Investigating the Effects of Ant-Hemipteran Mutualisms on the Ni Vertebrate Community Structure and Their Osh T Plant, Honey Mesquite (Prosopis Glandulosa)" (2018)

Total Page:16

File Type:pdf, Size:1020Kb

Investigating the Effects of Ant-Hemipteran Mutualisms on the Ni Vertebrate Community Structure and Their Osh T Plant, Honey Mesquite (Prosopis Glandulosa) University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2018 Investigating The ffecE ts Of Ant-Hemipteran Mutualisms On The nI vertebrate Community Structure And Their oH st Plant, Honey Mesquite (prosopis Glandulosa) Nabil Nasseri University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Botany Commons, Ecology and Evolutionary Biology Commons, and the Entomology Commons Recommended Citation Nasseri, Nabil, "Investigating The Effects Of Ant-Hemipteran Mutualisms On The nI vertebrate Community Structure And Their osH t Plant, Honey Mesquite (prosopis Glandulosa)" (2018). Graduate College Dissertations and Theses. 971. https://scholarworks.uvm.edu/graddis/971 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. INVESTIGATING THE EFFECTS OF ANT-HEMIPTERAN MUTUALISMS ON THE INVERTEBRATE COMMUNITY STRUCTURE AND THEIR HOST PLANT, HONEY MESQUITE (PROSOPIS GLANDULOSA) A Dissertation Presented by Nabil Nasseri to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Biology October, 2018 Defense Date: March 23, 2018 Dissertation Examination Committee: Alison K. Brody, Ph.D. Advisor Josef H. Görres, Ph.D., Chairperson Sara Helms Cahan, Ph.D Nicholas J. Gotelli, Ph.D Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT Ants are ubiquitous in most communities and many form opportunistic mutualisms with honeydew-producing hemipterans (e.g. treehoppers). Hemipterans excrete honeydew, a carbohydrate rich substance, that ants harvest and, in return, ants protect their honeydew- producing partners from parasitoids, predators, and competitors. Given the efficacy of tending ants in removing hemipteran antagonists, and the strong roles that ants play within their communities as predators, competitors, and seed dispersers, surprisingly little is known of the effects of ant-hemipteran mutualisms (AHM) on the invertebrate communities in which they are embedded or on the plants that host AHM. Using observational and manipulative field experiments, I examined the long-term effect of AHM on their host plant’s, honey mesquite (Prosopis glandulosa), reproductive potential and quality. In addition, I measured how the presence of AHM affects the abundance, richness, diversity, and composition of the invertebrate communities living on honey mesquite. Plants hosting AHM may indirectly benefit (through the removal of herbivore arthropods) or suffer (through the loss pollinators) due to the defensive behavior of tending ants. To determine the effects of AHM on their host plant, I established a four-year press experiment in which I removed AHM from 50 randomly trees, while leaving 50 as controls. In addition, I marked and followed 30 trees from which AHM were naturally absent. To assess if mesquite quality differed between trees hosting AHM and trees in which AHM were naturally absent, in 2012 I assayed foliar condensed tannin concentrations, a secondary defense compound, and, in 2015, I measured foliar nitrogen, phosphorous, potassium, magnesium, and iron as they are essential for growth and reproduction. I compared the reproductive potential between AHM present and removed trees by counting flowers and fruits across all 4 years of the study. Mesquite that hosted AHM contained significantly less condensed tannins and significantly higher concentrations of N%, Mg, and Fe. Furthermore, over the duration of the study mesquite hosting AHM contained significantly more flowers than those from which AHM were removed or naturally absent. My results indicate that AHM select trees of high quality and their continued presence is associated with high levels of reproductive potential. Most studies that have evaluated community-level effects of AHM compare total abundance and species richness in communities (or host plants) with and without AHMs. However, both measures are dependent on sampling effort, complicating comparisons across different studies. To examine the effects of AMH on the arthropod community in mesquite, I first compared family richness and alpha diversity using standardized rarefaction and extrapolation curves. I then measured beta diversity and turnover in community composition from one year to the next. The removal of AHM increased invertebrate diversity and significantly altered community composition. Although treatments did not statistically differ in turnover rates, replacements occurred among treatments at the family level which may be biologically meaningful. Furthermore, herbivore and predator populations increased, and pollinator populations decreased following the removal of AHM. These results suggest that the presence of AHM can alter the composition of arthropod communities and food-web dynamics. However, these effects were significant in some years and not others, suggesting the importance of temporal variation in drivers of communities. Overall, my work demonstrates that AHM can be drivers of community composition and illustrate the importance of examining their effects across multiple seasons. ACKNOWLEDGEMENTS First and foremost, I would like to thank Dr. Alison Brody for being a remarkable advisor, mentor and friend. I cannot bake her enough mandelbrots for all she has done and more importantly, for her patience. Thanks to my amazing committee: Sara Helms Cahan for her guidance in establishing my experimental design and introducing me to the joy and wonder of digging red harvester ant nests and their stings, Nick Gotelli for hammering home the importance of displaying the variation in the data and pushing me to embrace R…still deliberating which is more painful, harvester ant stings or R’s learning curve, Josef H. Görres for being an astounding chairperson by always being supportive and reminding me that there is light at the end and it is reachable. A special thank you to my Welder family: Terry Donovan, Selma Glasscock, Angela Garcia, Irma Tamez, Adam Mitchell, Meg Streich, Kelsey Griffin, Sarah Cusser, Nick Cano, Olivia Kost. A very special thank you to Sarah Kahlich, the “nemies!” and I are forever grateful! Thank you to all the graduate students and friends that truly provided me with the social and intellectual support I needed. You are too numerous to list, but special thanks to my G-chat colleagues (A.N., L.O., F.L., M.G.) for the laughs, coffee breaks, and stat/R discussions, Ally2 and Co. (A.D., C.D., D.D., A.N., D.K., Z.N-K.) for hysterical game nights – “OXY-GEN!”, Steak and Drake camping brother, L.B., for the piece and quite in wild Maine, Wed/Thurs Night Cards (C.I., V.I. G.F, B.D., H.K.,S.D.) that encouraged “Nabiling it”. To N.S. for letting me crash on your sofa or spare bed after late nights of ii writing. Thanks to all the undergraduates that helped in the lab; with a special thanks to Luke McCartin for all the extra time and work he put in. Thank you to my mom (Elyce) and baba (Naim) for their unwavering support and guidance. For instilling in me the importance of education and bettering myself. My brothers (Quddus, Collin, and Fugita), thank you so much for providing me with strong, positive role models to look up to and being there for me when I needed you. To Emily Koella for providing me with unconditional love and support, and always being there to help pull me out of rabbit holes. Lastly, I would like to thank the Rob and Bessie Welder Wildlife Refuge Foundation for allowing me to conduct my research at the refuge and for selecting me as a Welder Fellow, Sigma Xi’s Grant-in-Aid of Research fund, Botanical Society of America Graduate Student Research Award, University of Vermont’s Ronald Suiter Award and Carolyn M. Glass ’83 Award, and Parker Lumber in Sinton, TX and Air Energy in Houston, TX for donating research supplies. iii TABLE OF CONTENTS Page ACKNOWLEDGEMENTS ................................................................................................ ii LIST OF TABLES ............................................................................................................ vii LIST OF FIGURES ......................................................................................................... viii Chapter 1: The structuring of communities through direct and indirect interactions derived from ant protection mutualisms: A review and prospectus ................................... 1 1.1. Abstract .................................................................................................................... 1 1.2. Introduction .............................................................................................................. 2 1.3. Community level effects of ant-protection mutualisms ........................................... 4 1.4. Temporal indirect effects of APM on communities ................................................ 6 1.4. Effect of APM presence on pollinator behavior and efficacy .................................. 7 1.5. Long-term effect of ant-protection mutualisms on the reproductive potential of host plants ................................................................................................................... 8 1.6. Conclusion: Importance of Incorporating Indirect Interactions
Recommended publications
  • Nutritional Ecology of the Carpenter Ant Camponotus Pennsylvanicus (De Geer): Macronutrient Preference and Particle Consumption
    Nutritional Ecology of the Carpenter Ant Camponotus pennsylvanicus (De Geer): Macronutrient Preference and Particle Consumption Colleen A. Cannon Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Entomology Richard D. Fell, Chairman Jeffrey R. Bloomquist Richard E. Keyel Charles Kugler Donald E. Mullins June 12, 1998 Blacksburg, Virginia Keywords: diet, feeding behavior, food, foraging, Formicidae Copyright 1998, Colleen A. Cannon Nutritional Ecology of the Carpenter Ant Camponotus pennsylvanicus (De Geer): Macronutrient Preference and Particle Consumption Colleen A. Cannon (ABSTRACT) The nutritional ecology of the black carpenter ant, Camponotus pennsylvanicus (De Geer) was investigated by examining macronutrient preference and particle consumption in foraging workers. The crops of foragers collected in the field were analyzed for macronutrient content at two-week intervals through the active season. Choice tests were conducted at similar intervals during the active season to determine preference within and between macronutrient groups. Isolated individuals and small social groups were fed fluorescent microspheres in the laboratory to establish the fate of particles ingested by workers of both castes. Under natural conditions, foragers chiefly collected carbohydrate and nitrogenous material. Carbohydrate predominated in the crop and consisted largely of simple sugars. A small amount of glycogen was present. Carbohydrate levels did not vary with time. Lipid levels in the crop were quite low. The level of nitrogen compounds in the crop was approximately half that of carbohydrate, and exhibited seasonal dependence. Peaks in nitrogen foraging occurred in June and September, months associated with the completion of brood rearing in Camponotus.
    [Show full text]
  • SA Spider Checklist
    REVIEW ZOOS' PRINT JOURNAL 22(2): 2551-2597 CHECKLIST OF SPIDERS (ARACHNIDA: ARANEAE) OF SOUTH ASIA INCLUDING THE 2006 UPDATE OF INDIAN SPIDER CHECKLIST Manju Siliwal 1 and Sanjay Molur 2,3 1,2 Wildlife Information & Liaison Development (WILD) Society, 3 Zoo Outreach Organisation (ZOO) 29-1, Bharathi Colony, Peelamedu, Coimbatore, Tamil Nadu 641004, India Email: 1 [email protected]; 3 [email protected] ABSTRACT Thesaurus, (Vol. 1) in 1734 (Smith, 2001). Most of the spiders After one year since publication of the Indian Checklist, this is described during the British period from South Asia were by an attempt to provide a comprehensive checklist of spiders of foreigners based on the specimens deposited in different South Asia with eight countries - Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan and Sri Lanka. The European Museums. Indian checklist is also updated for 2006. The South Asian While the Indian checklist (Siliwal et al., 2005) is more spider list is also compiled following The World Spider Catalog accurate, the South Asian spider checklist is not critically by Platnick and other peer-reviewed publications since the last scrutinized due to lack of complete literature, but it gives an update. In total, 2299 species of spiders in 67 families have overview of species found in various South Asian countries, been reported from South Asia. There are 39 species included in this regions checklist that are not listed in the World Catalog gives the endemism of species and forms a basis for careful of Spiders. Taxonomic verification is recommended for 51 species. and participatory work by arachnologists in the region.
    [Show full text]
  • Ecography E6629 Machac, A., Janda, M., Dunn, R
    Ecography E6629 Machac, A., Janda, M., Dunn, R. R. and Sanders, N. J. 2010. Elevational gradients in phylogenetic structure of ant communities reveal the interplay of biotic and abiotic constraints on species density. – Ecography 33: xxx–xxx. Supplementary material system is 250–2000 m (Fig. S1); we have sampled approximate- ly 90% of the extent of this elevational gradient (Sanders et al. 2007). Vorarlberg Mts (2600 km2) consist of several montane systems Appendix 1 (Silvretta, Ratikon, Verwall, Arlberg) formed during the Alpine orogeny (65 mya) (Fenninger et al. 1980). Flora and fauna of the region have been largely affected during the ice ages. Nowadays, Geography of the montane systems the temperate climate predominates but, indeed, fluctuates with elevation (350–3000 m) (Austrian Geological Survey 2010) (Fig. The geological system of Great Smoky Mts (2000 km2) was formed S1). approximately 200–300 mya. The mountains’ convenient north- Chiricahua Mts (2200 km2), composed of Tertiary volcanics, south orientation allowed the species to migrate along their slopes are situated in the deserts of southeastern Arizona, USA (Jenney during the times of climate changes (e.g. ice age 10 kya) (King and Reynolds 1989). Particular biological diversity of the moun- 1968). Therefore, the environment of Smoky Mts remained un- tain range stems from its position on the interface of four ecological disturbed by climate fluctuations for over a million years, hence, regions (Sonoran desert, Chihuahuan desert, Rocky Mountains, providing species a sufficient time for wide diversifications (US and Sierra Madre) (US Geological Survey 2010). The elevational Geological Survey 2010). The elevational span of the montane gradient spans from 1100 to 2900 m (Fig.
    [Show full text]
  • WO 2017/035099 Al 2 March 2017 (02.03.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/035099 Al 2 March 2017 (02.03.2017) P O P C T (51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C07C 39/00 (2006.01) C07D 303/32 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, C07C 49/242 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (21) International Application Number: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PCT/US20 16/048092 PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (22) International Filing Date: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 22 August 2016 (22.08.2016) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (30) Priority Data: TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 62/208,662 22 August 2015 (22.08.2015) US TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (71) Applicant: NEOZYME INTERNATIONAL, INC.
    [Show full text]
  • UC Riverside UC Riverside Electronic Theses and Dissertations
    UC Riverside UC Riverside Electronic Theses and Dissertations Title Food Preference, Survivorship, and Intraspecific Interactions of Velvety Tree Ants Permalink https://escholarship.org/uc/item/75r0k078 Author Hoey-Chamberlain, Rochelle Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Food Preference, Survivorship, and Intraspecific Interactions of Velvety Tree Ants A Thesis submitted in partial satisfaction of the requirements for the degree of Master of Science in Entomology by Rochelle Viola Hoey-Chamberlain December 2012 Thesis Committee: Dr. Michael K. Rust, Chairperson Dr. Ring Cardé Dr. Gregory P. Walker Copyright by Rochelle Viola Hoey-Chamberlain 2012 The Thesis of Rochelle Viola Hoey-Chamberlain is approved: Committee Chairperson University of California, Riverside ACKNOWLEDGMENTS In part this research was supported by the Carl Strom Western Exterminator Scholarship. Thank you to Jeremy Brown for his assistance in all projects including collecting ant colonies, setting up food preference trials, setting up and collecting data during nestmate recognition studies and supporting other aspects of the field work. Thank you also to Dr. Les Greenburg (UC Riverside) for guidance and support with many aspects of these projects including statistics and project ideas. Thank you to Dr. Greg Walker (UC Riverside) and Dr. Laurel Hansen (Spokane Community College) for their careful review of the manuscript. Thank you to Dr. Subir Ghosh for assistance with statistics for the survival study. And thank you to Dr. Paul Rugman-Jones for his assistance with the genetic analyses. iv ABSTRACT OF THE THESIS Food Preference, Survivorship, and Intraspecific Interactions of Velvety Tree Ants by Rochelle Viola Hoey-Chamberlain Master of Science, Graduate Program in Entomology University of California, Riverside, December 2012 Dr.
    [Show full text]
  • Social Behaviour and Life History of Membracine Treehoppers
    Journal of Natural History, 2006; 40(32–34): 1887–1907 Social behaviour and life history of membracine treehoppers CHUNG-PING LIN Department of Entomology, Cornell University, Ithaca, NY, USA and Department of Life Science, Center for Tropical Ecology and Biodiversity, Tunghai University, Taichung, Taiwan (Accepted 28 September 2006) Abstract Social behaviour in the form of parental care is widespread among insects but the evolutionary histories of these traits are poorly known due to the lack of detailed life history data and reliable phylogenies. Treehoppers (Hemiptera: Membracidae) provide some of the best studied examples of parental care in insects in which maternal care involving egg guarding occurs frequently. The Membracinae exhibit the entire range of social behaviour found in the treehoppers, ranging from asocial solitary individuals, nymphal or adult aggregations, to highly developed maternal care with parent–offspring communication. Within the subfamily, subsocial behaviour occurs in at least four of the five tribes. The Aconophorini and Hoplophorionini are uniformly subsocial, but the Membracini is a mixture of subsocial and gregarious species. The Hypsoprorini contains both solitary and gregarious species. Accessory secretions are used by many treehoppers to cover egg masses inserted into plant tissue while oviposition on plant surfaces is restricted to a few species. Presumed aposematic colouration of nymphs and teneral adults appears to be restricted to gregarious and subsocial taxa. Ant mutualism is widespread among membracine treehoppers and may play an important role in the evolutionary development of subsocial behaviour. The life history information provides a basis for comparative analyses of maternal care evolution and its correlation with ant mutualism in membracine treehoppers.
    [Show full text]
  • Bibliography of the World Literature of the Bethylidae (Hymenoptera: Bethyloidea)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida December 1986 BIBLIOGRAPHY OF THE WORLD LITERATURE OF THE BETHYLIDAE (HYMENOPTERA: BETHYLOIDEA) Bradford A. Hawkins University of Puerto Rico, Rio Piedras, PR Gordon Gordh University of California, Riverside, CA Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Hawkins, Bradford A. and Gordh, Gordon, "BIBLIOGRAPHY OF THE WORLD LITERATURE OF THE BETHYLIDAE (HYMENOPTERA: BETHYLOIDEA)" (1986). Insecta Mundi. 509. https://digitalcommons.unl.edu/insectamundi/509 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Vol. 1, no. 4, December 1986 INSECTA MUNDI 26 1 BIBLIOGRAPHY OF THE WORLD LITERATURE OF THE BETHYLIDAE (HYMENOPTERA: BETHYLOIDEA) 1 2 Bradford A. Hawkins and Gordon Gordh The Bethylidae are a primitive family of Anonymous. 1905. Notes on insect pests from aculeate Hymenoptera which present1y the Entomological Section, Indian consists of about 2,200 nominal species. Museum. Ind. Mus. Notes 5:164-181. They are worldwide in distribution and all Anonymous. 1936. Distribuicao de vespa de species are primary, external parasites of Uganda. Biologic0 2: 218-219. Lepidoptera and Coleoptera larvae. Due to Anonymous. 1937. A broca le a vespa. their host associations, bethylids are Biol ogico 3 :2 17-2 19. potentially useful for the biological Anonymous. 1937. Annual Report. Indian Lac control of various agricultural pests in Research Inst., 1936-1937, 37 pp.
    [Show full text]
  • Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
    ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4.
    [Show full text]
  • Biología Y Aprovechamiento De La Hormiga De Escamoles, Liometopum Apiculatum Mayr (Hymenoptera: Formicidae)
    ActaISSN Zool. 0065-1737 Mex. (n.s.) 31(2) (2015) Acta Zoológica Mexicana (n.s.), 31(2): 251-264 (2015)251 BIOLOGÍA Y APROVECHAMIENTO DE LA HORMIGA DE ESCAMOLES, LIOMETOPUM APICULATUM MAYR (HYMENOPTERA: FORMICIDAE) Priscila LARA JUÁREZ,1 Juan Rogelio AGUIRRE RIVERA,2 Pedro CASTILLO LARA2 y Juan Antonio REYES AGÜERO2,* 1Graduada, Programa Multidisciplinario de Posgrado en Ciencias Ambientales, Universidad Autónoma de San Luis Potosí. 2Instituto de Investigación de Zonas Desérticas. Universidad Autónoma de San Luis Potosí, Altair Núm. 200, Fracc. Del Llano, San Luis Potosí, SLP. México. 78377. <[email protected]> Recibido: 28/10/2014; aceptado: 13/02/2015 Lara Juárez, P., Aguirre Rivera, J. R., Castillo Lara, P. & Reyes Lara Juárez, P., Aguirre Rivera, J. R., Castillo Lara, P. & Reyes Agüero, J. A. 2015. Biología y aprovechamiento de la hormiga de Agüero, J. A. 2015. Biology and exploitation of the escamoles escamoles, Liometopum apiculatum Mayr (Hymenoptera: Formi- ant, Liometopum apiculatum Mayr (Hymenoptera: Formicidae). cidae). Acta Zoológica Mexicana (n. s.), 31(2): 251-264. Acta Zoológica Mexicana (n. s.), 31(2): 251-264. RESUMEN. De las cinco especies de hormigas consideradas alimento ABSTRACT. There are five species of ants considered as food in en México, destaca Liometopum apiculatum cuyas pupas de las castas Mexico, Liometopum apiculatum stands out because the pupae from reproductoras, llamadas escamoles, se recolectan desde tiempos pre- its reproductive castes, called escamoles are gathered since pre-His- hispánicos en el centro de México; sin embargo, su demanda creciente panic times in central Mexico, but its growing commercial demand has ha provocado su aprovechamiento comercial en otras zonas del país, led to be gathered in other areas of the country, where there is a lack of donde se carece de conocimiento tradicional para hacerlo adecuada- traditional knowledge to do it properly.
    [Show full text]
  • Of Santa Cruz Island, California
    Bull. Southern California Acad. Sei. 99(1), 2000, pp. 25-31 © Southern California Academy of Sciences, 2000 Ants (Hymenoptera: Formiddae) of Santa Cruz Island, California James K. Wetterer', Philip S. Ward^, Andrea L. Weiterer', John T. Longino^, James C. Träger^ and Scott E. Miller' ^Center for Environmental Research and Conservation, 1200 Amsterdam Ave., Columbia University, New York, New York 10027 ^Department of Entomology, University of California, Davis, California 95616 ^The Evergreen State College, Olympia, Washington 98505 '^Shaw Arboretum, P.O. Box 38, Gray Summit, Missouri 63039 ^International Centre of Insect Physiology and Ecology, Box 30772, Nairobi, Kenya and National Museum of Natural History, Smithsonian Institution, Washington, DC 20560 Abstract.•^We conducted ant surveys on Santa Cruz Island, the largest of the CaUfomia Channel Islands, in 1975/6, 1984, 1993, and 1998. Our surveys yielded a combined total of 34 different ant species: Brachymyrmex cf. depilis, Campon- otus anthrax, C. clarithorax, C. hyatti, C. semitestaceus, C. vicinus, C. sp. near vicinus, C yogi, Cardiocondyla ectopia, Crematogaster califomica, C héspera, C. marioni, C. mormonum, Dorymyrmex bicolor, D. insanus (s.l.), Formica la- sioides, F. moki, Hypoponera opacior, Leptothorax andrei, L. nevadensis, Line- pithema humile, Messor chamberlini, Monomorium ergatogyna, Pheidole califor- nica, P. hyatti, Pogonomyrmex subdentatus, Polyergus sp., Prenolepis imparis, Pseudomyrmex apache, Solenopsis molesta (s.l.), Stenamma diecki, S. snellingi, S. cf. diecki, and Tapinoma sessile. The ant species form a substantial subset of the mainland California ant fauna. "We found only two ant species that are not native to North America, C ectopia and L. humile. Linepithema humile, the Ar- gentine ant, is a destructive tramp ant that poses a serious threat to native ants.
    [Show full text]
  • Official Lists and Indexes of Names and Works in Zoology
    OFFICIAL LISTS AND INDEXES OF NAMES AND WORKS IN ZOOLOGY Supplement 1986-2000 Edited by J. D. D. SMITH Copyright International Trust for Zoological Nomenclature 2001 ISBN 0 85301 007 2 Published by The International Trust for Zoological Nomenclature c/o The Natural History Museum Cromwell Road London SW7 5BD U.K. on behalf of lICZtN] The International Commission on Zoological Nomenclature 2001 STATUS OF ENTRIES ON OFFICIAL LISTS AND INDEXES OFFICIAL LISTS The status of names, nomenclatural acts and works entered in an Official List is regulated by Article 80.6 of the International Code of Zoological Nomenclature. All names on Official Lists are available and they may be used as valid, subject to the provisions of the Code and to any conditions recorded in the relevant entries on the Official List or in the rulings recorded in the Opinions or Directions which relate to those entries. However, if a name on an Official List is given a different status by an adopted Part of the List of Available Names in Zoology the status in the latter is to be taken as correct (Article 80.8). A name or nomenclatural act occurring in a work entered in the Official List of Works Approved as Available for Zoological Nomenclature is subject to the provisions of the Code, and to any limitations which may have been imposed by the Commission on the use of that work in zoological nomenclature. OFFICIAL INDEXES The status of names, nomenclatural acts and works entered in an Official Index is regulated by Article 80.7 of the Code.
    [Show full text]
  • Appendix 5: Fauna Known to Occur on Fort Drum
    Appendix 5: Fauna Known to Occur on Fort Drum LIST OF FAUNA KNOWN TO OCCUR ON FORT DRUM as of January 2017. Federally listed species are noted with FT (Federal Threatened) and FE (Federal Endangered); state listed species are noted with SSC (Species of Special Concern), ST (State Threatened, and SE (State Endangered); introduced species are noted with I (Introduced). INSECT SPECIES Except where otherwise noted all insect and invertebrate taxonomy based on (1) Arnett, R.H. 2000. American Insects: A Handbook of the Insects of North America North of Mexico, 2nd edition, CRC Press, 1024 pp; (2) Marshall, S.A. 2013. Insects: Their Natural History and Diversity, Firefly Books, Buffalo, NY, 732 pp.; (3) Bugguide.net, 2003-2017, http://www.bugguide.net/node/view/15740, Iowa State University. ORDER EPHEMEROPTERA--Mayflies Taxonomy based on (1) Peckarsky, B.L., P.R. Fraissinet, M.A. Penton, and D.J. Conklin Jr. 1990. Freshwater Macroinvertebrates of Northeastern North America. Cornell University Press. 456 pp; (2) Merritt, R.W., K.W. Cummins, and M.B. Berg 2008. An Introduction to the Aquatic Insects of North America, 4th Edition. Kendall Hunt Publishing. 1158 pp. FAMILY LEPTOPHLEBIIDAE—Pronggillled Mayflies FAMILY BAETIDAE—Small Minnow Mayflies Habrophleboides sp. Acentrella sp. Habrophlebia sp. Acerpenna sp. Leptophlebia sp. Baetis sp. Paraleptophlebia sp. Callibaetis sp. Centroptilum sp. FAMILY CAENIDAE—Small Squaregilled Mayflies Diphetor sp. Brachycercus sp. Heterocloeon sp. Caenis sp. Paracloeodes sp. Plauditus sp. FAMILY EPHEMERELLIDAE—Spiny Crawler Procloeon sp. Mayflies Pseudocentroptiloides sp. Caurinella sp. Pseudocloeon sp. Drunela sp. Ephemerella sp. FAMILY METRETOPODIDAE—Cleftfooted Minnow Eurylophella sp. Mayflies Serratella sp.
    [Show full text]