risk. In this issue of Clinical Cancer Research, Wei and colleagues re-examine the important and unanswered clinical question of cytarabine dose intensity in younger patients with de novo acute myeloid leukemia (AML).1 To accomplish this, they conducted a large (591 patients) open-label, randomized trial comparing induction using conventional dose cytarabine (CDAC: 100 mg/m2/d for 7 days) and intermediate dose cytarabine (IDAC: 100mg/m2/d days 1-4 followed by 1g/m2 every 12h days 5-7), i.e., 700mg vs. 6400mg of cytarabine during the initial induction phase. Patients also received daunorubicin 40mg/m2 on days 1-3 and omacetaxine 2mg/m2 on days 1-7 (the standard induction regimen in China). In patients achieving remission, a second randomization was done prior to consolidation therapy, and half of patients received 3 cycles of high dose cytarabine (HiDAC) (3g/m2 every 12 hours for 3 days) and half received 2 cycles of IDAC (1.5g/m2 every 12h for 3 days—note this is different than the dose used during induction) combined with an anthracycline. Eligible patients could receive allogeneic hematopoietic cell transplantation (HCT). The primary endpoint was disease-free survival (DFS), and investigators and statisticians assessing outcomes were blinded to the cytarabine dose. This was a large, well-done clinical trial that adds potentially practice-changing information to the field. Notably, the investigators demonstrated superior 3-year DFS (67% vs. 54%; Hazard Ratio [HR]=0.67; p=0.005) and survival (68% vs. 59%; HR=0.72; p=0.014) with IDAC-based induction compared to conventional dose, and this advantage was maintained after multivariable analysis and censoring subjects for HCT. To us, it is undeniable that a one-third decreased risk of death or relapse (primary endpoint) with IDAC in this population is clinically meaningful. Also, of note, the second randomization done post-remission had no impact on outcomes, suggesting that the standard repeated cycles of “HiDAC” consolidation is at least equivalent to multi-drug regimens, with the added benefit that it avoids excess anthracycline exposure. Additionally, in a sub-analysis, the survival benefit with IDAC-based induction was only seen in the patients who received HiDAC consolidation. Looking more closely at the data, what is driving this survival benefit? Complete remission (CR) rates were higher with IDAC compared to CDAC (87% vs. 77%, p=0.004)—with the caveat that a small number of patients on the conventional dose arm were not treated for residual leukemia at day 14 (prior to a protocol amendment). In terms of safety, while the duration of neutropenia and thrombocytopenia were slightly longer in the IDAC group, there was no difference in induction deaths. In addition, rates of HCT between the two groups were the same. Collectively, these data suggest that IDAC-based induction provided most of its benefit early, with, numerically, a 10% better CR rate and ~10% improvement in survival. To what 2 Downloaded from clincancerres.aacrjournals.org on September 27, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on April 13, 2020; DOI: 10.1158/1078-0432.CCR-20-0462 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. extent fewer relapses contributed to this survival difference in unclear (cumulative incidence of relapse [CIR] not given for induction cohorts). Of note, the advantage with IDAC-based induction also held true when looking at event-free survival (death, primary induction failure, and relapse). When the authors examined patients by cytogenetic subgroup, the survival advantage was only seen in patients with intermediate risk disease. However, two-thirds of all patients on study had intermediate-risk cytogenetics, and there were very few adverse risk patients, making it difficult to interpret the sub-analysis in these groups. This skew in cytogenetic distribution may be due to selection bias implicit to clinical trial enrollment, or to patient demographics in China and differences in disease biology. Regardless, the more overall favorable cytogenetic distribution, along with the younger median age (36 years), may explain the impressive 3-year OS rate of ~64% for all patients (68% for IDAC; 59% for CDAC). It is an interesting question if the molecular genetic or epigenetic profile of patients in China differs from that of the west, or other more heterogeneous populations, and whether this could confer increased sensitivity to cytarabine. Importantly, the fact that a statistically significant and meaningful survival benefit was observed despite the overall good outcome, only re-enforces the clinical significance of using IDAC-based induction in this population, although long-term follow-up still needs to be reported as the data matures. When we look at the body of literature, several studies have examined higher doses of cytarabine with induction, with varying study designs. In the late 1990s, 2 randomized studies compared HiDAC- to CDAC-based induction for de novo AML; one gave HiDAC 3g/m2 x 8 doses with daunorubicin and etoposide, and the other HiDAC 2g/m2 x 12 doses with daunorubicin. Despite no improvement in survival, both studies showed improvements in the CIR and relapse- free survival (RFS) in the HiDAC cohorts. In the mid-2000s, HOVON-SAKK compared HiDAC (2- 3g/m2) versus a more intermediate dose of cytarabine (1g/m2) for AML induction (included de novo and secondary AML).2 In this study, each group received 2 planned induction courses. The intermediate-dose group received idarubicin plus CDAC first, followed by a second induction with amsacrine plus cytarabine 1g/m2 (total cytarabine dose during induction 13.4g/m2). The high-dose group received idarubicin with cytarabine 1g/m2 first, followed by amsacrine plus cytarabine 2g/m2 (total cytarabine dose 26g/m2). Overall, this study found no significant difference in CR, relapse, EFS, or survival between the intermediate and higher dose groups. More recently, the EORTC and GIMEMA groups examined combination daunorubicin, etoposide, and cytarabine (100mg/m2 10d vs. 3g/m2 4d) induction in de novo and secondary AML patients.3 They reported statistically significant improvements in CR rate, EFS, and survival (at 6 years) for patients aged 15-45 who received HiDAC as a component of induction, as well as improved outcomes in patients with adverse cytogenetics, FLT3-ITD mutations, and secondary AML. In 2014, Wei et al conducted a meta-analysis of cytarabine dose in AML induction that assessed 6 different studies.4 Overall, there was no statistically significant difference in CR rate or survival between induction regimens containing HiDAC or CDAC; however, there was a statistically significant difference in RFS, favoring HiDAC. In a sub-group analysis, this RFS benefit was only recapitulated in favorable risk patients. Importantly, all of the 3 Downloaded from clincancerres.aacrjournals.org on September 27, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on April 13, 2020; DOI: 10.1158/1078-0432.CCR-20-0462 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. aforementioned studies showed increased toxicity with higher doses of cytarabine, including conjunctivitis, skin reactions, and GI complications (count recovery times were comparable). The broader question this study raises is the worldwide applicability of its findings. This is a near impossible question to answer. In China, where there are more cases of AML than in the United States and European Union combined, the results of this large randomized clinical trial clearly support the use of IDAC
Recommended publications
  • Gy Total Body Irradiation Followed by Allogeneic Hematopoietic St
    Bone Marrow Transplantation (2009) 44, 785–792 & 2009 Macmillan Publishers Limited All rights reserved 0268-3369/09 $32.00 www.nature.com/bmt ORIGINAL ARTICLE Fludarabine, amsacrine, high-dose cytarabine and 12 Gy total body irradiation followed by allogeneic hematopoietic stem cell transplantation is effective in patients with relapsed or high-risk acute lymphoblastic leukemia F Zohren, A Czibere, I Bruns, R Fenk, T Schroeder, T Gra¨f, R Haas and G Kobbe Department of Haematology, Oncology and Clinical Immunology, Heinrich Heine-University, Du¨sseldorf, Germany In this prospective study, we examined the toxicity and Introduction efficacy of an intensified conditioning regimen for treatment of patients with relapsed or high-risk acute The use of intensified conventional induction chemothera- lymphoblastic leukemia who undergo allogeneic hemato- pies in the treatment of newly diagnosed ALL in adult poietic stem cell transplantation. Fifteen patients received patients has led to initial CR rates of up to 90%. But, as fludarabine 30 mg/m2, cytarabine 2000 mg/m2, amsacrine some patients are even refractory to first-line therapy, the 100 mg/m2 on days -10, -9, -8 and -7, anti-thymocyte majority of the responding patients unfortunately suffer globulin (ATG-Fresenius) 20 mg/kg body weight on days from relapse. Therefore, the probability of long-term -6, -5 and -4 and fractionated total body irradiation disease-free survival is o30%.1–5 Risk stratification based 2 Â 2 Gy on days -3, -2 and -1 (FLAMSA-ATG-TBI) on prognostic factors allows identification of high-risk before allogeneic hematopoietic stem cell transplantation. ALL patients with poor prognosis.6–12 Myeloablative At the time of hematopoietic stem cell transplantation, 10 conditioning therapy followed by allogeneic hematopoietic patients were in complete remission (8 CR1; 2 CR2), 3 stem cell transplantation (HSCT) is currently the treatment with primary refractory and 2 suffered from refractory of choice for these high-risk patients.13–15 A combination of relapse.
    [Show full text]
  • CK0403, a 9‑Aminoacridine, Is a Potent Anti‑Cancer Agent in Human Breast Cancer Cells
    MOLECULAR MEDICINE REPORTS 13: 933-938, 2016 CK0403, a 9‑aminoacridine, is a potent anti‑cancer agent in human breast cancer cells YUAN-WAN SUN1, KUEN-YUAN CHEN2, CHUL-HOON KWON3 and KUN-MING CHEN1 1Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; 2Department of Surgery, National Taiwan University Hospital, Taipei 8862, Taiwan, R.O.C.; 3Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, New York, NY 11439, USA Received November 11, 2014; Accepted October 22, 2015 DOI: 10.3892/mmr.2015.4604 Abstract. 3-({4-[4-(Acridin-9-ylamino)phenylthio]phenyl} reduced growth inhibitory activity under hypoxic conditions, (3-hydroxypropyl)amino)propan-1-ol (CK0403) is a which can induce autophagy. Collectively, the present results sulfur-containing 9-anilinoacridine analogue of amsacrine and supported that CK0403 is highly potent and more effective than was found to be more potent than its analogue 2-({4-[4-(acridin- CK0402 against estrogen receptor-negative and 9-ylamino)phenylthio]phenyl}(2-hydroxyethyl)amino) HER2-overexpressing breast cancer cell lines, suggesting its ethan-1-ol (CK0402) and amsacrine in the inhibition of the future application for chemotherapy in breast cancer. topoisomerase II-catalyzed decatenation reaction. A previous study by our group reported that CK0402 was effective against Introduction numerous breast cancer cell lines, and the combination of CK0402 with herceptin enhanced its activity in HER2(+) Breast cancer is the most common type of cancer diagnosed SKBR-3 cells. In order to identify novel chemotherapeutic agents in American women and is the second most common cause with enhanced potency, the present study explored the potential of cancer-associated mortality.
    [Show full text]
  • Sequential Combination of Decitabine
    Li et al. Journal of Translational Medicine 2014, 12:167 http://www.translational-medicine.com/content/12/1/167 RESEARCH Open Access Sequential combination of decitabine and idarubicin synergistically enhances anti-leukemia effect followed by demethylating Wnt pathway inhibitor promoters and downregulating Wnt pathway nuclear target Kongfei Li1,2,3, Chao Hu1,3, Chen Mei6, Zhigang Ren4, Juan Carlos Vera5, Zhengping Zhuang5, Jie Jin1,3 and Hongyan Tong1,3* Abstract Background: The methylation inhibitor 5-Aza-2′-deoxycytidine (decitabine, DAC) has a great therapeutic value for acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). But decitabine monotherapy was associated with a relatively low rate of complete remission in AML and MDS. We aimed to investigate the effect of several anti-leukemia drugs in combination with decitabine on the proliferation of myeloid leukemia cells, to select the most efficient combination group and explore the associated mechanisms of these combination therapies. Methods: Cell proliferation was tested by MTT assay and CFU-GM assay. Cell apoptosis was evaluated by Annexin V and PI staining in cell culture, TUNEL assay and transmission electron microscopy in animal study. MicroPET was used to imaging the tumor in mouse model. Molecular studies were conducted using microarray expression analysis, which was used to explore associated pathways, and real-time quantitative reverse transcription-PCR, western blot and immunohistochemistry, used to assess regulation of Wnt/β-catenin pathway. Statistical significance among groups was determined by one-way ANOVA analysis followed by post hoc Bonferroni’s multiple comparison test. Results: Among five anti-leukemia agents in combining with decitabine, the sequential combination of decitabine and idarubicin induced synergistic cell death in U937 cells, and this effect was verified in HEL, SKM-1 cells and AML cells isolated from AML patients.
    [Show full text]
  • (Idarubicin) with Pharmacokinetic and in Vitro Drug Sensitivity Testing in Children with Refractory Leukemia1
    (CANCER RESEARCH 48, 5348-5352. September 15. 1988] Phase I Clinical Trial of Orally Administered 4-Demethoxydaunorubicin (Idarubicin) with Pharmacokinetic and in Vitro Drug Sensitivity Testing in Children with Refractory Leukemia1 Ching-Hon Pui,2 Siebold S. N. de Graaf,3 Lois W. Dow, John H. Rodman, William E. Evans, Bruce S. Alpert, and Sharon B. Murphy Departments ofHematology and Oncology [C-H. P., L. W. D., S. B. M.] and Pharmaceutical Division [S. S. N. d. G., J. H. R., W. E. E.], St. Jude Children's Research Hospital, and Divisions of Hematology-Oncology [C-H. P., L. W. D., S. B. M.] and Cardiology [B. S. A.], Department of Pediatrics, University of Tennessee, Memphis, College of Medicine, Memphis, Tennessee 38101 ABSTRACT than that of analogues or i.v. idarubicin (9, 16). However, nausea and vomiting were generally more severe in patients Fifteen children with acute leukemia in relapse, refractory to conven receiving oral idarubicin (16). As a single agent in adults, oral tional therapy, were treated with idarubicin administered orally for 3 consecutive days in dosages ranging from 30 to 50 mg/m2 per day at 19- idarubicin has antileukemic activity at dosages of 45 to 90 mg/ m2 distributed over 3 consecutive days (9, 17, 18). Very little to 21-day intervals. Gastrointestinal complications, including nausea, vomiting, abdominal pain, diarrhea and stomatitis, were the major forms information is available for oral idarubicin treatment in children of dose-limiting toxicity, affecting the majority of patients at all levels of with leukemia. We report here the results of Phase I clinical, idarubicin dosage.
    [Show full text]
  • NIOSH List of Antineoplastic and Other Hazardous Drugs in Healthcare Settings 2012
    NIOSH list of antineoplastic and other hazardous drugs in healthcare settings 2012 The following guidelines are excerpts for proper handling of hazardous drugs based on the National Institute for Occupational Health and Safety (NIOSH) List of Antineoplastic and Other Hazardous Drugs in Healthcare Settings 2012, Appendix A: Drugs Considered Hazardous 1. Hazardous drugs include those used for cancer • Organ toxicity at low doses* chemotherapy, antiviral drugs, hormones, some • Genotoxicity** bioengineered drugs, and other miscellaneous drugs. • Structure and toxicity profiles of new drugs that 2. NIOSH and other organizations are still gathering data mimic existing drugs determined hazardous by the on the potential toxicity and health effects related to above criteria highly potent drugs and bioengineered drugs. Therefore, 4. Many hazardous drugs used to treat cancer bind to when working with any hazardous drug, health care or damage DNA (for example, alkylating agents). workers should follow a standard precautions approach Other antineoplastic drugs, some antivirals, antibiotics, along with any recommendations included in the and bioengineered drugs interfere with cell growth or manufacturer’s MSDSs. proliferation, or with DNA synthesis. 3. Drugs considered hazardous include those that exhibit 5. In addition to using the list of hazardous drugs one or more of the following six characteristics in humans presented here, each organization should create its or animals: own list of drugs considered to be hazardous. • Carcinogenicity 6. All hazardous
    [Show full text]
  • Intercalating TOP2 Poisons Attenuate Topoisomerase Action at Higher Concentrations
    Molecular Pharmacology Fast Forward. Published on August 9, 2019 as DOI: 10.1124/mol.119.117259 This article has not been copyedited and formatted. The final version may differ from this version. Intercalating TOP2 poisons attenuate topoisomerase action at higher concentrations Mandeep Atwal, Rebecca L. Swan, Chloe Rowe, Ka C. Lee, David C Lee, Lyle Armstrong, Ian G Cowell*, Caroline A Austin* Running title: Inhibition by doxorubicin, epirubicin and mitoxantrone MA, RLS, CR, KCL, IGC, CAA Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne. NE2 4HH. U.K. Downloaded from DCL, LA Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne. NE1 3BZ. DCL: https://orcid.org/0000-0001-6857-624X IGC: https://orcid.org/0000-0002-8606-0447 molpharm.aspetjournals.org CAA: https://orcid.org/0000-0002-1921-5947 *Corresponding authors: Ian G Cowell & Caroline A Austin Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH. United Kingdom at ASPET Journals on September 26, 2021 Tel: +44 (0)191 208 7677 Fax: +44 (0)191 208 7424 Email: [email protected], [email protected] 30 text pages (including refs and figure legends) 8 figures 0 tables 60 number of references 219 words in abstract 641 words in Introduction 1268 words in Discussion Abbreviations DMSO Dimethyl sulfoxide DOX Doxorubicin DSB Double-strand break EPI Epirubicin ICRF-193 4-[2-(3,5-Dioxo-1-piperazinyl)-1-methylpropyl]piperazine-2,6-dione TARDIS Trapped in Agarose DNA Immunostaining assay TOP2 Topoisomerase II TOP2A Topoisomerase IIα TOP2B Topoisomerase IIβ TOP2-CC Topoisomerase II covalent complex 1 Molecular Pharmacology Fast Forward.
    [Show full text]
  • NIOSH List of Antineoplastic and Other Hazardous Drugs in Healthcare Settings 2010
    NIOSH List of Antineoplastic and Other Hazardous Drugs in Healthcare Settings 2010 DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention National Institute for Occupational Safety and Health NIOSH List of Antineoplastic and Other Hazardous Drugs in Healthcare Settings 2010 DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention National Institute for Occupational Safety and Health This document is in the public domain and may be freely copied or reprinted. DISCLAIMER Mention of any company or product does not constitute endorsement by the National Institute for Occupational Safety and Health (NIOSH). In addition, citations to Web sites external to NIOSH do not constitute NIOSH endorsement of the sponsoring organizations or their programs or products. Furthermore, NIOSH is not responsible for the content of these Web sites. ORDERING INFORMATION To receive documents or other information about occupational safety and health topics, contact NIOSH at Telephone: 1–800–CDC–INFO (1–800–232–4636) TTY:1–888–232–6348 E-mail: [email protected] or visit the NIOSH Web site at www.cdc.gov/niosh For a monthly update on news at NIOSH, subscribe to NIOSH eNews by visiting www.cdc.gov/niosh/eNews. DHHS (NIOSH) Publication Number 2010−167 September 2010 Preamble: The National Institute for Occupational Safety and Health (NIOSH) Alert: Preventing Occupational Exposures to Antineoplastic and Other Hazardous Drugs in Health Care Settings was published in September 2004 (http://www.cdc.gov/niosh/docs/2004-165/). In Appendix A of the Alert, NIOSH identified a sample list of major hazardous drugs. The list was compiled from infor- mation provided by four institutions that have generated lists of hazardous drugs for their respec- tive facilities and by the Pharmaceutical Research and Manufacturers of America (PhRMA) from the American Hospital Formulary Service Drug Information (AHFS DI) monographs [ASHP/ AHFS DI 2003].
    [Show full text]
  • Evidence Tables Cardiomyopathy Surveillance
    Who needs surveillance? 1. What is the evidence behind the conversion score for different derivates for anthracyclines (including mitoxantrone) First Author Study Design Participants Treatment Main outcomes Addt’l remarks Year Treatment era Years of follow-up van der Pal1 Retrospective cohort 5-yr survivors (N=1362) Conversion score: Refs: 2012 Doxorubicin : 1.0 Mertens (2008): late mortality 1966-1996 Daunorubicin: 1.0 Le Deley (2003): SMN after solid Epirubicin: 0.67 CA 22.2 yrs (5.0-44.5) Perez (1991): Breast CA (epi vs.dox) Mulrooney2 Retrospective cohort 5-yr Survivors (N=14, Conversion score: Conversion score based on a 2009 1970-1986 358) Doxorubicin = Daunorubicin review paper recommendations 27.0 yrs (8-51) Idarubicin = 3x doxorubicin (Pai Nahata 2000) Siblings (N=3899) Blanco3 Case-Control Case (CHF) – N=170 Conversion score: COG LTFU Conversion score based on: 2012 Control (none) – N=317 Guidelines Lehmann (2000), which is based 1966-2008 Doxorubicin: 1.0 Doxorubicin: 1.0 on sited review literature with 1 Daunorubicin: 0.75 Daunorubicin: in vivo model of acute toxicity Cases: 9.2 (0.1-35.1) 0.83 Controls: 12.3 (0.4- Epirubicin: 0.75 Epirubicin: 0.67 40) Idarubicin: 3 Idarubicin: 5 Mitoxantrone: 3 Mitoxantrone: 4 Temming4 Retrospective cohort 124/158 available for AML 10 and 12 trials Anthracycline dose range similar 2011 N=124, 86 Cardiotox analysis across AML 10 and 12, unable 86 data for late Anthracyclines: to assess dose-association 1987-2004 cardiotox Dauno and Mitox (1:5 conversion) No discussion on conversion 7.3 yrs (0-21.7) 550-610 mg/m2 factor Creutzig5 Retrospective cohort Eligible: N=1207 AML BFM 93 98 2007 1993-2003 Late Cartox eval: BFM98: 3.6ys (0.8- N=547 (45%) Dauno : Ida 1:5 7.0) 76% of echo w/in first Dauno : Mitox 1:5 BFM93: 7.5ys (1.1- 5yrs 11) van Dalen6 Systematic review Different anthracycline Dox Epi vs.
    [Show full text]
  • Bc Cancer Chemotherapy Preparation and Stability
    BC CANCER CHEMOTHERAPY PREPARATION AND STABILITY CHART DRUG & STRENGTH Reconstitute To Give: Vial Product Product Stability Special (Storage Prior to Use, With: Stability (for IV bag size selection, Precautions/Notes Manufacturer, Preservative see Notes†) Status) AGS-16C3F 30 mg 5.1 mL SWI1 6 mg/mL1 discard unused ≥ 0.3 mg/mL1 complete - unopened vials (Astellas) portion1 administration within may be kept at RT (F)(PFL) swirl gently; do NOT 100 mL D5W2,3 6 h RT of for up to 4h prior to do not shake shake1 **(PFL)1 reconstitution1 use if protected no preservative1 mix by gentle from light1 allow foam to clear inversion1 **(PFL) before proceeding1 record time of reconstitution Aldesleukin 22 million units 1.2 mL SWI4 18 million unit/mL 48 h F, RT4 30-70 mcg/mL4 48 h F, RT4 - do NOT use in- (1.3 mg) (1.1 mg/mL)4 line filter4 (SteriMax) direct diluent against 50 mL D5W4 - avoid (F)(PFL) side of vial during bacteriostatic water no preservative4 reconstitution4 <30 mcg/mL: for injection or NS dilute in D5W due to increased do NOT shake4 containing human aggregation4 albumin 0.1%5 - bring to room temperature prior to infusion4 SC syringe6,7 14 d F7 **(PFL) BC Cancer Chemotherapy Preparation and Stability Chart© version 2.00. All rights reserved. 1/60 This document may not be reproduced in any form without the express written permission of BC Cancer Provincial Pharmacy. Activation Date: 2 March 2006 Revised Date: 1 September 2021 BC CANCER CHEMOTHERAPY PREPARATION AND STABILITY CHART DRUG & STRENGTH Reconstitute To Give: Vial Product Product
    [Show full text]
  • Chemotherapy Drugs
    CHEMOTHERAPY, DRUGS, AGENTS- This document contains three lists: 1) Individual drugs/agents 2) Known protocols 3) Old protocol descriptions Each table has the name of the drug, the code by which it is represented in the database, and the name by which this drug appears in the database, if the drug can be known by more than one name. 1. Individual drugs/agents Drug Name (synonym) Code Name in database 2-CdA 63 2-CdA 4-demethoxydaunorubicin 18 Idarubicine 5- Fluorouracil 20 Fluorouracil 5FU 20 Fluorouracil 6-mercaptopurine 22 Mercaptapur6 6-MP 22 Mercaptapur6 Acridinyl anisidide 2 Amsacrine Actemra 679 Tocilizumab/ Actemra Actinomycin D 65 Dactinomycin Acyclovir 311 Acyclovir Adcetris 666 Brentuximab (Adcetris) Adriamycine 1 Adriamycine Adriblastin 1 Adriamycine Advagraf 52 Tacrolimus Agrylin 351 Anagrelide Aldesleukin 206 IL-2 Alemtuzumab 632 Campath (CD52, Alemtuzumab) Alexan 3 ARA-C / Cytarabine ALG 35 ALG Alkeran 21 Melphalan AMD-3100 36 Plerixafor Amethopterin 23 Methotrexate Amikin 326 Amikin AML like therapy 43 AML like therapy AMSA P-D 2 Amsacrine Amsacrine 2 Amsacrine Anagrelide 351 Anagrelide Analgesics 88 Analgesics Androgens 39 Androgens Anthracycline 57 Anthracycline Anti IL6 643 Anti IL6 anti rIL2 (CD25) 636 anti rIL2 (CD25) Anti tumour necrosis factor (TNF) 639 Anti tumour necrosis factor (TNF) Anti-GD2 644 Anti-GD2 antiLFA1 635 antiLFA1 Antilymphocyte globulin 35 ALG Anti-malarial 56 Anti-malarial Antimetabolites 93 Antimetabolites Antithymocyte globulin 34 ATG ARA-C 3 ARA-C Aranesp (Darbepoetin) 85 Aranesp (Darbepoetin)
    [Show full text]
  • Pemetrexed and Gemcitabine As Combination Therapy for the Treatment of Group3 Medulloblastoma
    Cancer Cell Article Pemetrexed and Gemcitabine as Combination Therapy for the Treatment of Group3 Medulloblastoma Marie Morfouace,1 Anang Shelat,2 Megan Jacus,3 Burgess B. Freeman III,4 David Turner,3 Sarah Robinson,1 Frederique Zindy,1 Yong-Dong Wang,5 David Finkelstein,5 Olivier Ayrault,6 Laure Bihannic,6 Stephanie Puget,7 Xiao-Nan Li,8 James M. Olson,9 Giles W. Robinson,10 R. Kiplin Guy,2 Clinton F. Stewart,3 Amar Gajjar,10 and Martine F. Roussel1,* 1Department of Tumor Cell Biology 2Department of Chemical Biology and Therapeutics 3Department of Pharmaceutical Sciences 4Department of Preclinical Pharmacokinetics 5Department of Computational Biology St. Jude Children’s Research Hospital, Memphis, TN 38105, USA 6Institut Curie/CNRS UMR 3306/INSERM U1005 Building 110, Centre Universitaire, 91405 Orsay, Cedex, France 7AP-HP, Department of Neurosurgery, Necker-Enfants Malades Hospital, Universite´ Rene Descartes, 75015 Paris, France 8Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX 77030, USA 9Department of Pediatric Hematology-Oncology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA 10Department of NeuroOncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA *Correspondence: [email protected] http://dx.doi.org/10.1016/j.ccr.2014.02.009 SUMMARY We devised a high-throughput, cell-based assay to identify compounds to treat Group3 medulloblastoma (G3 MB). Mouse G3 MBs neurospheres were screened against a library of approximately 7,000 compounds including US Food and Drug Administration-approved drugs. We found that pemetrexed and gemcitabine preferentially inhibited G3 MB proliferation in vitro compared to control neurospheres and substantially in- hibited G3 MB proliferation in vivo.
    [Show full text]
  • Liste Des Molécules
    Molécules Amobarbital sodium Etomidate Ketamine hydrochloride Methohexital sodium Pentobarbital sodium Pentobarbital sodium Propofol Thiopental sodium Bupivacaine hydrochloride Cocaine hydrochloride Levobupivacaine hydrochloride Lidocaine hydrochloride Lidocaine hydrochloride Lidocaine hydrochloride Procaine hydrochloride Ropivacain hydrochloride Tetracain hydrochloride Tetracain hydrochloride Tetracaine Acetylsalicylic Acid Acetylsalicylic acid lysinate Alfentanil hydrochloride Buprenorphine Buprenorphine hydrochloride Butorphanol tartrate Codeine phosphate Dezocine Diamorphine hydrochloride Fentanyl citrate Hydromorphone hydrochloride Meptazinol Metamizol sodium Methadone hydrochloride Methadone hydrochloride Morphine hydrochloride Morphine sulfate Morphine sulfate Morphine sulfate Morphine tartrate Nefopam 1/{nb} Oxycodone hydrochloride Oxycodone hydrochloride Paracetamol Paracetamol Paracetamol Parecoxib sodium Pethidine hydrochloride Piritramide Remifentanil hydrochloride Sufentanil citrate Tramadol hydrochloride Tramadol hydrochloride Ziconotide acetate Memantine Allopurinol Allopurinol sodium Tranexamic acid Tranexamic acid Amiodarone hydrochloride Amiodarone hydrochloride Amiodarone hydrochloride Diltiazem hydrochloride Disopyramide phosphate Flecainide acetate Flecainide acetate Metoprolol tartrate Metoprolol tartrate Mexiletine Nadolol Procainamide hydrochloride Procainamide hydrochloride Propafenone hydrochloride Propafenone Hydrochloride Quinidine gluconate Quinidine sulfate Verapamil hydrochloride Amikacin sulfate Amoxicillin
    [Show full text]