19, 1984, 2, Validation of the NCAR Thermospheric General Circulation

Total Page:16

File Type:pdf, Size:1020Kb

19, 1984, 2, Validation of the NCAR Thermospheric General Circulation JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 94, NO. A12, PAGES 16,945-16,959, DECEMBER 1, 1989 Thermospheric Dynamics During September 18-19, 1984 e Validation of the NCAR Thermospheric General Circulation Model G. CROWELY,1,2 B. A. EMERY, 1 R. G. ROBLE,1 H. C. CARLSON,JR., 3 J. E. SALAH,4 V. B. WICKWAR,5 K. L. MILLER, 5 W. L. OLIVER,4,6 R. G. BURNSIDE,7 AND F. A. MARCOS3 The validation of complex nonlinear numerical models suchas the National Center for Atmospheric Research thermosphericgeneral circulation model (NCAR TGCM) requires a detailed comparison of model predictionswith data. The Equinox Transition Study (ETS) of September17-24, 1984, provided a unique opportunity to addressthe verification of the NCAR TGCM, since unusually large quantities of high-quality thermospheric and ionospheric data were obtained during an intensive observation interval. In a companionpaper (paper 1) by Crowley et al. (this issue) a simulationof the September 18-19 ETS interval was described. Using a novel approach to modeling, the TGCM inputs were tuned where possible with guidance from data describing the appropriate input fields, and the arbitrary adjustmentof input variables in order to obtain thermosphericpredictions which match measurements was avoided. In the present paper the winds, temperatures, and densitiespredicted by the TGCM are compared with measurements from the ETS interval. In many respects, agreement between the predictions and observationsis good. The quiet day observationscontain a strong semidiurnal wind variation which is mainly due to upward propagating tides. The storm day wind behavior is significantly different and includes a surge of equatorward winds due to a global propagating disturbance associatedwith the storm onset. The density data confirm the existence of the newly discovered four-cell high-latitude density anomaly described in paper 1. A quantitative statistical comparison of the predicted and measured winds indicates that the equatorward winds in the model are weaker than the observedwinds, particularly during storm times. This is consistentwith predicted latitudinal temperature gradients and storm time density increaseswhich are much smaller than the observed values. Soft particle precipitation or high-altitude plasma heating is invoked as a possible sourceof the additional high-latitudeheating required by the model. A quiet day phase anomaly in the measured F region winds which is not reproduced by the model suggeststhe occurrence of an important unmodeled interaction between upward propagating semidiurnal tides and high-latitude effects. Wind data from altitudes below 100 km indicate shortcomingsin the generic equinox solar minimum tidal specificationused in the TGCM. The lack of appropriate data to specify input fields seriously impairs our ability to generate realistic global thermosphericsimulations. The problem is particularly acute in the southern hemisphere. Furthermore, disturbancesgenerated in the southern hemisphere simulation propagatenorthward and degrade the northern hemispherepredictions. Thus, if the thermospherein the northern hemisphereis ever to be fully understood,the southernhemisphere needs to be observedand simulatedmore accurately. Several improvementsare suggestedfor future realistic time-dependent simulationsof specificintervals. 1. INTRODUCTION such as density and temperature at thermospheric heights. The Equinox Transition Study (ETS) of September 17-24, The validity of complex numerical models, such as the 1984, provided a unique opportunity to address the verifica- National Center for AtmosphericResearch (NCAR) thermo- tion of the NCAR TGCM, since unusually large quantities of spheric general circulation model (TGCM), must be assessed high-quality thermospheric and ionospheric data were ob- so that they can be exploited for further geophysicalstudies tained during an intensive observation interval [Carlson and and for practical applications, such as "space weather" Crowley, this issue]. prediction. Validation of thermospheric models is particu- One of the main problems for obtaining realistic predic- larly difficult since thermospheric science is data-poor, es- tions of global thermosphericdynamics using TGCMs is the pecially when compared with tropospheric studies. This is specification of the three-dimensional, time-dependent forc- partly due to the difficulty of measuring basic parameters ing fields for any given day. There are enough adjustable parameters in the specification of TGCM forcing fields that 1HighAltitude Observatory, National Center for Atmosphericthe simulation of thermospheric effects at a single station is Research, Boulder, Colorado. 2Nowat Centerfor Atmospheric Research, University of Lowell, relatively easy. However, little effort has so far been made to Lowell, Massachusetts. reduce the number of free parameters (by reference to large 3Air ForceGeophysics Laboratory, Hanscom Air ForceBase, quantities of data) and then to accurately simulate thermo- Bedford, Massachusetts. spheric conditions at many locations simultaneously. 4HaystackObservatory, Massachusetts Institute of Technology, Westford. In a companion paper by Crowley et al. [this issue], 5Centerfor Atmospheric and Space Sciences, Utah State Univer- hereinafter called paper 1, the thermosphericresponse to the sity, Logan. ETS magnetic storm of September 19, 1984, was simulated 6Nowat Departmentof Electrical,Computer and Systems Engi- using the NCAR TGCM. The inputs for this simulation were neering, Boston University, Boston, Massachusetts. 7AreciboObservatory, Arecibo, Puerto Rico. "state of the art," and the number of free parameters was reduced to a minimum. The arbitrary adjustment of input Copyright 1989 by the American Geophysical Union. variablesin order to obtain thermosphericpredictions which Paper number 89JA01550. match measurements was explicitly avoided. 0148-0227/89/89JA-01550505.00 The location and size of the auroral oval and the energies 16,945 16,946 CROWLEY ET AL.'. NCAR TGCM FOR ETS, 2, VALIDATION of precipitating particles in the model were tuned by refer- o ence to satellite data collected during the ETS period. The resulting auroral electron density enhancementswere added to the densities obtained from the international reference ionosphere (IRI) [Bilitza, 1986], and the total electron den- sity was used to calculate ion drag, momentumforcing, and Joule heatingterms at each TGCM time step. The O-O+ collision cross section is another important parameter in determining the ion drag. Recent work by Burnside et al. [1987] suggeststhat the O-O + collision cross sectionof 90 e E 90 e W Schunk and Walker [1973] is too small, and its value was therefore increasedby a factor of 1.5 in the present simula- tion. The convection patterns [Knipp et al., this issue] for the ETS interval were derivedfrom the assimilativemapping of ionospheric electrodynamics (AMIE) technique of Rich- mond and Kamide [1988], which provides a best fit potential pattern (in the least squares sense) to a variety of iono- spheric data. Paper 1 also emphasized the importance of upward propagating semidiurnal tides for thermospheric 180 e dynamics. These tides were specified at the TGCM lower Fig. 1. Location of 12 ionosondes (solid circles) and four inco- boundary usingthe results of Fesen et al. [1986] for equinox herent scatter radars (open circles) from which meridional neutral solar minimum conditions. winds were derived during the ETS. In the present paper the accuracy of the TGCM predic- tions is assessed by comparison with observations from many locations. Meridional neutral winds are the main geophysical parameter used in assessingthe validity of the in the F region, and subtraction of the diffusion velocity TGCM simulations for a number of reasons: they may be component. Ignoring the normally small vertical wind com- inferred by a variety of measurementtechniques, they are ponent, the projection of the residual velocity onto the available at all times of day from many locations, they are horizontal plane yields an estimate of the neutral wind. very sensitive to changesof high latitude and tidal forcing, Computation of the ion diffusion velocity involves a and they, in turn, play a major part in determiningtemper- knowledge of the neutral atmospherictemperature and com- ature, density, and composition changes on a global scale. position,in additionto a valuefor the O-O+ collisioncross For the ETS interval, meridional neutral wind estimates section [e.g., Burnside et al., 1988]. The neutral parameters were obtained from the European Incoherent Scatter (EIS- are normally obtained from a model such as MSIS [Hedin, CAT), Sondre Stromfjord, Millstone Hill, and Arecibo inco- 1983, 1987], which may be significantly different from the herent scatter radars in addition to a network of 12 ion- conditions which actually existed on the date of interest. The osondesin the northern hemisphere (Figure 1). For the first O-O+ collisioncross section is currentlya subjectof debate. time, the differencesbetween the predicted and measured Burnside et al. [1987] have suggestedthat the values derived winds are quantitatively assessed. Times and locations from the Schunk and Walker [1973] formula should be where the differencesare likely to be exceptionally small or increasedby a factor of 1.7 t-0.34.r +0.71 large are identified. Ionosonde data have also been used to deduce the merid- In addition to the meridional winds, the predicted neutral ionalneutral wind component.Mille) et al. [1986]describe a temperatures and densities
Recommended publications
  • The 2015 Senior Review of the Heliophysics Operating Missions
    The 2015 Senior Review of the Heliophysics Operating Missions June 11, 2015 Submitted to: Steven Clarke, Director Heliophysics Division, Science Mission Directorate Jeffrey Hayes, Program Executive for Missions Operations and Data Analysis Submitted by the 2015 Heliophysics Senior Review panel: Arthur Poland (Chair), Luca Bertello, Paul Evenson, Silvano Fineschi, Maura Hagan, Charles Holmes, Randy Jokipii, Farzad Kamalabadi, KD Leka, Ian Mann, Robert McCoy, Merav Opher, Christopher Owen, Alexei Pevtsov, Markus Rapp, Phil Richards, Rodney Viereck, Nicole Vilmer. i Executive Summary The 2015 Heliophysics Senior Review panel undertook a review of 15 missions currently in operation in April 2015. The panel found that all the missions continue to produce science that is highly valuable to the scientific community and that they are an excellent investment by the public that funds them. At the top level, the panel finds: • NASA’s Heliophysics Division has an excellent fleet of spacecraft to study the Sun, heliosphere, geospace, and the interaction between the solar system and interstellar space as a connected system. The extended missions collectively contribute to all three of the overarching objectives of the Heliophysics Division. o Understand the changing flow of energy and matter throughout the Sun, Heliosphere, and Planetary Environments. o Explore the fundamental physical processes of space plasma systems. o Define the origins and societal impacts of variability in the Earth/Sun System. • All the missions reviewed here are needed in order to study this connected system. • Progress in the collection of high quality data and in the application of these data to computer models to better understand the physics has been exceptional.
    [Show full text]
  • High Altitude Observatory
    DR ASTRID MAUTE Vews from the top An expert n the scence of the upper atmosphere, Dr Astrd Maute outlnes her research on atmospherc tdes and descrbes how t wll help mprove space weather predcton capablty an you ntroduce yourself and your academc the mddle atmosphere durng SSWs wth atmosphere It s necessary to brng together background How have your research numercal models s challengng, snce the researchers from the dfferent domans (the nvestgatons evolved snce you frst oned the models cannot resolve all spatal scales and magnetosphere and upper, mddle and lower Hgh Alttude Observatory n olorado, USA therefore depend on parametersaton of atmosphere) to work on the problem as a smaller scale waves olleagues at the Natonal whole In addton, observers and numercal When I frst started workng at the Observatory enter for Atmospherc Research developed modellers must collaborate to nterpret – part of the Natonal enter for Atmospherc a scheme to correct the mddle atmosphere, observatons and smulatons fully, generate Research – Dr Arthur Rchmond, who s whch makes t possble to examne SSW deas about possble underlyng physcal one of the leadng experts on onospherc effects n the onosphere We could reproduce mechansms and hghlght mportant factors electrodynamcs, ntroduced me to the these events and analyse the model for the nfluencng the system These can then be scence of the upper atmosphere Together mportant tdal components responsble tested by models and verfed by observatons we worked on dfferent aspects of smulatng for the electrodynamc changes n
    [Show full text]
  • First Global Connection Between Earth and Space Weather Found 12 September 2006
    First Global Connection Between Earth And Space Weather Found 12 September 2006 the structure of the ionosphere. The ionosphere is formed by solar X-rays and ultraviolet light, which break apart atoms and molecules in the upper atmosphere, creating a layer of electrically-charged gas known as plasma. The densest part of the ionosphere forms two bands of plasma close to the equator at a height of almost 250 miles. From March 20 to April 20, 2002, sensors on board NASA's Imager for Magnetopause to Aurora Global Exploration (IMAGE) satellite recorded these bands, which glow in ultraviolet light. This is a false-color image of ultraviolet light from two Using pictures from IMAGE, the team discovered plasma bands in the ionosphere that encircle the Earth four pairs of bright regions where the ionosphere over the equator. Bright, blue-white areas are where the was almost twice as dense as the average. Three plasma is densest. Solid white lines outline the of the bright pairs were located over tropical continents; Africa is on the left, and North and South rainforests with lots of thunderstorm activity -- the America are on the right. Dotted white lines mark regions Amazon Basin in South America, the Congo Basin where rising tides of hot air indirectly create the bright, in Africa, and Indonesia. A fourth pair appeared dense zones in the bands. The picture is a composite over the Pacific Ocean. Researchers confirmed that built up from 30 days of observations with NASA's the thunderstorms over the three tropical rainforest IMAGE satellite (March 20 to April 20, 2002).
    [Show full text]
  • Nasa Advisory Council Heliophysics Advisory
    NASA Heliophysics Advisory Committee Meeting Minutes, November 29-December 1, 2017 NASA ADVISORY COUNCIL HELIOPHYSICS ADVISORY COMMITTEE November 29-December 1, 2017 NASA Headquarters Washington, D.C. MEETING MINUTES _____________________________________________________________ Jill Dahlburg, Chair _____________________________________________________________ Janet Kozyra, Acting Executive Secretary 1 NASA Heliophysics Advisory Committee Meeting Minutes, November 29-December 1, 2017 Table of Contents Welcome, Overview of Agenda 3 Heliophysics Division Overview 3 Preliminary Discussion of GPRAMA Process 5 Committee Work Session 6 Briefing on Senior Review 6 Committee Work Session 10 Briefing on Internal Funding Model for GSFC 10 Briefing on Heliophysics CubeSats 12 Briefing on HPD R&A Program 13 Public Comments 14 Briefing on HPD Science Centers 14 Briefing on NASA HEC Status and High-Performance Computing Resources 16 Committee Work Session 16 R&A Program Study Charge to Advisory Committees 17 Briefing on HPD R&A Program, continued 18 Committee Work Session 20 HPAC Outbrief to HPD Director 20 Adjourn 21 Appendix A- Attendees Appendix B-Membership Roster Appendix C-Presentations Appendix D-Agenda Prepared by Elizabeth Sheley Ingenicomm 2 NASA Heliophysics Advisory Committee Meeting Minutes, November 29-December 1, 2017 Wednesday, November 29 Welcome, Overview of Agenda Dr. Janet Kozyra, serving as Designated Federal Officer for the Heliophysics Advisory Committee (HPAC), opened the meeting. HPAC was established under the Federal Advisory Committee Act (FACA) and operates under FACA requirements. The meetings are open to the public. Formal minutes are taken for the public record and published on the NASA website. Committee members must recuse themselves from any discussions that constitute a conflict of interest. Dr.
    [Show full text]
  • SCOSTEP Activities
    An Update on SCOSTEP Activities Nat Gopalswamy President, SCOSTEP ([email protected]) 2016 February 17 Nat Gopalswamy 1 What Does SCOSTEP do? • Runs long-term international interdisciplinary scientific programs in solar terrestrial physics since 1966 • Interacts with national and international programs • involving solar terrestrial physics elements • Engages in Capacity Building activities such as the • annual Space Science Schools and SCOSTEP Visiting Scholar Program • Outreach activities (comics books; public lectures) • Disseminates new knowledge on the Sun-Earth System and how the Sun affects life and society • Quarterly Newsletters • Website: www.yorku.ca/scostep • Symposia • Quadrennial Solar Terrestrial Physics Symposia OUTREACH • Scientific papers in refereed journals Nat Gopalswamy 2 Variability of the Sun and Its Terrestrial Impact (VarSITI) Co-chairs varsiti.org launched on January 13, 2014 Kazuo Shiokawa (Japan) 2014-2018 Four Major Projects are being carried out Katya Georgieva (Bulgaria) http://www.youtube.com/watch?v=couR4MyxNPY Nat Gopalswamy 3 Initial VarSITI Results Published in American Geophysical Union Journal Editors: Qiang Hu (USA) • 26 Papers published in a Special issue named Bernd Funke (Spain) VarSITI (October 2015) Martin Kaufmann (Germany) • Covers all aspects of solar terrestrial relationships Olga Khabarova (Russia) • Available on line: Jean-Pierre Raulin (Brazil) http://onlinelibrary.wiley.com/10.1002/(ISSN)2169-9402/specialsection/VarSITI Craig J. Rodger (New Zealand) David F. Webb (USA) Nat Gopalswamy Solar Rotation Signal in Earth’s Atmosphere due to Energetic Particle Precipitation • Solar rotation (27-day) signal is clearly observed in the production of Nitric Oxide in the lower thermosphere down to about 50-km altitude. • The Nitric Oxide descends to the stratospheric levels, where it destroys ozone • The descent can last for up to a month after the production of Nitric Oxide K.
    [Show full text]
  • Tides, Turbulence) and Its Role in the Energy and Momentum Budget of the Middle Atmosphere
    Report from Theme 3: Atmospheric Coupling Processes Franz-Josef Lübken Leibniz-Institute of Atmospheric Physics Kühlungsborn, Germany Report from theme 3 (F.-J. Lübken) at the CAWSES planning meeting, Paris, 17. July 2004 3 working groups: 3.1 Dynamical coupling (planetary waves, gravity waves, tides, turbulence) and its role in the energy and momentum budget of the middle atmosphere 3.2 Particles and minor constituents in the upper atmosphere: solar/terrestrial influences and their role in climate 3.3 Coupling by electrodynamics including ionospheric/magnetospheric processes (plus “trends” together with other themes) Report from theme 3 (F.-J. Lübken) at the CAWSES planning meeting, Paris, 17. July 2004 WG 3.1 WG 3.2 WG 3.3 Dynamics.... Constituents … Electrodynamics ... Fritts Dameris Batista Gavrilov Hoppe Bhattacharyya Gurubaran Jackman Chau Hagan Lopez-Puertas Cummer Liu Marsh Dyson Luebken Russel Fuellekrug Manson Siskind Lu Mlynczak Tsunoda Pancheva Yamamoto Sato Shiokawa Takahashi Vincent Ward Yi Report from theme 3 (F.-J. Lübken) at the CAWSES planning meeting, Paris, 17. July 2004 Report from theme 3 (F.-J. Lübken) at the CAWSES planning meeting, Paris, 17. July 2004 Theme 3 meeting on Wednesday, 23 July: input from: Archama Bhattacharya Jorge Chau Nikolai Gavrilov S. Gurubaran Maura Hagan Charles Jackman Franz-Josef Lübken Alan Manson Dan Marsh Marty Mlynczak Kaoru Sato Hisao Takahashi William Ward Report from theme 3 (F.-J. Lübken) at the CAWSES planning meeting, Paris, 17. July 2004 • General aspects, ideas, open questions • Specific scientific topics, projects, campaigns • Specific Measurements and Instruments • Miscellaneous Report from theme 3 (F.-J. Lübken) at the CAWSES planning meeting, Paris, 17.
    [Show full text]
  • Seasonal Variations of Semidiurnal Tidal
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, D20103, doi:10.1029/2007JD009687, 2008 Seasonal variations of semidiurnal tidal perturbations in mesopause region temperature and zonal and meridional winds above Fort Collins, Colorado (40.6°N, 105.1°W) Tao Yuan,1,2 Hauke Schmidt,3 C. Y. She,1 David A. Krueger,1 and Steven Reising2 Received 7 December 2007; revised 9 July 2008; accepted 18 July 2008; published 17 October 2008. [1] On the basis of Colorado State University (CSU) Na lidar observations over full diurnal cycles from May 2002 to April 2006, a harmonic analysis was performed to extract semidiurnal perturbations in mesopause region temperature and zonal and meridional winds over Fort Collins, Colorado (40.6°N, 105.1°W). The observed monthly results are in good agreement with MF radar tidal climatology for Urbana, Illinois, and with predictions of the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), sampled at the CSU Na lidar coordinates. The observed semidiurnal tidal period perturbation within the mesopause region is found to be dominated by propagating modes in winter and equinoctial months with a combined vertical wavelength varying from 50 km to almost 90 km and by a mode with evanescent behavior and longer vertical wavelength (100–150 km) in summer months, most likely due to dominance of (2, 2) and (2, 3) tidal (Hough) modes. The observed semidiurnal tidal amplitude shows strong seasonal variation, with a large amplitude during the winter months, with a higher growth rate above 85–90 km, and minimal amplitudes during the summer months. Maximum tidal amplitudes over 50 m/s for wind and 12 K for temperature occur during fall equinox.
    [Show full text]
  • Thermosphere-Ionosphere
    ����������� ��������������������������������� ����������� ������������� �������� ������ �� ����� ������� ������������������������������������������� ������������� �������� ������ ���������������������������������������� ������������������������������� ����� ������� ���� ��� ���� ��������������������������������������������������������������������� ��������������������������������������� ������� ����������� ����� �������������������������������������������� ������� ����������� ����� ����� ����� �������������������������������� �������� ���� ����� ���� ����� �������� �� ���������� ������������ �� �������� ������ ��� ����������� �������� ���� ����� ���� ����� �������� �� ���������� ������ ��������������������������������������������������������������������������� ����� ������� ����� ��� �������� ���� ��� ������������ �� ������������ ��������������������������������������������������������������������������� ����� ������� ����� ��� �������� ���� ��� ������������ �� ������������ Thermosphere-Ionosphere-Electrodynamics General Circulation Model TIEGCM Maura Hagan Jiuhou Lei, Gang Lu Ray Roble, Art Richmond, Stan Solomon Ben Foster, Astrid Maute, Liying Qian High Altitude Observatory National Center for Atmospheric Research Boulder, Colorado USA 12 May 2006 ICTP Space Weather School Maura Hagan - 1 - TIEGCM Objectives • Describe the chemistry, dynamics and electrodynamics of the Earth’s upper atmosphere within a mathematical framework • Diagnose the Earth’s upper atmosphere; develop understanding by comparing model results with observations
    [Show full text]
  • CAWSES News Climate and Weather of the Sun-Earth System
    CAWSES News Climate And Weather of the Sun-Earth System Volume 5, Number 1 Spring 2008 CAWSES is an international program sponsored by SCOSTEP I am pleased that Janet Kozyra has agreed to work with me (Scientifi c Committee on Solar-Terrestrial Physics) and has been on the development and implementation of CAWSES-II. We established with the aim of signifi cantly enhancing our understand- ing of the space environment and its impacts on life and society. are currently pulling together a proposal to submit to the Na- The main functions of CAWSES are to help coordinate internation- tional Science Foundation to secure funding for the Inter- al activities in observations, modeling and theory crucial to achiev- national Virtual Institute which will also include the project ing this understanding, to involve scientists in both developed and offi ce. developing countries, and to provide educational opportunities for students at all levels. As many of you know, Raju has taken a position in India at the Physical Research Laboratory. He will be stepping down Message from the Chair as the CAWSES Science Coordinator/Secretary but will con- Susan Avery ([email protected]) tinue to play an important role in CAWSES and CAWSES-II through his work in India and the international community. CAWSES continues to thrive as evidenced by the tremen- All of us owe a great thank you to Raju who has done a dous activity showcased in this newsletter. Highlights in- magnifi cent job in producing the newsletters, keeping us co- clude a highly successful CAWSES Symposium held last ordinated, interfacing with all of the themes and countries, October in Kyoto, Japan; the continued growth of the com- and helping to move us forward.
    [Show full text]
  • Curriculum Vitae – Astrid I. Maute
    Curriculum Vitae { Astrid I. Maute 1. Education Information 2001 University of Stuttgart, Germany, Civil Engineering, Dr.-Ing. (Ph.D.) 1995 University of Stuttgart, Germany, Civil Engineering, Dipl.-Ing. (B.S./M.S.) 2. Work History 2019{present Project Scientist III, NCAR High Altitude Observatory, USA. 2013{2019 Project Scientist II, NCAR High Altitude Observatory, USA. 2007{2013 Associate Scientist IV, NCAR, High Altitude Observatory, USA. 2003{2007 Associate Scientist III, NCAR, High Altitude Observatory, USA. 2001{2003 Associate Scientist II, NCAR, High Altitude Observatory, USA. 2000{2001 Associate Scientist I, NCAR, High Altitude Observatory, USA. 1995{1999 Research Associate, Institute of Structural Mechanics, University of Stuttgart, Germany. 1993{1995 Research and teaching assistant, Institute of Structural Mechanics, University of Stuttgart, Germany. 1992{1993 University of Calgary, Canada, student with scholarship from the German Aca- demic Exchange Council (DAAD). 1992{1993 Working experience at structural engineering & design office, Stuttgart, Germany (5 months). 1991{1992 Teaching assistant, Institute of Mechanics, University of Stuttgart, Germany. 1989 Internship at a building company, Stuttgart, Germany (6 months). 3. Scientific/Technical Accomplishments 2018-present Project with Art Richmond, Gang Lu: Developed method to drive TIEGCM with hemispherically asymmetric field-aligned current from AMPERE. 2016-present Project with Gary Egbert, Patrick Alken, Art Richmond: Develop method to derive ionospheric current model from LEO and ground magnetic observations by using knowledge from the TIEGCM ionospheric current flow. 2014-2017 Development of TIE-GCM version for the NASA ICON explorer. 2011-2012 Project with Jeffrey Forbes and Xiaoli Zhang: developed TIE-GCM version driven by Hough Mode Extensions (HME) at the lower boundary to be employed by the NASA explorer ICON.
    [Show full text]
  • Fall 2004 CEDAR Post
    THE CEDAR POST C OUPLING , E NERGETICS AND D YNAMICS OF A TMOSPHERIC R EGIONS FROM THE C S S C C HAIR I would like to begin by thanking Barbara Emery and all her staff who made the June 2004 workshop run so smoothly. The steering committee members report many positive comments on the new venue in Santa Fe and we are all looking forward to next summer when the CEDAR Meeting will be held jointly with the GEM Workshop. This issue of the CEDAR Post contains workshop reports and some other news from this summer. Two thousand four has been a busy year for the CEDAR community with the completion of the upper atmosphere facilities panel review (led by Susan Avery), the Lidar community self-assessment report (led by Rich Collins), and a passive optics community instrumentation review (in progress). This coming year we will be busy getting ready and planning for AMISR and focusing on M-I coupling and other issues of common interest to the CEDAR and GEM communities. ▲ INSIDE Finally, I want to recognize our new CSSC chairman-elect Jan Sojka. Summary of 2004 CEDAR Workshop 2 I look forward to working closely with him over the coming year. 2004 Workshop Reports 4 AMISR Development is Underway 33 Letter from Program Director 35 Sixto A. González Steering Committee Arecibo Observatory Members 36 Fall 2004 http://cedarweb.hao.ucar.edu/commun/cedarcom.html Volume 49 Summary of the 2004 CEDAR Workshop Eldorado Hotel, Santa Fe, New Mexico 27 June - 2 July 2004 Barbara Emery, HAO/NCAR he CEDAR (Coupling, Energetics and Dynamics of Atmospheric Regions) Workshop for 2004 was held Tat the Eldorado Hotel in Santa Fe, New Mexico.
    [Show full text]
  • Nasa Advisory Council Heliophysics Subcommittee
    NAC Heliophysics Meeting Minutes, October 10-12, 2012 NASA ADVISORY COUNCIL HELIOPHYSICS SUBCOMMITTEE October 10-12, 2012 NASA Headquarters Washington, D.C. MEETING MINUTES _____________________________________________________________ Maura Hagan, Chair _____________________________________________________________ Jeffrey Newmark, Executive Secretary 1 NAC Heliophysics Meeting Minutes, October 10-12, 2012 Table of Contents Welcome, Overview of Agenda 3 Heliophysics Division Overview 3 Flight Program Status 5 Measurement Techniques Workshop 5 Research and Analysis Status 6 HPD Comments on NRC Decadal Strategy for Solar and Space Physics Report 8 NASA-SMD Mission Cost History 11 The Effects of Solar Variability on Earth’s Climate: Workshop Report 13 Subcommittee Discussion 14 Heliophysics Roadmap for Science and Technology 2013-2033 Status 15 Heliophysics Senior Review Guidelines 19 NAC IT Infrastructure 21 NASA Launch Services Briefing 23 Subcommittee Work Session 24 Debrief with the Heliophysics Division Director 27 Appendix A- Attendees Appendix B-Membership roster Appendix C-Presentations Appendix D-Agenda Prepared by Elizabeth Sheley Zantech IT 2 NAC Heliophysics Meeting Minutes, October 10-12, 2012 Wednesday, October 10, 2012 Welcome, Overview of Agenda Dr. Maura Hagan, Heliophysics Subcommittee (HPS) Chair, opened by reviewing the agenda. This meeting was planned to allow ample time for deliberation on any findings the Subcommittee wanted to send to the NASA Advisory Council (NAC). Heliophysics Division Overview Dr. Barbara Giles, Director of the NASA Heliophysics Division (HPD), provided an update on Division activities. The Division’s most exciting recent accomplishment was the launch of the Radiation Belt Storm Probes (RBSPs). While the probes were still in the commissioning phase, most of the instruments were already taking in data.
    [Show full text]